REMEDIAL ACTION REPORT ADDENDUM SA-6 SOUTH BULKHEAD DEFERRED AREA CHROMIUM REMEDY

STUDY AREA 6 SOUTH NJDEP SITE 073

JERSEY CITY, NEW JERSEY

Prepared for

115 Tabor Road Morris Plains, New Jersey 07950

Prepared by:

Wood Environment & Infrastructure Solutions, Inc. 200 American Metro Boulevard, Suite 113 Hamilton, New Jersey 08619 Project No. 7772210089

APRIL 2021

SECTION A. SITE INFORMATION

New Jersey Department of Environmental ProtectionSite Remediation and Waste Management Program

COVER/CERTIFICATION FORM

(Submit with Remedial Phase Report, Receptor Evaluation, and CEA Forms)

Date Stamp (For Department use only)

Site Name: Study Area SA-6 South Site 07	73									
AKAs: Kellogg. St. Properties, etc.; Deed	Notice	#4 Tract 2								
Street Address: Kellogg Street										
Municipality: Jersey City (Township, Borough or City)										
County: Hudson			Ziŗ	Code: <u>07305</u>	5					
Program Interest (PI) Number(s): G00000	0927									
Case Tracking Number(s) for this submissi	on: F	RAP180001								
Date Remediation Initiated Pursuant to N.J	.A.C.	7:26C-2: <u>0</u>	5/26/2013							
State Plane Coordinates for a central locat	ion at	the site: Ea	sting: <u>601</u>	437.751262	Northing:	685546.2648	35			
List current Municipal Block and Lot Numb	ers of	the <u>Site</u> :								
Block # 21901.01 Lot #(s) 8 and	9		Block	#	Lot #(s	5)				
Block # Lot #(s)				#		s)				
Block # Lot #(s)				#		s)				
Block # Lot #(s)				#						
 Indicate how the Electronic Data Deliver Via Email at srpedd@dep.nj.gov (at CD (attach to this submission) Not Applicable – No EDD Complete the following Submission and 	tach N	NJDEP confi	rmation en	٠.	rovided to the	NJDEP:				
Remedial Phase Documents	N/A	Included in this	Previously	Date of Submission	Date of Revised Submission	Date of Previous NJDEP Approval	Date of Document Withdrawal			
Preliminary Assessment Report			\boxtimes	03/30/2012		06/28/2012				
Site Investigation Report			X							
Remedial Investigation Report			X	12/23/2008		03/24/2009				
Remedial Action Work Plan			X	12/23/2008		03/24/2009				
Remedial Action Report		\boxtimes		12/22/2016						
Response Action Outcome	×	Ш								
Other Submissions										
Alternative Soil Remediation Standard and/or Screening level Application Form	X									
Case Inventory Document	12/22/2016									
Classification Exception Area / Well Restriction Area (CEA/WRA)			X	06/08/2009		07/31/2018				
Discharge to Ground Water Permit by Rule Authorization Request	X									

IEC Engineered System Response Action Report	×								
Immediate Environmental Concern Report	\boxtimes								
LNAPL Interim Remedial Measure Report	X								
Public Notification			\boxtimes	08/06/2009	09/01/2015				
Receptor Evaluation		\boxtimes		12/22/2016					
Technical Impracticability Determination	X								
Vapor Concern Mitigation Report	X								
Permit Application – list:	X								
Soil RA Permit			\boxtimes	12/14/2017	03/15/2019	07/26/2019			
Groundwater RA Permit				12/05/2017		08/06/2018			
Greatiawater to the office				,,		00/00/2010			
Radionuclide Remedial Action Report	\boxtimes								
Radionuclide Remedial Action Workplan	\boxtimes								
Radionuclide Remedial Investigation									
Report	\boxtimes		Ш						
Radionuclide Remedial Investigation Workplan	X								
SECTION C. SITE USE									
Current Site Use: (check all that apply)			Inter	nded Future S	Site Use, if kn	own: (check a	ll that apply)		
☐ Industrial ☐ Agricultural ☐ Park or recre ☐ Commercial ☐ School or child care ☐ Government ☐ Other:	ationa	l use	□ R □ C □ S	dustrial esidential ommercial chool or child ther:	care F	Park or recreati /acant Government Future site use			
SECTION D. CASE TYPE: (check all that apply) Administrative Consent Order (ACO)									
Federal Case (check all that apply) ☐ RCRA GPRA 2020 ☐ CER	CLA/N	NPL	USDOD	USDO	E				
1. Is the party conducting remediation a g	govern	ment entity?	?			Y	′es 🗵 No		
If "Yes," check one: ☐ Federal		State	☐ Municip	al 🗌 Count	ту				
SECTION E. PUBLIC FUNDS									
Did the remediation utilize public funds?						П Ү	es 🗵 No		
						············· 🗀 '			
If "Yes," check applicable: □ UST Grant □ UST Loan □ Brownfield Reimbursement Program □ HDSRF Grant □ HDSRF Loan □ Landfill Reimbursement Program □ Spill Fund □ Schools Development Authority □ Environmental Infrastructure Trust									

First Name: Last Name: Phone Numbers: Ext.: Fax: Mailing Address: Municipality: State: Zip Code: Email Address: Zip Code:	LSRP ID Number: Not Applicable		
Phone Numbers: Ext.: Fax: Municipality: State: Zip Code: Email Address: Municipality: State: Zip Code: Email Address: N.J.S.A. 58:108-1.3b(1) and (2). (1) I certify, as a Licensed Site Remediation Professional authorized pursuant to N.J.S.A. 58:10C-1 et seq. to conduct business in New Jersey, that for the remediation described in this submission, and all attachments included in this submission, and sell attachments included in this submission, and conducted at this site. If the submission, and ell attachments included in this submission, and/or periodically reviewed and evaluated the won performed by other persons that forms the basis for the information in this submission; and/or completed the won of another site remediation professional, licensed or not, after having; (1) reviewed all available documentation on which relied; (2) conducted a site visit and observed the then-current conditions and verified the status of as much of the was sufficient information upon which to complete any additional phase of remediation and prepare workplans and reports related thereto. (2) I certify: • That I have read this submission and all attachments to this submission; • That I have read this submission and all attachments to this submission; • That the remediation professional services as the licensed site remediation professional for the entire site or ear area of concern, I adhered to the professional conduct standards and requirements governing licensed site remediation professional strovided in N.J.S.A. 58:10C-16: • That the remediation conducted at the entire site or each area of concern, that is described in this submission all altachments to this submission was conducted pursuant to and in compliance with the remediation requirement in N.J.S.A. 58:10C-16: • That the remediation described in this submission, and all attachments to this submission, was conducted pursuant to and in compliance with the regulations of the Site Remediation Professional Licensing Board at N.J.A.C. 7:26 and • That the info		Last Name:	
Municipality: State: Zip Code: Email Address: This statement shall be signed by the LSRP who is submitting this notification in accordance with N.J.S.A. 58:10C-14, an N.J.S.A. 58:10B-1.3b(1) and (2). (1) Certify, as a Licensed Site Remediation Professional authorized pursuant to N.J.S.A. 58:10C-1 et seq, to conduct business in New Jersey, that for the remediation described in this submission, and all attachments included in this submission, and/or periodically reviewed and evaluated the work of another site remediation professional, licensed or not. After having: 1/1 reviewed all available documentation on which relied; (2) conducted a site visit and observed the then-current conditions and verified the status of as much of the was as was reasonably observable; and (3) concluded, in the exercise of my independent professional judgment, that ther was sufficient information upon which to complete any additional phase of remediation and prepare workplans and reports related thereto. (2) I certify: • That I have read this submission and all attachments to this submission; • That in performing the professional services as the licensed site remediation professional for the entire site or each area of concern, I adhered to the professional conduct standards and requirements governing licensed site remediation professionals provided in N.J.S.A. 58:10C-16: • That the remediation conducted at the entire site or each area of concern, that is described in this submission all all attachments to this submission, was conducted pursuant to and in compliance with the remediation requirement in N.J.S.A. 58:10C-16: • That the remediation described in this submission and all attachments to this submission is true, accurate, and complete. (3) I certify, that no other person is autho			
Municipality: State: Zip Code: Email Address: This statement shall be signed by the LSRP who is submitting this notification in accordance with N.J.S.A. 58:10C-14, am N.J.S.A. 58:10B-1.38(1) and (2). (1) I certify, as a Licensed Site Remediation Professional authorized pursuant to N.J.S.A. 58:10C-1 et seq. to conduct business in New Jersey, that for the remediation described in this submission, and all attachments included in this submission, and will attachments included in this submission, and or performed the remediation conducted at this site that is described this submission, and all attachments included in this submission, and/or periodically reviewed and evaluated the won performed by other persons that forms the basis for the information in this submission: and/or completed the work of another site remediation professional, licensed or not, after having: (1) reviewed all available documentation on which relied; (2) conducted a site visit and observed the then-current conditions and verified the status of as much of the we as was reasonably observable; and (3)concluded, in the exercise of my independent professional judgment, that ther was sufficient information upon which to complete any additional phase of remediation and prepare workplans and reports related thereto. (2) I certify: • That I have read this submission and all attachments to this submission; • That in performing the professional services as the licensed site remediation professional for the entire site or eare a concern, I adhered to the professional conduct standards and requirements governing licensed site remediation professionals provided in N.J.S.A. 58:10C-16: • That the remediation conducted at the entire site or each area of concern, that is described in this submission all attachments to this submission, was conducted pursuant to and in compliance with the remediation requirem in N.J.S.A. 58:10C-14.c; • That the remediation described in this submission, and all attachments to this submission is true, accurate, and complet			
Email Address: This statement shall be signed by the LSRP who is submitting this notification in accordance with N.J.S.A. 58:10C-14, an N.J.S.A. 58:10B-1.3B(1) and (2). (1) I certify, as a Licensed Site Remediation Professional authorized pursuant to N.J.S.A. 58:10C-1 et seq, to conduct business in New Jersey, that for the remediation described in this submission, and all attachments included in this submission, and all attachments included in this submission; and/or periodically reviewed and evaluated the work of another site remediation professional, licensed or not, after having: (1) reviewed all available documentation on which relied; (2) conducted a site visit and observed the then-current conditions and verified the status of as much of the was was reasonably observable; and (3)concluded, in the exercise of my independent professional judgment, that there was sufficient information upon which to complete any additional phase of remediation and prepare workplans and reports related thereto. (2) I certify: • That I have read this submission and all attachments to this submission: • That in performing the professional services as the licensed site remediation professional for the entire site or ear area of concern. I adhered to the professional conduct standards and requirements governing licensed site remediation professionals provided in N.J.S.A. 58:10C-16; • That the remediation conducted at the entire site or each area of concern, that is described in this submission at all attachments to this submission, was conducted pursuant to and in compliance with the remediation requirem in N.J.S.A. 58:10C-14.c; • That the information contained in this submission, and all attachments to this submission is true, accurate, and complete. (3) I certify, when this submission includes a response action outcome, that the entire site or each area of concern has be remediated in compliance with the regulations of the Site Remediation Professional is protective of public health and sai and the environment. (4) I c			
(1) I certify, as a Licensed Site Remediation Professional authorized pursuant to N.J.S.A. 58:10C-1 et seq. to conduct business in New Jersey, that for the remediation described in this submission, and all attachments included in this submission, personally. Managed, supervised, or performed the remediation conducted at this site that is described this submission, and all attachments included in this submission; and/or periodically reviewed and evaluated the won performed by other persons that forms the basis for the information in this submission; and/or completed the work of another site remediation professional, licensed or not, after having; (1) reviewed all available documentation on which relied; (2) conducted a site visit and observed the then-current conditions and verified the status of as much of the we as was reasonably observable; and (3)concluded, in the exercise of my independent professional judgment, that there was sufficient information upon which to complete any additional phase of remediation and prepare workplans and reports related thereto. (2) I certify: • That I have read this submission and all attachments to this submission; • That in performing the professional services as the licensed site remediation professional for the entire site or eare of concern. I adhered to the professional conduct standards and requirements governing licensed site remediation professionals provided in N.J.S.A. 58:10C-16; • That the remediation conducted at the entire site or each area of concern, that is described in this submission at all attachments to this submission, was conducted pursuant to and in compliance with the remediation requirem in N.J.S.A. 58:10C-14.c; • That the remediation described in this submission, and all attachments to this submission, was conducted pursuant to and in compliance with the remediation requirem in N.J.S.A. 58:10C-14.c; • That the information contained in this submission and all attachments to this submission is true, accurate, and complete. (3) I certify that I un			
business in New Jersey, that for the remediation described in this submission, and all attachments included in this submission, I personally: Managed, supervised, or performed the remediation conducted at this site that is described this submission, and all attachments included in this submission, and/or ocompleted the work of another site remediation professional, licensed or not, after having; (1) reviewed all available documentation on which relied; (2) conducted a site visit and observed the then-current conditions and verified the status of as much of the wide as was reasonably observable; and (3) concluded, in the exercise of my independent professional judgment, that ther was sufficient information upon which to complete any additional phase of remediation and prepare workplans and reports related thereto. (2) I certify: • That I have read this submission and all attachments to this submission; • That in performing the professional services as the licensed site remediation professional for the entire site or earea of concern. I adhered to the professional conduct standards and requirements governing licensed site remediation professionals provided in N.J.S.A. 58:10C-16; • That the remediation conducted at the entire site or each area of concern, that is described in this submission a all attachments to this submission, was conducted pursuant to and in compliance with the remediation requirem in N.J.S.A. 58:10C-14.c; • That the remediation described in this submission, and all attachments to this submission, was conducted pursuant to and in compliance with the regulations of the Site Remediation Professional Eicensing Board at N.J.A.C. 7:26 and • That the information contained in this submission and all attachments to this submission is true, accurate, and complete. (3) I certify, when this submission includes a response action outcome, that the entire site or each area of concern has be remediated in compliance with all applicable statutes, rules, and regulations and is protective of public health		SRP who is submitting this notifi	ication in accordance with N.J.S.A. 58:10C-14, and
 That I have read this submission and all attachments to this submission; That in performing the professional services as the licensed site remediation professional for the entire site or earea of concern, I adhered to the professional conduct standards and requirements governing licensed site remediation professionals provided in N.J.S.A. 58:10C-16; That the remediation conducted at the entire site or each area of concern, that is described in this submission a all attachments to this submission, was conducted pursuant to and in compliance with the remediation requirem in N.J.S.A. 58:10C-14.c; That the remediation described in this submission, and all attachments to this submission, was conducted pursuant to and in compliance with the regulations of the Site Remediation Professional Licensing Board at N.J.A.C. 7:26 and That the information contained in this submission and all attachments to this submission is true, accurate, and complete. (3) I certify, when this submission includes a response action outcome, that the entire site or each area of concern has be remediated in compliance with all applicable statutes, rules, and regulations and is protective of public health and sat and the environment. (4) I certify that no other person is authorized or able to use any password, encryption method, or electronic signature the Board or the Department have provided to me. (5) I certify that I understand and acknowledge that: If I knowingly make a false statement, representation, or certification in any document or information I submit to Department I may be subject to civil and administrative enforcement pursuant to N.J.S.A. 58:10C-17.a.1(a)throu (f) by the Board, including but not limited to license suspension, revocation, or denial of renewal; and If I purposely, knowingly, or recklessly make a false statement, representation, or certification in any application form, record, document or other information submitted to the Depa	business in New Jersey, that for the submission, I personally: Managed this submission, and all attachment performed by other persons that for another site remediation profession relied; (2) conducted a site visit and as was reasonably observable; and was sufficient information upon when the submission of the submiss	ne remediation described in this s d, supervised, or performed the ro hts included in this submission; and orms the basis for the information and, licensed or not, after having: d observed the then-current cond d (3)concluded, in the exercise of	submission, and all attachments included in this emediation conducted at this site that is described in and/or periodically reviewed and evaluated the work in this submission; and/or completed the work of (1) reviewed all available documentation on which I ditions and verified the status of as much of the work of my independent professional judgment, that there
 and the environment. (4) I certify that no other person is authorized or able to use any password, encryption method, or electronic signature the the Board or the Department have provided to me. (5) I certify that I understand and acknowledge that: If I knowingly make a false statement, representation, or certification in any document or information I submit to Department I may be subject to civil and administrative enforcement pursuant to N.J.S.A. 58:10C-17.a.1(a)through the Board, including but not limited to license suspension, revocation, or denial of renewal; and If I purposely, knowingly, or recklessly make a false statement, representation, or certification in any application, form, record, document or other information submitted to the Department or required to be maintained pursuant the Site Remediation Reform Act, I shall be guilty, upon conviction, of a crime of the third degree and shall, notwithstanding the provisions of subsection b. of N.J.S.2C:43-3, be subject to a fine of not less than \$5,000 not more than \$75,000 per day of violation, or by imprisonment, or both. (6) I certify that I have read this certification prior to signing, certifying, and making this submission. 	 That I have read this submiss That in performing the profes area of concern, I adhered to remediation professionals pro That the remediation conduct all attachments to this submission N.J.S.A. 58:10C-14.c; That the remediation describe to and in compliance with the and That the information contained complete. (3) I certify, when this submission incl 	sional services as the licensed so the professional conduct standard ovided in N.J.S.A. 58:10C-16; the at the entire site or each areassion, was conducted pursuant to ead in this submission, and all attact regulations of the Site Remediated in this submission and all attact and and all	ite remediation professional for the entire site or each rds and requirements governing licensed site of concern, that is described in this submission and and in compliance with the remediation requirements achments to this submission, was conducted pursuant tion Professional Licensing Board at N.J.A.C. 7:261; chments to this submission is true, accurate, and that the entire site or each area of concern has been
 (5) I certify that I understand and acknowledge that: If I knowingly make a false statement, representation, or certification in any document or information I submit to Department I may be subject to civil and administrative enforcement pursuant to N.J.S.A. 58:10C-17.a.1(a)through the Board, including but not limited to license suspension, revocation, or denial of renewal; and If I purposely, knowingly, or recklessly make a false statement, representation, or certification in any application, form, record, document or other information submitted to the Department or required to be maintained pursuant the Site Remediation Reform Act, I shall be guilty, upon conviction, of a crime of the third degree and shall, notwithstanding the provisions of subsection b. of N.J.S.2C:43-3, be subject to a fine of not less than \$5,000 not more than \$75,000 per day of violation, or by imprisonment, or both. (6) I certify that I have read this certification prior to signing, certifying, and making this submission. 	and the environment. (4) I certify that no other person is aut	horized or able to use any passw	
	 (5) I certify that I understand and ackr If I knowingly make a false st Department I may be subject (f) by the Board, including bu If I purposely, knowingly, or r form, record, document or oth the Site Remediation Reform notwithstanding the provision 	nowledge that: atement, representation, or certif to civil and administrative enforce t not limited to license suspension ecklessly make a false statement her information submitted to the L Act, I shall be guilty, upon convit s of subsection b. of N.J.S.2C:43	rement pursuant to N.J.S.A. 58:10C-17.a.1(a)through in, revocation, or denial of renewal; and it, representation, or certification in any application, Department or required to be maintained pursuant to ction, of a crime of the third degree and shall, 8-3, be subject to a fine of not less than \$5,000 nor
LSRP Signature: Date:	(6) I certify that I have read this certific	ation prior to signing, certifying, a	and making this submission.
LONE DIGHT.	I SDD Signature:		Date
LSRP Name:	LODBN		

Company Name:

SECTION G. PERSON RESPONSIBLE FOR CO	NDUCT	ING THE REMEDIATION II	NFORMATIO	N AND CERTIFICATION
Full Legal Name of the Person Responsible for Co	nducting	g the Remediation: Honey	well Internation	onal Inc.
Representative First Name: Benny		Representative Last Nam	ne: Dehghi	
Title: Global Remediation Director				
Phone Number: <u>(310)</u> 512-2296	Ex	t.: FAX	:	
Mailing Address: 115 Tabor Road				
Municipality: Morris Plains	State:	New Jersey	_ Zip code:	07950
Email Address: benny.dehghi@honeywell.com				
This certification shall be signed by the person resin accordance with Administrative Requirements for I certify under penalty of law that I have personally all attached documents, and that based on my inquinformation, to the best of my knowledge, I believe that there are significant civil penalties for knowing committing a crime of the fourth degree if I make a that if I knowingly direct or authorize the violation of the pocusigned by:	examin uiry of the that the ly subm written	emediation of Contaminated ed and am familiar with the lose individuals immediately e submitted information is tru itting false, inaccurate or ind false statement which I do i	I Sites rule at information so responsible ue, accurate accomplete infonot believe to	N.J.A.C. 7:26C-1.5(a). submitted herein, including for obtaining the and complete. I am aware formation and that I am to be true. I am also aware
Signature: Benny Peliglii			Date:	31-Mar-2021
Name/Title: Benny De	ehghi/GI	obal Remediation Director		
For CEA Submissions: Check this box if the person above is also the p site property owner, please ensure the site propert of the Classification Exception Area / Well Restriction	y owner	's name and address is in t	he first line of	

Completed forms should be sent to:

Bureau of Case Assignment & Initial Notice Site Remediation Program NJ Department of Environmental Protection 401-05H PO Box 420 Trenton, NJ 08625-0420

New Jersey Department of Environmental Protection Site Remediation and Waste Management Program

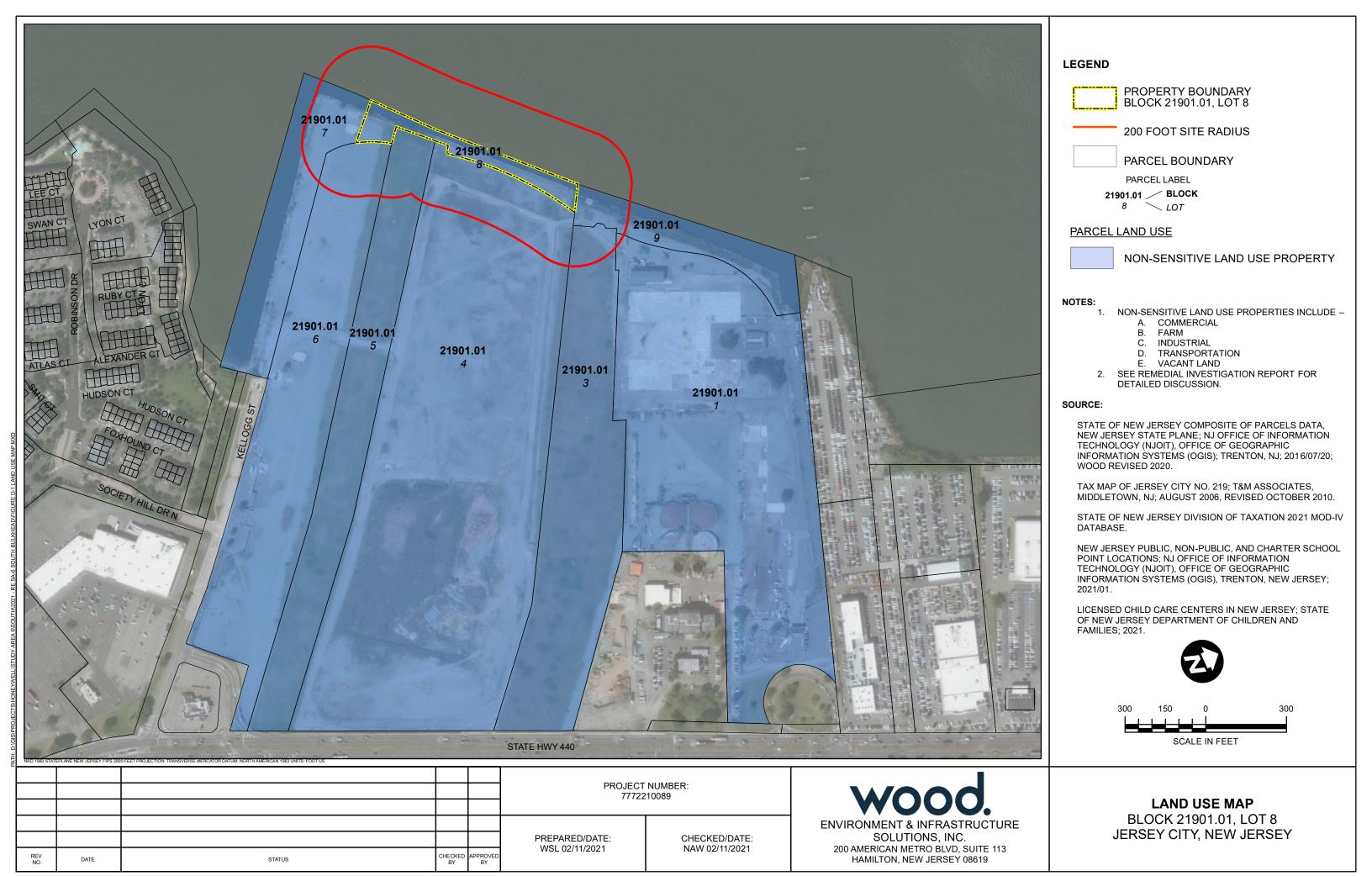
RECEPTOR EVALUATION (RE) FORM

Date Stamp

provided)
et
et

SE	ECTION C. DESCRIPTION OF CONTAMINATION	
1.	Identify if any of the following exist at the site:	
	Yes No ☐ ☑ Free product [N.J.A.C. 7:26E-1.8] identified is ☐ LNAPL* or ☐ DNAPL**.	
	Date identified:	
	Residual product [N.J.A.C. 7:26E-1.8]	
	Other primary source materials not identified above (e.g., buried drums, containers, unsecured friable asbestos). See form instructions for additional information.	
	Explain: Fill material containing chromite ore processing residue (COPR)	
	* LNAPL – measured thickness of .01 feet or more	
	**DNAPL – See Ground Water Technical Guidance and USEPA Assessment and Delineation of DNAPL Source Zones at Hazardous Waste Sites (attached as Appendix A of the NJDEP GW Guidance) available at: http://www.nj.gov/dep/srp/guidance/#pa_si_ri_gw . Also, see US EPA DNAPL Overview available at: http://cluin.org/contaminantfocus/default.focus/sec/Dense Nonaqueous Phase Liquids (DNAPLS)/cat/Overview	<u>ew</u>
2.	Soil Migration Pathway	
	Has soil contamination been delineated to the applicable Direct Contact Soil Remediation Standard pursuant to N.J.A.C. 7:26E-4.2?] No
	Are all soils either below the applicable Direct Contact Criteria or under an institutional control (i.e. deed notice)?] No
3.	If this evaluation is submitted with a technical document that includes contaminant summary information, proceed to Section D. Otherwise, attach a brief summary of all currently available data and information to be included in the site investigation or remedial investigation report.)
SE	ECTION D. GROUND WATER USE	
	Have all potentially contaminated areas of concern been evaluated to determine if there is a potential that ground water is contaminated pursuant to N.J.A.C. 7:26E-3.5?	l No
	If "No," proceed to Section E.	
2.		No
	If "No," proceed to Section E.	
3.	<u> </u>	No
	If "Yes":	No
	If the laboratory data package has not been received, provide the expected due	,
	date for data: and proceed to Section E.	
	If "No": Proceed to Section E.	
4.	Is ground water contaminated above the Ground Water Remediation Standards [N.J.A.C.7:9C]?⊠ Yes □] No
	If " Yes ": Provide the date that the laboratory data package was available and confirmed contamination was identified above the Ground Water Remediation Standards. Date: 08/23/2010	
	If "No": Proceed to Section E.	
5.	Has ground water contamination been delineated to the applicable Remediation Standard pursuant to N.J.A.C 7:26E-4.3?⊠ Yes □] No
6.	What is the ground water classification for this site as per N.J.A.C. 7:9C? (check all that apply) Class I-A Class I-PL Pinelands Protection Area Class I-PL Pinelands Preservation Area Class III-A Class III-B	

7.	Has a well search been completed?	□No
	Date of most recent or updated well search: 02/09/2021	
8.	Is a completed Well Search Spreadsheet or historical well search table attached and has an electronic copy of the spreadsheet been submitted to srpgis_wrs@dep.nj.gov	☐ No
	Note: Redacted wells must be excluded from all non-confidential documents including maps, tables, etc. (see RE Instructions).	
	If " No ," explain:	
9.	Are any potable or irrigation wells located within ½ mile of the currently known extent of contamination?	⊠ No
	If "Yes,":	
	 A door to door survey is required in accordance with [N.J.A.C.7:26E-1.14(a)ii]. Attach results of the door to door survey. 	
	 Identify if any of the following conditions exist based on the well search and door to door survey [N.J.A.C.7:26E-1.14(a)]: 	
	Yes No ☐ Potable wells located within 500 feet from the downgradient edge of the currently known extent of contamination. ☐ Potable wells located 250 feet upgradient or 500 feet side gradient of the currently known extent of contamination.	
	 Ground water contamination from the discharge is located within a Tier 1 wellhead protection area (WHPA). 	
10.	Has sampling been conducted of ☐ potable well(s) and /or ☐ non-potable use well(s)? Yes	⊠ No
	If "No," provide justification then proceed to Question 12.	
	No wells located within the canvas area.	
11.	Has contamination been identified in potable well(s), not attributed to background conditions , above the Class II Ground Water Remediation Standards or State Safe Drinking Water levels, N.J.A.C 7:1E, whichever is applicable?	□No
	If "Yes":	
	Provide the date laboratory data package was received:	
	 Follow the IEC Guidance Document at http://www.nj.gov/dep/srp/guidance/IEC/index.html for required actions and answer the following: 	
	 Has an engineered system response action been completed on all impacted receptors? Yes Provide a brief narrative description: 	□No
	Date completed: NJDEP Case Manager:	
12	Has contamination been identified in non-potable well(s), not attributed to background	
	conditions, above the Class II Ground Water Remediation Standards?	⊠ No
	If "Yes," provide the date laboratory data package was received:	
13.	Has the ground water use evaluation been completed pursuant to N.J.A.C. 7:26E-1.14? Yes	☐ No


SE	СТІОІ	N E.	VAPOR INTRUSION (VI)	
1.	"Yes"	", pro	any of the following conditions exist that trigger a Vapor Intrusion investigation. For each condition chervide the date the condition was first identified (e.g. date laboratory data package was available). EP Vapor Intrusion Technical Guidance)	cked
	Yes			ntified
		X	Ground water contamination in excess of the NJDEP Vapor Intrusion Ground Water Screening Levels (VIGWSL) and within 30 feet of a building for Petroleum Hydrocarbon Compounds (PHC) or 100 feet for non-PHC compounds	
		\boxtimes	Free product within 30 feet of a building for PHC or 100 feet for non-PHC compounds	
		\boxtimes	Soil gas contamination detected at concentrations that exceed the Soil Gas Screening Levels (SGSL)	
		X	Indoor air contamination that exceeds the Indoor Air Screening Levels	
		X	Wet basement or sump containing free product or ground water containing detectable concentration of volatile organic contaminants	
		X	Methane generating conditions causing oxygen deficient or explosion concern	
		X	Other human or safety concern from the VI pathway (i.e. elemental mercury, unsaturated soil contamination), explain below:	
			d "No" to <u>all</u> boxes in Question 1., proceed to Section F, "Ecological Receptors", otherwise com is section.	plete
2.	Has (groun er Scr	d water contamination been delineated to the applicable Vapor Intrusion Ground eening Levels pursuant to N.J.A.C 7:26E-4.3?	☐ No
3.			e-specific screening level, modeling or other alternative approach employed pathway?	□No
4.	groui	nd wa	nd locate, on a scaled map, any buildings/sensitive populations that exist within the following distances f ater contaminant concentrations above the Vapor Intrusion Ground Water Screening Levels or other spe oted in Question 1 above.:	
	Yes			
			30 feet of petroleum free product or dissolved petroleum hydrocarbon contamination in ground water 100 feet of any non-petroleum free product (e.g. chlorinated hydrocarbons) or any non-petroleum disso volatile organic ground water contamination	lved
			Other specific triggers	
			No buildings exist within the specified distances or other specific triggers	
5.	Is the	e vap	or intrusion pathway a concern at or adjacent to the site? (if "No," attach justification)	☐ No
6.	Has	soil g	as sampling of the building(s) been conducted? Yes	☐ No
	If "	Yes,"	has the laboratory data package been received?	□No
		If the	data package was received, did constituents exceed the Soil Gas Screening Levels?	□No
	If "	No,"	attach technical justification consistent with the NJDEP Vapor Intrusion Technical Guidance.	
7.	Has	indoo	r air sampling been conducted at the identified building(s)?	□No
	If "	Yes,"	has the laboratory data package been received?	□No
		If the	data package has been received, did constituents exceed the Indoor Air Screening Levels? Yes	□No
	If "	No,"	or awaiting indoor air laboratory data package, proceed to Question 12.	

8	Has indoor air contamination been identified but not suspected to be from a discharge? (if "Yes," attach justification)	Yes	□No
9.	Were indoor air results above the NJDEP's Rapid Action Levels?	Yes	□No
	Provide the date laboratory data package was received:		
	 Follow the IEC Guidance Document at http://www.nj.gov/dep/srp/guidance/index.html#iec for reactions and answer the following: 	equired	
	Was the IEC engineering system response for control implemented for all impacted structures?	Yes	□No
	Date implemented: NJDEP Case Manager:		
10.	Were the results of indoor air sampling above the NJDEP's Indoor Air Screening Levels but at, or below, the Rapid Action Levels	Yes	□No
	If "Yes," answer the following:		
	Provide the date laboratory data package was received:		
	Has the Vapor Concern (VC) Response Action Form notifying the NJDEP of the exceedances been submitted?	Yes	□No
	Date:		_
	Has a plan to mitigate and monitor the exposure been submitted?	Yes	☐ No
	Date:		
	Has the Mitigation Response Action Report been submitted? Date:	Yes	☐ No
11	Date: Do one or more buildings have an Indeterminate VI Pathway status?	Yes	☐ No
	If " Yes ," attach a list of the building(s) with address(s) and block/lot(s)	100	
12.	Has the vapor intrusion investigation been completed?	Yes	☐ No
	If "No", is the vapor intrusion investigation stepping out as part of the site investigation or remedial investigation. (If "No," attach justification)		☐ No
SE	CTION F. ECOLOGICAL RECEPTORS		
	Has an Ecological Evaluation (EE) been conducted? [N.J.A.C. 7:26E-1.16]	Yes	□No
2.	Are any site-related contaminants above any Ecological Screening Criteria?	Yes	⊠ No
	Are there any Environmentally Sensitive Natural Resources (ESNRs) on or adjacent to the site, or potentially impacted by site related contamination? [N.J.A.C. 7:26E-1.16]		⊠ No
4.	Do any potential or complete migration pathways exist between Contaminant of Potential Ecological Concern (COPECs) and ESNRs, or did historic migration pathways exist?	Yes	⊠ No
If Y	ou answered "No" to Questions 2, 3, or 4, above <u>Stop Here</u> (form is complete).		
5.	If site-related free or residual product is/was present, does/did a potential or complete	Voc	□No
6.	migration pathway exist to an ESNR?		☐ No
J .	If " Yes ", has a remedial investigation of ecological receptors been conducted?		□ No
	Date conducted:		

7.	Do available data indicate an impact (COPECs above Ecological Screening Criteria in ESNRs) to Ecological Receptor(s), Surface water, or Sediment?												
	If " Y	es,"											
	a)	Check all ESNRs or media that apply:											
	☐ Surface water ☐ Sediment ☐ Soil ☐ Wetlands												
	b) If this information is not submitted with an ecological evaluation that includes contaminant summary information, attach a brief summary of all currently available data and a description of all actions to be taken to mitigate exposure.												
8.	Have	COPECs been fully delineated to the Ec	cological Screenin	g Criteria [N.J.A.C. 7	:26E-4.8(a)] in:								
	a)	Migration pathways					☐ No						
	b)	ESNR				🗌 Yes	☐ No						
9.	Has a	n Ecological Risk Assessment been cor	nducted?			Yes	☐ No						
10.		de the following information for any on-si is potentially impacted by the site relate		surface water body,									
		Surface Water Body Name	Stream Classification	Antidegradation Designation	Trout Production	Trout Maintenan	ce						
11.	by the	Program Interest (PI) or Permit number Division of Land Use Regulation? (e.g. d areas, coastal areas, tidelands, etc.).	wetlands, transiti	on areas, flood			□No						
	If " Yes ,":												
	"	"Yes,":											
	"	"Yes,": Identify the type(s) of regulated areas:											
	"	,		Permit number(s) fo	r the site:								
12	Are th	Identify the type(s) of regulated areas:	ram (LURP) PI or	s or approvals under	review								

Completed forms should be sent to the municipal clerk, designate health department, and:

Bureau of Case Assignment & Initial Notice Site Remediation Program NJ Department of Environmental Protection 401-05H PO Box 420 Trenton, NJ 08625-0420

IMPORTANT: 1) The CID must be FINALIZED prior to upload. After the CID has been populated, click the Validate for Upload button and follow the instructions.

2) You MUST SAVE after finalizing, and before upload. Click the Enable for Editing button after uploading to edit again.

AOC ID	AOC Type	AOC Description	Confirmed Contamination	Exclude AOC from Billing	AOC Status Achieved	Status Achieved Date	Incident Communication Center #s Managed in Case	NJDEP ID	Contaminated Media	Contaminants of Concern	Additional Contaminants of Concern	Additional Contaminants of Concern	Applicable Remediation Standard	Exposure Route	Additional Exposure Route	RA Type	Additional	Was an Order of Magnitude Evaluation Conducted?	Activity
Site 073	Other areas of concern - Any area	Cap Area for Chromium Remedy; overlaying	Yes		RA	12/20/2020			Mixed Media	Metals			Soil Cleanup	Ingestion/Derm	Ground Water	Excavation	Capping	Yes	2012- Regional CEA for Groundwater updated 2018;
Portion of	suspected of containing	Historic Fill											Criteria (see	al					2013-2016 Site activities included installing hydraulic
Open Space	contaminants												instructions for						barrier and cap for chromium and groundwater extraction
AOC													appropriate use)						system to be run on contingent basis; 2017- RAR; Deed
													appropriate ase)						Notice and Conservation Restriction; RA Permits; 2020-
																			additional excavation and capping; 2021 RAR, Deed
																			Notice Termination; New Deed Notice

REMEDIAL ACTION REPORT ADDENDUM SA-6 SOUTH BULKHEAD DEFERRED AREA CHROMIUM REMEDY

STUDY AREA 6 SOUTH NJDEP SITE 073

JERSEY CITY, NEW JERSEY

Prepared for

115 Tabor Road Morris Plains, New Jersey 07950

Prepared by:

Wood Environment & Infrastructure Solutions, Inc. 200 American Metro Boulevard, Suite 113 Hamilton, New Jersey 08619 Project No. 7772210089

APRIL 2021

TABLE OF CONTENTS

NJDEP FORMS:

Updated Case Inventory Document Cover/Certification Form Updated Receptor Evaluation Form

EXE	CUTIVI	E SUMMARY	V
1.0	INTR	ODUCTION	1
	1.1	Purpose and Scope	1
	1.2	Site Location	2
	1.3	Contaminants of Concern and Remedial Action Objectives	5
	1.4	Construction Overview	4
	1.5	Data Validation and Data Usability Evaluation	8
	1.6	Report Organization	10
2.0	PREF	PARATORY AND GENERAL CONSTRUCTION ACTIVITIES	12
	2.1	Concrete Sampling (Pre-Mobilization)	12
	2.2	Waste Characterization Sampling (Pre-Mobilization)	13
	2.3	Mobilization and Site Preparation	15
	2.4	Health and Safety	16
	2.5	Perimeter Air Monitoring	17
	2.6	Site Security	18
	2.7	Support Facilities and Temporary Site Utilities	18
	2.8	Turbidity Monitoring	19
	2.9	Deflection Monitoring	19
	2.10	Vibration Monitoring	20
	2.11	Piezometer Abandonment	20
	2.12	Sustainability Efforts During Construction	21
3.0	DEW	ATERING AND CONSTRUCTION WATER TREATMENT	22
	3.1	General	22
	3.2	Construction Water Treatment Plant	23
	3.3	Well and Sump Installation	24
	3.4	Groundwater Management	25
	3.5	Supplemental Dewatering Management	26
4.0	EXC	AVATION ACTIVITIES	27
	4.1	Permanent Bulkhead Installation	27

	4.2	Temporary Excavation Support	28		
	4.3	Excavation Implementation and Sequencing	29		
	4.4	Excavation Extent Surveying and Confirmation	30		
	4.5	Excavated Material (Stockpile) Testing	30		
	4.6	Offsite Transportation and Disposal	31		
5.0	BACI	KFILLING, COMPACTION, AND COMPACTION TESTING	32		
	5.1	Backfill Sources	32		
	5.2	Backfill Testing	32		
	5.3	Backfilling and Compaction	34		
	5.4	In-Place Backfill Density Testing	35		
6.0	OPE	N SPACE AREA CONTAINMENT SYSTEM MODIFICATION	36		
	6.1	Design Criteria	36		
	6.2	Lowering of Water Table In the Open Space AOC	37		
	6.3	Removal of Open Space AOC Soils and Geosynthetic Cap Materials	.38		
	6.4	Hydraulic Barrier Reinforcement	38		
	6.5	Cap Materials Restoration	39		
	6.6	Geosynthetic Material QC	40		
	6.7	Piezometer Replacement	40		
7.0	CON	STRUCTION PERMITS	41		
8.0	SITE	TE RESTORATION42			
		ITUTIONAL CONTROLS	43		
	9.1	Modification of Deed Notice No. 4	43		
	9.2	Modification of Remedial Action Soil Permit	44		
	9.3	SA-6 South Conservation Restriction	44		
10.0	REM	REMEDIAL ACTION COSTS			
	10.1	Financial Assurance	45		
11.0	REM	EDIATION CLOSE OUT SUMMARY	46		
12.0	REFE	REFERENCES 4			
13.0	LIST	OF ACRONYMS AND ABBREVIATIONS	49		
		TIONS			
	ration				
Illust	ration 2	2: Project Team Organization	7		

TABLE OF CONTENTS Honeywell

TABLES

Table 1: Perimeter Air Monitoring Data
 Table 2A: Concrete Sample Results – VOCs
 Table 2B: Concrete Sample Results – SVOCs
 Table 2C: Concrete Sample Results – Metals

Table 2D: Concrete Sample Results – Pesticides and PCBs

Table 2E: Concrete Sample Results – EPH/Petroleum Hydrocarbons

Table 2F: Concrete Sample Results – General Chemistry

Table 2G: Concrete Sample Results – TCLP
 Table 2H: Concrete Sample Results – SPLP
 Table 3A: Soil Waste Class Analysis – VOCs
 Table 3B: Soil Waste Class Analysis – SVOCs
 Table 3C: Soil Waste Class Analysis – Metals

Table 3D: Soil Waste Class Analysis – Pesticides and PCBs

Table 3E: Soil Waste Class Analysis – EPH/Petroleum Hydrocarbons

Table 3F: Soil Waste Class Analysis – General Chemistry

Table 3G: Soil Waste Class Analysis – TCLP
 Table 3H: Soil Waste Class Analysis – SPLP
 Table 4A: 2019 Soil Delineation Sample Results

Table 4B: Final Post-Excavation Samples
 Table 5: Soil Stockpile Sample Results
 Table 6A: CWTP Effluent Results – VOCs
 Table 6B: CWTP Effluent Results – SVOCs
 Table 6C: CWTP Effluent Results – Metals

Table 6D: CWTP Effluent Results – General Chemistry

Table 7: Turbidity Monitoring Results

FIGURES

Figure 1: Site Location Map

Figure 2: Site Layout

Figure 3: Deed Notice No. 4 Restricted Area

Figure 4: Perimeter Air Monitoring Station Locations

Figure 5: Truck Route Map

Figure 6: 2019 Concrete Rubble Sample Locations

Figure 7: Waste Classification and Delineation Sample Locations

Figure 8: Excavation Areas and Piezometer Locations

Figure 9: Monitoring Locations

TABLE OF CONTENTS Honeywell

Figure 10 Master Schedule

APPENDICES

Appendix A: Representative Photographs

Appendix B: Electronic Data Deliverable Submittal Confirmation

Appendix C: Record Drawings (CD only)

Appendix D: Boring Logs and Well Documentation

Appendix E: Dewatering Logs

Appendix F: Disposal Manifests (CD only)

Appendix G: Backfill Documentation

Appendix H: Compaction Testing Information

Appendix I: Sheetpile Documentation

Appendix J: Deflection Monitoring (CD only)
Appendix K: Vibration Monitoring (CD only)

Appendix L: Cap Geosynthetic Quality Assurance Report (CD only)

Appendix M: Excavation Certification E-Mails (CD only)

Appendix N: Draft Deed Notices and Remedial Action Permit Modification

EXECUTIVE SUMMARY

This Remedial Action Report Addendum (RAR) documents completion of remedial activities associated with an area of chromium-impacted soils referred to as the Hackensack River Bulkhead Deferred Area ("Bulkhead Deferred Area") at Site 073, Study Area 6 South (SA-6 South or Site). The Site is located in Jersey City, Hudson County, New Jersey. The remedial activities were initiated in May 2020 and were completed in January 2021.

As indicated in the SA-6 South 100% Design Report and the SA-6 South Remedial Action Report (RAR), the remediation of chromium-impacted soil in the Bulkhead Deferred Area could not be completed at the time of the implementation of the SA-6 South Chromium Remedy due to the deteriorated condition of the existing bulkhead. As a result, Honeywell deferred the remedy in the Bulkhead Deferred Area until a section of the Hackensack River bulkhead could be installed as part of the Bayfront Redevelopment Project. This section of the bulkhead is immediately adjacent to the Bulkhead Deferred Area and was utilized as structural support and containment for the excavation of the chromium-impacted soil in the Bulkhead Deferred Area, while ultimately serving as the permanent bulkhead for the Bayfront Redevelopment project.

The Deferred Area remedy was implemented in accordance with the documents listed in the February 2017 SA-6 South site-wide Remedial Action Report and subsequent Design Change Bulletins DCB 10A) dated January 16, 2020, (revision to DCB 010, dated May 19, 2014) and DCB 010A.1, dated March 12, 2020 which further clarified portions of DCB 010A. Both DCBs 010A and 010A.1 collectively defined the remedy of the Bulkhead Deferred Area.

Consistent with the NJDEP-approved Remedial Action Work Plan (RAWP) for the SA-6 South Site of which this area is a part, the contaminant of concern (COC) in soils is hexavalent chromium. The remedial action objectives (RAOs) established in the NJDEP-approved RAWP for SA-6 South soils included the excavation and removal of impacted soils containing >20 milligrams per kilogram (mg/kg) of hexavalent chromium to a depth of 20 feet below ground surface (bgs) in order to meet the requirements for unrestricted use.

Honeywell

The Chromium Remedy in the Bulkhead Deferred Area consisted of excavation of soils exceeding 20 mg/kg hexavalent chromium to the elevations established in the 100% Design Report and the subsequent DCBs, based upon either pre-design investigation (PDI) sample data or encountering Stratum D. All chromium-impacted soil excavated from the Bulkhead Deferred Area was disposed of offsite based upon waste characterization sampling implemented prior to mobilization. The existing western hydraulic barrier of the SA-6 South Open Space Area of Concern (Open Space AOC) was reinforced with additional steel sheet pilings and brackets as part of this project scope. Also, a portion of the existing Resource Conservation and Recovery Act (RCRA)-equivalent cap in the SA-6 South Open Space AOC was temporarily removed and afterwards replaced. In addition, a section of the Hackensack River bulkhead was installed by Honeywell on behalf of the City of Jersey City to be used as part of the Bayfront Redevelopment project. This bulkhead section was installed prior to the excavation of any chromium-impacted material.

Major activities associated with the Chromium Remedy included:

- Remedial Contractor mobilization and installation of site support facilities including construction trailers, decontamination stations, access roads, material stockpile areas, soil erosion controls, and a construction water treatment plant (CWTP);
- Abandonment of two existing piezometers (124-PZ-19 and 124-PZ-20) in the work area;
- Installation of shallow and deep dewatering wells within the Bulkhead Deferred Area excavation zone;
- Installation of a section of the Hackensack River Bulkhead;
- Installation of temporary sheetpile for excavation support;
- Excavation of chromium-impacted soils exceeding 20 mg/kg hexavalent chromium consistent with DCB limits:
- Offsite transportation and disposal of excavated chromium-impacted soils;
- Backfilling of excavated area with either previously-removed <20 mg/kg overburden or clean, imported fill material to an approximate elevation +15.0;

Honeywell

- Installation of new reinforcing steel sheetpile walls driven just east of and parallel to the existing SA-6 South Open Space AOC western hydraulic barrier wall, with temporary brackets connecting the two walls together;
- Stripping of cover soils and existing components of the RCRA-equivalent geosynthetic cap system from a partial area in the SA-6 South Open Space AOC;
- Removal and temporary stockpiling of chromium-impacted soil from the partial area in the SA-6 South Open Space AOC behind the existing SA-6 South Open Space AOC western hydraulic barrier wall;
- Replacement of the SA-6 South Open Space AOC chromium-impacted soil previously removed, the RCRA-equivalent geosynthetic cap system components, and the cover soils;
- Replacement of the two abandoned piezometers (124-PZ-19 and 124-PZ-20 (the replacement piezometers are 124-PZ-19R and 124-PZ-20R); and
- Terminating/modifying existing institutional controls (deed notice and NJDEP Remedial Action Permit for soils) for the Bulkhead Deferred Area (Tract 2 of Deed Notice Area 4) as a result of the successful removal of the chromium-impacted soil.

The RAOs for soils in the Bulkhead Deferred Area were met by implementation of excavation in accordance with the 100% Design Report and the subsequent DCBs. Since the Bulkhead Deferred Area remedy was implemented successfully, no further remedial actions are required. Honeywell will now revise the existing institutional controls (Deed Notice and Remedial Action Permit) associated with this Deferred Area. The Long-Term Monitoring Plan (LTMP) prepared for both SA-6 Sites establishes procedures and schedules for long-term inspection, maintenance, and operation of critical features of the Chromium Remedy.

Based on completion of the remedial actions for chromium-impacted soil in the Bulkhead Deferred Area as documented in this RAR Addendum, Honeywell is requesting NJDEP review and approval of this RAR in accordance with paragraph 23, G of the Consent Judgment. It is Honeywell's intention that this document will close out remediation of chromium-impacted soil in this Deferred Area. In accordance with paragraph 5 of the Consent Order Entering Consolidated 100% Design for Study Area 6 North and Study Area 6 South, Jersey City Municipal

EXECUTIVE SUMMARY Honeywell

Utilities Auth. v. Honeywell, No. 2:05-cv-05955-DMC-JAD (D. N.J. July 9, 2013), ECF No. 448, Honeywell will submit a Consent Order which has appended to it (i) the 100% Design except the drawings and (ii) this RAR Addendum for entry into Federal Court.

1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE

This RAR Addendum, prepared by Wood Environment & Infrastructure Solutions, Inc. (Wood) on behalf of Honeywell, documents the completion of remedial activities associated with an area of chromium-impacted soil at Site 073, Study Area 6 South (SA-6 South or Site) referred to as the Bulkhead Deferred Area. The Site is located in Jersey City, Hudson County, New Jersey. The purpose of this RAR is to provide documentation to the New Jersey Department of Environmental Protection (NJDEP) and other stakeholders of the successful execution of the remedy at the area at SA-6 South. This report is an addendum to the overall SA-6 South RAR prepared to document the site-wide SA-6 South Chromium Remedy which was submitted to the NJDEP in February 2017. The NJDEP approved the SA-6 South RAR on March 30, 2017. Subsequently, on September 18, 2018, the NJDEP issued a compliance letter that addressed chromium impacts in soil and groundwater for SA-6 South.

The scope of this RAR Addendum is limited to an area of chromium-impacted soil at Deed Notice Area No. 4, known as the "Bulkhead Deferred Area," which could not be completed at the time of the SA-6 South Chromium Remedy. As explained in the SA-6 South 100% Design Report and the RAR, deferment of the remedy in this area was necessary due to the deteriorated condition of the existing bulkhead which would have been required for support during the remedy implementation. Based on that, Honeywell deferred the remedy implementation for this area until a section of the Hackensack River bulkhead could be installed as part of the Bayfront Redevelopment project. This section of the bulkhead is immediately adjacent to the Bulkhead Deferred Area and was utilized as structural support and containment for the excavation of the chromium-impacted soil in the Bulkhead Deferred Area, while ultimately serving as the permanent bulkhead for the Bayfront Redevelopment project. The Deferred Area remedy was implemented from May 2020 to January 2021.

The SA-6 South Chromium Remedy was implemented in accordance with the various documents listed in the February 2017 SA-6 South RAR, and two subsequent DCBs: (a) DCB 10A, dated January 16, 2020, (a revision to DCB 010, dated May 19, 2014), and (b) DCB 010A.1, dated March 12, 2020 which further

clarified portions of DCB 010A. Both DCBs 010A and 010A.1 collectively defined the remedy of the Bulkhead Deferred Area.

This RAR Addendum was prepared in accordance with the remedial action reporting requirements specified in NJDEP's Technical Requirements for Site Remediation (TRSR), (NJDEP, 2018a) and the Administrative Requirements for the Remediation of Contaminated Sites (ARRCS) (NJDEP, 2018b), and applicable NJDEP guidance. (New Jersey Administrative Code [N.J.A.C.] 7:26E-5.7). Since NJDEP's Site Remediation Program Case Management Team retained direct oversight of the Chromium Remedy, Honeywell is requesting NJDEP review and approval of this RAR in accordance with paragraph 23, G of the Consent Judgment between Honeywell and the NJDEP dated September 7, 2011 (Consent Judgment).

1.2 SITE LOCATION

SA-6 South, located to the south of Study Area 7 (SA-7), and Study Area 6 North (SA-6 North), located to the north of SA-7, and SA-7 collectively comprise approximately 100 acres of land located within the Bayfront Redevelopment Area between Route 440 and the Hackensack River on the west site side of Jersey City. A Site Location Map is included as **Figure 1** and a Site Layout Map is included in **Figure 2**. In January 2019, the City of Jersey City (City) purchased approximately 70 acres of the 100-acre property. This purchase included the portion of SA-6 South in which the Bulkhead Deferred Area lies.

The City is currently implementing the Bayfront Redevelopment Project in accordance with the Bayfront I Redevelopment Plan, ("Bayfront Plan") which was approved by the City of Jersey City on March 12, 2008, and includes redeveloping 94 acres of the 100-acre property into a multi-use development consisting of market housing, retail shops, open space and recreational facilities, and waterfront improvements. Additional details regarding the Site Setting, Site History, Project Background, integration of the Remedy with the Bayfront Redevelopment Project, and the overall SA-6 South Chromium Remedy are described in the February 2017 RAR and are not repeated herein.

Deed Notice Area No. 4 is comprised of two tracts as shown in **Figure 3 and Illustration 1.** Tract 1 lies within the boundary of SA-7 and Tract 2 lies within the boundary of SA-6 South (Site 073). Tract 2 comprises the Bulkhead Deferred Area and is the subject of this RAR Addendum. The Deferred Area (Tract 2) is an

approximately ¼-acre portion of SA-6 South (Site 073) located along the Hackensack River bulkhead (see Photos 1 through 4). Following the approval of this RAR Addendum, the Tract 2 portion of Deed Notice Area No. 4 will be terminated. The chromium-impacted soils in the Tract 1 area will remain in place, per a new Deed Notice Area No. 4, and the associated NJDEP Remedial Action Permit (RAP) will be modified to reflect these changes. Excavation of residual chromium contamination in the Tract 2 area was deferred as prescribed by the Order Entering the 100% Design.

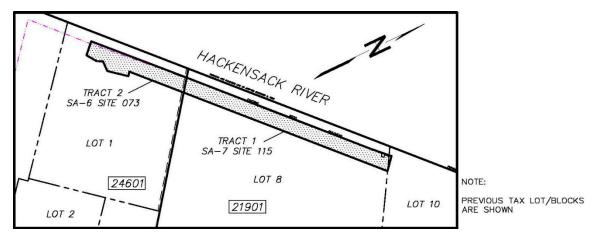


Illustration 1: Deed Notice No. 4 Area

1.3 CONTAMINANTS OF CONCERN AND REMEDIAL ACTION OBJECTIVES

Consistent with the NJDEP-approved Remedial Action Work Plan (RAWP) for the SA-6 South Site of which this area is a part, the contaminant of concern (COC) in soils is hexavalent chromium. The NJDEP-approved RAWP for SA-6 South identified specific RAOs for soil as follows:

- Prevent exposure to chromium-impacted soils containing hexavalent chromium above the NJDEP soil criteria of 20 mg/kg to a depth of 20 feet, consistent with NJDEP policy.
- Remove and consolidate chromium-impacted soils that may be disturbed by future Site redevelopment activities; and reuse soils beneath the area to be capped, to the extent feasible.
- Coordinate remedial actions for chromium with remedial actions for nonchromium contaminants and Site redevelopment, to the extent feasible.

To achieve the RAOs for SA-6 South soils in the Bulkhead Deferred Area, Honeywell excavated soil impacted with hexavalent chromium >20 mg/kg to a depth of 20 feet bgs and disposed of the excavated chromium-impacted soil offsite. As part of long-term operation and maintenance of the Site as a whole, Honeywell continues ongoing groundwater remedial actions in accordance with the groundwater RAOs as specified in the approved RAWP and RAR and an approved LTMP, dated February 2018, revised December 2020.

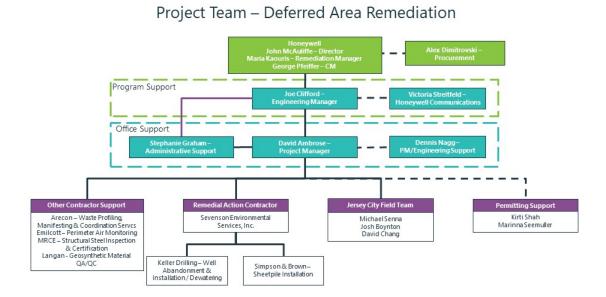
1.4 CONSTRUCTION OVERVIEW

The Chromium Remedy in the Bulkhead Deferred Area consisted of the excavation of soils exceeding 20 mg/kg hexavalent chromium to the elevations established in the 100% Design Report and the subsequent DCBs, based either upon PDI sample data or encountering Stratum D. All soil excavated from the Bulkhead Deferred Area was disposed of offsite based upon waste characterization sampling implemented prior to mobilization. The existing western hydraulic barrier of the SA-6 South Open Space AOC had to be reinforced with additional steel sheet pilings and brackets. Additionally, a portion of the existing RCRA-equivalent cap in the SA-6 South Open Space AOC was temporarily removed and replaced.

More specifically, the Chromium Remedy in the Bulkhead Deferred Area included the following main work elements:

- Remedial Contractor mobilization and installation of site support facilities including construction trailers, decontamination stations, access roads, material stockpile areas, soil erosion controls, and CWTP installation;
- Abandonment of two existing piezometers (124-PZ-19 and 124-PZ-20) in the work area:
- Installation of shallow and deep dewatering wells within the Bulkhead Deferred Area excavation zone:
- Installation of a section of Hackensack River Bulkhead adjacent to the Site;
- Installation of temporary sheetpile for excavation support;
- Excavation of chromium-impacted soils exceeding 20 mg/kg hexavalent chromium to a maximum depth of 20 feet;
- Offsite transportation and disposal of excavated chromium-impacted soils;

• Backfilling of excavated area with either removed <20 mg/kg overburden or clean, imported fill material to approximate elevation +15.0;


- Installation of a new reinforcing steel sheetpile wall driven just east of the existing SA-6 South Open Space AOC western hydraulic barrier wall and temporary connection of the two walls together;
- Stripping of cover soils and existing components of the RCRA-equivalent geosynthetic cap system from a partial area in the SA-6 South Open Space AOC;
- Removal and temporary stockpiling of chromium-impacted soil from the partial area in the SA-6 South Open Space AOC behind the existing SA-6 South Open Space AOC western hydraulic barrier wall;
- Replacement of the removed SA-6 South Open Space AOC chromiumimpacted soil with clean fill, and restoration of the RCRA-equivalent geosynthetic cap system components and cover soils;
- Replacement of the two abandoned piezometers (124-PZ-19 and 124-PZ-20); and
- Termination of the Deed Notice applicable to the remediated Bulkhead Deferred Area, and modification of the existing Deed Notice Area 4 and NJDEP Remedial Action Permit for soils to reflect the removal of Tract 2 as a result of the completed remedial action for this area.

The Chromium Remedy in the Bulkhead Deferred Area included the following major items, and corresponding approximate quantities:

Item	Units	Quantity
Treated Construction Water	Gallons	1,654,260
Discharged		
Abandoned Existing Piezometers	Each (EA)	2
Dewatering Wells		
Shallow	EA	2
Deep	EA	4
Replacement Piezometers		
Piezometers	EA	2
Material Handling		
Recycled Concrete	Cubic Yards (CY)	1,020

Item	Units	Quantity
Excavated Soils		
<20 mg/kg Overburden	CY	230
Non-Hazardous Waste	CY	5,550
Hazardous Waste	CY	600
Cap Materials		
Subgrade Fill	CY	0
Geosynthetic Venting Layer	Square Feet (SF)	9,980
(GVL)		
Geosynthetic Composite Layer	SF	9,980
(GCL)		
Geotextile Layer	SF	9,980
Geosynthetic Drainage Layer	SF	9,980
(GDL)		
Liner	SF	9,980
GDL Soil	CY	0
Root Barrier	SF	9,980
Clean Cover Soils	CY	100
Backfill		
<20 mg/kg Overburden	CY	230
Imported Fill: Dense Grade	CY	6,200
Aggregate (DGA)/		
Screenings/All Other Stone		
Lightweight Fill	CY	3,000
Bridge Lift	CY	0
Flowable Fill	CY	90
Clay Packer	CY	520
Disposal		
Concrete	Tons	0
Non-Hazardous Waste Soil	Tons	9,000
Hazardous Waste Soil	Tons	900
Timber	Tons	60

The Project Team Organization is shown in Illustration 2 below.

Illustration 2: Project Team Organization

The following entities were involved in the implementation of the Chromium Remedy in the Bulkhead Deferred Area:

Party	Responsibility
Honeywell	Overall compliance with court-ordered remediation
Wood	Engineer of Record (EOR), Design, Contract Documents, Construction Inspection, Health and Safety Oversight, and Overall Site Construction Management
Sevenson Environmental Services, Inc.	Bulkhead Installation, Dewatering, Excavation of Chromium-Impacted Soil, Imported Backfill Purchase and Placement, Hydraulic Barrier Wall Reinforcement, and Open Space Area Cap Partial Removal and Replacement.
Emilcott Associates	Air Monitoring
Arecon	Manifests, and Management of Excavated Soil Disposal
Middlesex County Landfill	Transportation, Treatment and Disposal of chromium- impacted non-hazardous soils
Clean Earth	Transportation, Treatment and Disposal of chromium- impacted hazardous soils

Party	Responsibility
Mueser Rutledge Consulting Engineers (MRCE)	3 rd Party Structural and Geotechnical Engineering Peer Review
Matrix New World Engineering	City of Jersey City's Structural and Geotechnical Engineering Peer Review (River Bulkhead Only)
Langan	3 rd Party Liner Quality Assurance/Quality Assurance (QA/QC)
SGS/Accutest Laboratories Inc. (SGS)	Analytical Laboratory for samples collected by Wood
Travelers Industrial Hygiene Laboratory	Analytical Laboratory for Perimeter Air Monitoring Plan (PAMP) samples
Analytical & Environmental Services, Inc. (AESI)	3 rd Party Analytical QA/QC
Validata, LLC	3 rd Party Analytical Data Validation

Mobilization commenced on May 26, 2020 and was completed on July 24, 2020. The Chromium Remedy in the Bulkhead Deferred Area was substantially complete by December 24, 2020. Demobilization was completed by January 18, 2021. Representative photographs of major components of the work are included in **Appendix A.**

1.5 DATA VALIDATION AND DATA USABILITY EVALUATION

Unless otherwise indicated for specific sample types, SGS analyzed the samples. Hexavalent chromium analysis was performed using United States Environmental Protection Agency (USEPA) Method 7199. Data validation was performed by a third-party data validation specialist with Validata, LLC (Validata) of Seattle, Washington. Additionally, Honeywell employs Dr. Rene Surgi of AESI of Glencoe, Illinois to provide third-party analytical QA/QC.

On the Bulkhead Deferred Area Chromium Remedy, Honeywell followed its general protocol for data validation as was used for the overall SA-6 Chromium Remedy. A summary of this general protocol follows. Dr. Surgi reviewed 100% of the hexavalent chromium analytical data and worked with SGS on any QA/QC matters prior to issuance of the final analytical data packages. Samples that do not meet the laboratory's strict internal QA/QC criteria are re-logged by the laboratory and reanalyzed. Once the data packages are issued by SGS to Validata, 100% of the

hexavalent (and total chromium, if performed) chromium samples are validated. Employing such a protocol provides a high degree of confidence that the hexavalent chromium analytical data that has passed the internal laboratory QA/QC standards and was not rejected by the validator is accurate, precise, representative and, thus, usable. Rejected data, although reported, is flagged with an "R"and is not used for the intended purpose of the associated sampling.

The Data Management Plan (DMP) contained in the SA-6 North 100% Design Report outlined, among other things, the specific data validation objectives and procedures involved in producing quality, usable analytical data during implementation of the Chromium Remedy. Honeywell revised the DMP in August 2014 to clarify data validation level and frequency based upon the purpose of the sampling and end use of the data. This revised DMP was submitted to NJDEP and all Parties on August 22, 2014. A summary of the data validation level and frequency for soil samples analyzed for total and hexavalent chromium collected during the SA-6 Chromium Remedy and based upon the revised DMP was as follows:

- Level IV data validation on samples analyzed that are used for compliance purposes (i.e., post-excavation samples and those collected for re-use applicability of excavated material); and
- Level II data validation of approximately 25% on samples that are used for non-compliance purposes (i.e., samples for soils consolidated in the Open Space AOC and those collected from soils being disposed of offsite).

Additionally, and in accordance with the DMP, data validation was also conducted on the following samples that included analysis of parameters other than total and hexavalent chromium:

• Level IV data validation on 100% of the monthly effluent water samples for tested parameters; and

The NJDEP issued guidance for the Data of Known Quality Protocols (DKQPs) in April 2014, approximately 1 year after the start of the SA-6 Chromium Remedy. The NJDEP was consulted regarding whether the questionnaire that is part of the DKQP process needed to be filled out for samples collected during the implementation of the Chromium Remedy. NJDEP concluded that the DKQP

questionnaires were not required for the Chromium Remedy since the laboratory follows rigorous QA/QC protocols specifically developed for the chromium program in Jersey City which results in the generation of data of known quality and because the third-party validation process covers the data assessment and usability evaluation promoted in the DKQP guidance. We note that the validation process essentially asks the same questions as those on the questionnaire. As indicated above, 100% of such samples for hexavalent chromium analysis were validated by Validata, whereas validation of all other analytical parameters was conducted on 10% of the samples. Rejected data is not used.

Given the high level of internal and external QA/QC that is conducted, the 100% data validation that Honeywell employs for hexavalent chromium, and validation of 10% of samples for analytical parameters other than hexavalent chromium, the analytical data meets NJDEP's standards of precision, accuracy, and usability.

Copies of the laboratory analytical reports and the data validation reports are available upon request. Electronic Data Deliverable (EDD) documentation is included in **Appendix B**.

1.6 REPORT ORGANIZATION

This document has been prepared to meet the provisions specified in Sections 1.6 and 5.7 of the TRSR and contains the following sections:

- Introduction. This section contains information on the purpose and scope of the document, site location, COCs and RAOs, overview of the Bulkhead Deferred Area Chromium Remedy construction elements, and report organization.
- *Preparatory and General Construction Activities*. This section describes the activities implemented that were in support of the main elements of the Chromium Remedy in the Bulkhead Deferred Area.
- Dewatering and Construction Water Treatment (Section 3) through Site Restoration (Section 8). Detailed descriptions of the main elements of the Chromium Remedy are provided in these sections. Tables and figures are used to graphically communicate the information. These sections include construction permits and record drawings.

• Institutional Controls. The modification of the existing deed notice and NJDEP Remedial Action Permit for soils is discussed in this section.

- Remedial Action Costs. A summary of the costs to complete the project are provided.
- Remediation Close Out Summary. This section contains the conclusions and recommendations.
- *References*. References used in preparing this document are listed in this section.
- *List of Acronyms and Abbreviations*. This section contains a list of acronyms and abbreviations used in this document.

2.0 PREPARATORY AND GENERAL CONSTRUCTION ACTIVITIES

On behalf of Honeywell, Wood managed and oversaw the bidding and contractor selection process for the Chromium Remedy in the Bulkhead Deferred Area. The selected primary contractor was Sevenson Environmental Services, Inc. (SES) of Niagara Falls, New York. Prior to mobilization, SES prepared and submitted to Wood and Honeywell various work plans and submittals and acquired certain construction permits and approvals required by the 100% Design Report for implementation of the SA-6 Chromium Remedy and subsequent DCBs prepared to govern the Bulkhead Deferred Area Chromium Remedy.

In addition, several other permits were obtained by Wood for execution of the SA-6 Chromium Remedy during the design process. Other additional permits were obtained after the design process as detailed designs prepared by SES were needed to obtain certain permits. Permits acquired for implementation of the SA-6 Chromium Remedy are listed in Section 7.

2.1 CONCRETE SAMPLING (PRE-MOBILIZATION)

In October 2019, Wood collected samples of the concrete rubble that had been piled up along the former bulkhead in the Bulkhead Deferred Area to evaluate the material for onsite reuse. It is surmised that this concrete rubble had been piled along the former timber bulkhead by former landowners/tenants to reinforce the bulkhead against wave action and to protect upland areas from flooding (see Photos 1 and 2 in **Appendix A**). In addition, 2 other samples were collected from subsurface concrete which was encountered while drilling the waste characterization soil borings described in Section 2.2. All sample collection, handling, preservation, analytical parameters and procedures, and data validation were identical to those used during the site-wide SA-6 South Chromium Remedy as documented in the overall SA-6 South RAR.

The NJDEP-approved Soil Management Plan (SMP) which was part of the SA-6 100% Design Report and the *Proposed Concrete and Asphalt Sampling Plan* (CASP), dated September 2013 which was submitted to the NJDEP on October 28, 2013 allowed concrete meeting NJDEP reuse parameters to be reused onsite as backfill in

excavations. Any concrete material that did not meet the reuse criteria was to be transported offsite for disposal.

Sampling of the aboveground concrete rubble material took place on October 21, 2019 as shown on **Figure 6**. Wood estimated that there were 500 CYs of concrete rubble piled along the bulkhead to be sampled. Concrete sampling and analysis was conducted in accordance with the September 2013 CASP. The procedures outlined in the CASP were in accordance with the NJDEP guidance document titled Guidance for Characterization of Concrete and Clean Material Certification for Recycling, dated January 12, 2010 and the NJDEP guidance document titled Alternative and Clean Fill Guidance for SRP Sites, dated December 29, 2011 – Version 2. According to the NJDEP guidance document for concrete quantities ranging from 400-2,000 CYs, sampling is to be completed at a frequency of 1 sample/200 CYs + 2 additional samples. Thus, for 500 CYs, Wood collected 5 concrete samples of the concrete rubble along the former bulkhead. Representative samples were obtained from the concrete rubble cross-section (including the exposed surfaces) and were mechanically crushed by hand to fit into laboratory-supplied sample containers.

Sampling of the subsurface concrete encountered in the soil borings was conducted on December 6, 2019 (see Section 2.2 for details of the soil boring program).

Tables 2A through 2H, one subsurface concrete sample (073-WC-114) collected from the soil borings exhibited an elevated concentration of one PCB Aroclor above the NJDEP criteria of 0.2 mg/kg. Thus, once the excavation in the Bulkhead Deferred Area was implemented and the subsurface concrete was demolished, Wood separated out approximately 100 CYs of the concrete represented by this sample and disposed of it with the hazardous waste soil (see Section 4.7). The total amount of concrete shipped offsite was approximately 200 tons.

The remaining concrete met the reuse criteria and was sized to 4-inch minus for reuse as bridge lift backfill material.

2.2 WASTE CHARACTERIZATION SAMPLING (PRE-MOBILIZATION)

Prior to mobilization, in December 2019, Wood conducted additional soil borings in the Site 073 Deferred Area with the following objectives

- Collect waste characterization samples for offsite disposal purposes;
- Further characterize subsurface concrete slabs in the excavation area; and
- Refine vertical delineation of chromium-impacted soil in portions of the Bulkhead Deferred Area excavation.

The additional soil borings in the Site 073 Deferred Area were conducted using a Geoprobe® drill rig in two phases. The first phase, consisting of two borings, 073-WC-09 and 073-WC-10, was conducted on October 28, 2019. The second phase, consisting of six borings, 073-WC-11 through 073-WC-16, was conducted on December 9, 2019. The locations of all eight borings are shown on **Figure 7** as well as other proximate PDI borings drilled previously in the Bulkhead Deferred Area. Boring logs are contained in **Appendix D**. All sample collection, handling, preservation, analytical parameters and procedures, and data validation were identical to those used during the site-wide SA-6 South Chromium Remedy and as documented in the overall SA-6 South RAR.

Based on the SA-6 Chromium Remedy 100% Design, the waste characterization soil sampling frequency was one sample for each 500 CYs. Wood estimated that there were 6,000 CYs of chromium-impacted soil in the Bulkhead Deferred Area to be excavated and disposed offsite. Thus, Wood collected twelve waste characterization samples in total from the excavation area.

Tables 3A through 3H. The analytical results were compared to RCRA hazardous limits. The data indicates that one sample (073-WC-09-1014) had a toxicity characteristic leaching procedure (TCLP) chromium result of 6.8 milligrams per liter (mg/L) and which caused the approximately 500 CYs represented by this sample to be characterized as hazardous waste. None of the remaining samples were above RCRA limits and thus, the remaining approximately 5,500 CYs was characterized as non-hazardous waste. Section 4.6 provides more details regarding the offsite transportation and disposal of the excavated soil.

The analytical data for the subsurface concrete samples (073-WC-114 and 073-WC-115) collected from the December 2019 waste characterization soil borings are included in **Tables 2A through 2H** and were discussed in Section 2.1.

Wood collected five soil delineation samples from four of the soil borings which helped to further define the excavation bottom depths in several locations in the Bulkhead Deferred Area based upon previous RI and PDI sample results. These samples were analyzed for hexavalent chromium only. The analytical data for the additional soil delineation samples collected in the 2019 waste characterization borings are summarized in **Table 4A**. Four of the five samples were below the NJDEP criteria of 20 mg/kg for hexavalent chromium. However, one sample collected from boring 073-WC-16 exhibited hexavalent chromium above 20 mg/kg; therefore, Wood instructed the laboratory to analyze a hold sample collected from a deeper sampling interval. This deeper sample was below 20 mg/kg for hexavalent chromium and established the depth of excavation in that area. EDDs for these samples were submitted to the NJDEP's electronic mail site on February 9, 2021. A copy of the confirmation email message from the NJDEP acknowledging submittal of the EDD is included in **Appendix B**.

2.3 MOBILIZATION AND SITE PREPARATION

Wood and SES mobilized equipment and labor forces to the Site between May 26, 2020 and July 24, 2020. Mobilization and site preparation included the following key activities:

- Mobilization and set-up of office trailers (see Photo 5) at SA-6 South for SES operations. The trailers were outfitted with temporary electrical, internet, and telephone infrastructure;
- Construction of a compacted gravel access road (see Photo 6) from the gate at the west end of Kellogg Street to the support area and over to the work zones;
- Mark-out of excavation, capping, staging and lay down areas;
- Set up of vibration and settlement monitoring equipment (see Photo 7);
- Installation of soil and erosion controls (see Photos 8 and 9);
- Inspection and rigging of crane for sheet pile installation and delivery of sheetpile for the new bulkhead (see Photos 10 and 11)
- Setup of the temporary CWTP at SA-6 North (see Photos 12 and 13) adjacent to Honeywell's permanent groundwater treatment plant (GWTP);
- Establishment of material stockpile (see Photo 18) and staging areas;

- Construction of decontamination facilities; and
- Repair of gate entrance, and establishment of initial exclusion zones, contaminant reduction zones and support zones. Such zones were maintained and modified as needed throughout the execution of remediation activities.

Other preparatory activities that occurred either just prior to or during initial stages of the construction activities are described in the sections that follow.

2.4 HEALTH AND SAFETY

Health and Safety on the Bulkhead Deferred Area Chromium Remedy was controlled by a Master Health and Safety Plan (HASP). The Master HASP was included as Appendix D of the SA-6 North Chromium Remedy 100% Design Report. Each site contractor was required to prepare and submit a HASP for their specific work requirements in conformance with the Master HASP. Direct responsibility for employee safety was retained by each contractor as outlined in the contractor's respective HASP.

The minimum personal protective equipment (PPE) for personnel within the fencedin portion of the Site included hardhats, high visibility vests, gloves, safety glasses,
and steel toed boots. Because of the COVID-19 pandemic in 2020, all workers were
also required to wear face coverings at all times. Minimum worker PPE within
exclusion zones at the Site consisted of mask, hardhat, safety glasses, high visibility
vests, Tyvek™ suits, gloves, and steel-toed boots. Upon leaving the exclusion zone,
disposable PPE was placed into containers staged within the contamination
reduction zone. Non-disposable PPE was decontaminated in the same area.
Disposable PPE was combined with other chromium-impacted waste and
transported and disposed of offsite. Decontamination fluids were processed through
the onsite CWTP and subsequently discharged via JCMUA and PVSC discharge
permits and agreements.

During the course of the project, approximately 26,200 worker-hours were completed on site. There were no Occupational Safety and Health Administration (OSHA) recordable incidents during the Chromium Remedy in the Bulkhead Deferred Area.

A perimeter air monitoring program was carried out to document protection of human health outside of the remediation zone(s) to airborne COCs. The perimeter air monitoring program is discussed in detail in Section 2.5. In the course of the project, there were no exceedances of the perimeter air action levels.

2.5 PERIMETER AIR MONITORING

An air monitoring program was implemented and maintained whenever ground-intrusive activities were occurring throughout the course of the Bulkhead Deferred Area Chromium Remedy. The NJDEP has recently adapted the National Ambient Air Quality Standard for respirable particulate matter, i.e., less than 10 microns, of 150 micrograms per cubic meter ($\mu g/m^3$) as a 24-hour average (USEPA 40 CFR Part 50). Therefore, in January 2020 Wood updated the PAMP from that provided in the 100% Design Report. Air monitoring within the work zone area and around the perimeter of the Site was implemented by Emilcott Associates, Inc., on behalf of Honeywell, in accordance with the updated PAMP. The objective of the perimeter air monitoring was to verify that COCs did not result in potential exposures to the surrounding public.

The primary Target Chemical Parameter Respirable Particulate Matter Action Level (RPMAL) for perimeter air monitoring at the Bulkhead Deferred Area was hexavalent chromium. During ground disturbing remedial activities, the most likely method of transport of hexavalent chromium offsite is via impacted particulates such as airborne dust and soil particles, which can transport hexavalent chromium to offsite receptors. The PAMP documented the Respirable Particulate Matter Action Level for perimeter air quality as 150 µg/m³ for the Bulkhead Deferred Area Remedy. The real-time data generated during perimeter air monitoring was used to document airborne concentrations measured during excavation activities and assist Site personnel with determining the need for preventive measures or alteration of work activities. Preventative measures to control the generation of dust were conducted as per the PAMP and the HASPs. In order to assess the potential presence of hexavalent chromium in dust, perimeter air monitoring stations were located throughout the multi-phase excavation areas using a grid system. The monitoring points were determined by an onsite Wood representative based on the location of soil disturbance activities, prevailing wind direction, field conditions and the requirements stated in the PAMP.

PAMP data is included on **Table 1**. In the course of the project, there were no recorded employee exposures above the OSHA Permissible Exposure Limit. The highest total particulate detection at the Bulkhead Deferred Area was measured on July 14, 2020 at 42 μ g/m³ (well below operative action level of 150 μ g/m³) and the corresponding hexavalent chromium laboratory analysis result was non-detect. The highest hexavalent chromium detection, which took place on September 8, 2020 was 13 nanograms per cubic meter where the corresponding particulate detection was not detected. **Figure 4** indicates the locations of the PAMP stations.

2.6 SITE SECURITY

The City of Jersey City maintains responsibility of overall site security through the use of 3rd party security contractor. Overall site access is controlled by the City's security contractor who maintains 24-hour guard services at a gate at the northeast corner of SA-6 North. In addition, the security guards periodically patrol the Sites in vehicles after hours. The City's security contractor did not provide any other specific security at the Bulkhead Deferred Area worksite, rather worksite security was primarily focused on the perimeter fence line. The perimeter of the SA-6 North, SA-7 and SA-6 South Sites are already secured by existing chain link fence installed due to the previous Chromium Remedies and/or Jersey City operations. Minor perimeter fence enhancements were made as required at SA-6 South. Access to the Bulkhead Deferred Area support and work zones was established through the existing gate from Kellogg Street which was closed and locked at the end of each workday.

2.7 SUPPORT FACILITIES AND TEMPORARY SITE UTILITIES

Existing support facilities for the Honeywell and Wood construction management teams had already been established in permanent trailers located in the northwest corner of SA-6 North prior to mobilization. SES established their own office trailer support facilities during mobilization. They provided their own electric and internet infrastructure for the trailers.

Site water for construction and dust suppression activities was obtained from a JCMUA fire hydrant located on SA-6 North. SES constructed the CWTP immediately adjacent to Honeywell's onsite GWTP at SA-6 North. The construction of the CWTP is described in more detail in Section 3. SA-7 was used for the staging of the clean Open Space AOC soils removed above the existing liner. Imported clean

soils, geotextiles, equipment staging, parking, truck staging, and other storage was located in available areas at SA-6 South.

2.8 TURBIDITY MONITORING

The Deferred Area is immediately adjacent to the Hackensack River. Due to the potential disturbance of sediment during installation of the permanent river bulkhead and during grout column installation, turbidity monitoring was conducted in the Hackensack River.

Turbidity monitoring consisted of the installation of a turbidity curtain (semi-permeable, single Type 3 manufactured by Siltdam) that encompassed the sheet pile installation area (see Photo 9). In addition, two monitoring buoys equipped with 600 OMS V2 Turbidity Sonodes recorded turbidity, temperature, and dissolved oxygen data every 15 minutes. Due to accelerated algae growth interfering with accurate turbidity readings, the buoy system was replaced in favor of manually collected readings with a handheld turbidity sensor three times a day (startup, during, and days end). Turbidity action levels are 30 nephelometric turbidity units (NTU) at any time, or 10 NTU, 30-day average. Turbidity monitoring locations are indicated on **Figure 9**. Results of turbidity monitoring are provided on **Table 7** and ranged from 0 to 19.9. No exceedances of turbidity regulatory action levels were recorded.

2.9 DEFLECTION MONITORING

The bottom of the deepest excavations in the Bulkhead Deferred Area were completed at approximately elevation -10 feet, mean sea level (msl [National Geodetic Vertical Datum 1929]). Because the deep excavations were immediately adjacent to the existing western hydraulic barrier wall (HBW) of the SA-6 South Open Space AOC and as a result the HBW could deflect, monitoring of deflection in the HBW was conducted. The newly installed permanent bulkhead was also monitored for deflection. MRCE assisted Wood in determining appropriate deflection action levels for the various sections of sheetpile.

Deflection monitoring involved the installation of 12 survey targets approximately every 25 feet onto the new steel bulkhead and 7 survey targets onto the existing hydraulic barrier wall approximately every 25 feet. These were all aligned to a survey total station located on top of the Jersey City Municipal Utilities Authority (JCMUA) force main tower. Readings were collected every day and an alert system

was in place to alert any survey target locations that moved out of project determined action levels. Readings reached alert levels, but never exceeded the stop-work action level. Deflection monitoring locations are indicated on **Figure 9** and results are provided in **Appendix J**.

2.10 VIBRATION MONITORING

Because vibratory equipment is used during the sheetpile driving operations, Wood performed vibration monitoring to assess any adverse effects on nearby critical infrastructure. Vibration monitoring activities commenced with the installation of two remote vibration monitoring systems (RVMS) on June 29th, 2020. One of the RVMS were installed outside of the excavation on the north side of the Bulkhead Deferred Area, and it was later moved August 7, 2020 to the south side of the excavation. A second vibration monitoring station was installed adjacent to the 72" force main north of the SA-6 North cap (see Photo 7). Several deflection and settlement prisms were also installed at an interval of 25 feet from the Bulkhead Deferred Area excavation limits as well as several control points installed at several points throughout the entire SA-6/7 property. MRCE assisted Wood in determining appropriate vibration monitoring action levels. None of those vibration monitoring action levels were exceeded during the sheetpile driving operations.

Vibration monitoring locations are indicated on **Figure 9** and results are provided in **Appendix K**.

2.11 PIEZOMETER ABANDONMENT

During the SA-6 South Chromium Remedy completed in 2016, two piezometers were installed in the Bulkhead Deferred Area to monitor the shallow groundwater gradient across the western end of the SA-6 South HBW. Piezometer 124-PZ-19 was installed between the HBW and the Hackensack River bulkhead in the Bulkhead Deferred Area excavation area. Piezometer 124-PZ-20 was installed within the Open Space AOC. Both piezometers had been installed above Stratum D and Honeywell had installed dataloggers and telemetry equipment in each to continuously monitor groundwater levels.

Due to the ground disturbance activities in both the Bulkhead Deferred Area excavation area and the Open Space AOC, both piezometers had to be abandoned. Piezometer 124-PZ-19 was abandoned on June 19, 2020 and piezometer 124-PZ-20

was abandoned on July 24, 2020. The piezometers were abandoned properly in accordance with N.J.A.C. 7:9D by a New Jersey licensed driller from Keller. Keller completed all the well abandonment records (see **Appendix D**).

2.12 SUSTAINABILITY EFFORTS DURING CONSTRUCTION

Under Honeywell's stewardship, the construction process was integrated into the overall vision for the Jersey City west side redevelopment by incorporating a sustainable design approach which focused on conservation of natural resources through beneficial reuse, recycling, minimization of ongoing energy consumption and reduction in carbon footprint. Specifically, Honeywell's sustainable construction efforts integrated:

- Use of renewable B-5 Biodiesel in lieu of conventional fossil fuel based petrodiesel in construction equipment, and
- Crushing and recycling of demolition generated clean concrete to be reused as clean fill material on site.

3.0 DEWATERING AND CONSTRUCTION WATER TREATMENT

3.1 GENERAL

Dewatering was conducted to remove groundwater and stormwater from within the excavation areas and to minimize the moisture content of excavated soils. Capture, collection, and treatment of stormwater/surface water that came in contact with impacted soils and any that accumulated in designated decontamination pads was also completed. Collected groundwater, stormwater, and surface water was pumped to the CWTP on SA-6 North. SES subcontracted Keller North America. (Keller) of Rockaway, New Jersey, a licensed New Jersey well drilling contractor, for all well drilling and also the installation and operation of the dewatering pumps.

Because of the proximity of the Bulkhead Deferred Area excavation to the fragile former timber bulkhead along the river and the depth of some of the excavation zones, a new bulkhead had to be installed prior to the start of excavation activities. The new bulkhead was installed on behalf of the City of Jersey City and was designed to be incorporated into the City's long-term redevelopment objectives for a new bulkhead to raise grades and construct a Riverwalk feature along the River. The new bulkhead was constructed of marine-grade steel sheetpile and all of its joints were sealed to minimize river water infiltration. More detail of the bulkhead installation is provided in Section 4.1.

Wood subcontracted Cornerstone to prepare a model simulation of the shallow groundwater dewatering and depressurization pumping for the Bulkhead Deferred Area soil excavation zone. Cornerstone's evaluation predicted the number, location and approximate pumping rate of both shallow dewatering sumps and deep depressurization wells necessary to maintain a dry excavation and prohibit uplift of the underlying Stratum D. The model incorporated the new bulkhead as a boundary condition to minimize infiltration of river water into the excavation.

Because the entire Deferred Area was surrounded by bulkhead, the HBW, or temporary excavation support sheetpile, very little run-on from precipitation entered the excavation area and came in contact with impacted soils. Nevertheless, SES minimized the open excavation between the excavation face and the backfill to limit the quantity of impacted water to be treated.

3.2 CONSTRUCTION WATER TREATMENT PLANT

The CWTP (see Photos 12 and 13) for the Bulkhead Deferred Area was constructed on SA-6 North, immediately adjacent to the east side of the onsite GWTP. The CWTP was similar to the CWTP used for the SA-6 South Chromium Remedy as documented in the overall SA-6 South RAR. All dewatering pumps were connected to double-walled high-density polyethylene (HDPE) pipe (see Photo 14) that conveyed the water from the Bulkhead Deferred Area to the CWTP for treatment.

Key elements of the CWTP included:

- The CWTP was built within a secondary containment system constructed of a heavy membrane liner and perimeter berms;
- The system consisted of one 200,000-gallon ModuTank, and two 21,000-gallon effluent "frac" tanks within the secondary containment area located on SA-6 North; as well as two additional 21,000 gallon settling "frac" tanks within secondary containment on SA-6 South.
- The CWTP had a dual treatment train composed of 50 micron and 5-micron bag filters with a maximum throughput capacity of 500 gallons per minute (gpm).
- Treated effluent water was pumped into the unused JCMUA South Sludge digester tank.
- JCMUA managed discharge of treated water from the digester tank to the local wastewater treatment plant operated by PVSC;
- The discharge of treated CWTP water was under PVSC Sewer Use Permit number 31630040;
- As required by the permit a non-resettable totalizing flow meter was used to record the instantaneous flow rate as well as the total flow;
- Treated effluent samples were collected monthly; and
- The Passaic Valley Sewer Commission (PVSC)-required MR-1 and MR-2 selfreporting documents were completed and sent to PVSC each month, reporting for the prior month.
- During the project, additional four 21,000-gallon "frac" tanks were brought onto the site, north of the Bulkhead Deferred Area excavation to efficiently

remove and store additional water from the excavation after large rain events.

Treated effluent sample analytical results for the monthly samples are summarized on **Tables 6A through 6D**. The total chromium concentration discharge limit permitted by PVSC was 24.38 mg/L. This discharge limit was not exceeded during the implementation of the Chromium Remedy. Thus, as anticipated and stated in the Construction Water Treatment System Design Report (CWTS Report) from the 100% Design Report, chemical treatment to remove chromium from the construction water was not required.

3.3 WELL AND SUMP INSTALLATION

Excavation dewatering was accomplished with a combination of several localized sumps installed as needed in the excavation areas and four deep depressurization (DP) wells installed below Stratum D (see Photos 15 through 17). Similar to the SA-6 South Chromium Remedy, the deep DP wells were used to relieve hydrostatic pressures on Stratum D due to the excavation of the soil above Stratum D. Three observation wells were also installed within the Bulkhead Deferred Area excavation zone below Stratum D to monitor the confined zone dewatering progress. A fourth shallow observation well was also installed within the Open Space AOC above Stratum D to monitor dewatering progress there once the interior piezometer, 124-PZ-20, had been abandoned.

Sumps were installed within the deeper excavation areas, Area 1A and Area 1B. The sumps consisted of a 14-inch perforated pipe placed within a deeper excavated hole and backfilled with 3/4-inch clean crushed stone. Sumps were not installed below and did not penetrate the Stratum D layer.

Keller obtained all well permits. New well permits, Form A & B wells records, and new well construction diagrams are included in **Appendix D**. Prior to the start of excavation activities, the wells were installed in accordance with N.J.A.C. 7:9D. The sumps, observation wells, and deep DP wells are shown on the record drawing by SES contained in **Appendix C**. The observation wells were given the designations OW-1 through OW-4. The deep DP wells were given the designations DP-1 through DP-4.

The observation wells were drilled using a mud-rotary wash rig. Each was drilled through the Stratum O/D layer to an approximate elevation of -24 feet. Each observation well was constructed of 2-inch diameter polyvinyl chloride (PVC) screen and riser pipe. Screen lengths in each were 10 feet.

The deep DP wells were drilled using a mud-rotary wash rig. Each was drilled through the Stratum O/D layer to a total depth of up to 50 feet bgs, 15 feet below the top of the Stratum O/D layer. A 4-inch diameter screen and riser pipe were used in the construction of each deep DP well. Screen lengths were 10 feet long in each. A 10-inch diameter PVC conductor casing was set 1 to 2 feet into the top of the Stratum O/D layer to isolate water above the Stratum O/D layer from that below.

Well component specifications were submitted by SES prior to installation. The sumps within the excavation areas were completely removed with the excavated soils. Deep DP wells and observation wells were abandoned by Keller's licensed driller once an adequate amount of backfill placement and compaction within an area was complete (see Photo 63).

3.4 GROUNDWATER MANAGEMENT

The general process for managing groundwater was to eliminate the existing groundwater and prevent additional groundwater or surface run-on from contacting chromium-impacted fill materials yet to be excavated. Dewatering with shallow sumps and deep DP wells began prior to excavation activities to achieve drawdown in advance of excavation. Site dewatering data is included in **Appendix E**.

Electric 3-inch trash pumps in the sumps were operated continuously during excavation activities and until backfilling had been completed up to a level above the ambient shallow groundwater level. Wood continuously monitored groundwater levels in the observation wells to track the efficacy of the dewatering operations. For the most part, the sumps installed in the northern-most excavation zones 1A and 1B were capable of dewatering most of the Bulkhead Deferred Area excavation zones above the meadow mat. However, as needed, SES deployed other supplemental electric trash pumps at the bottoms of the excavations to assist in the shallow dewatering as excavation progressed to other zones.

The deep DP wells were each fitted with a dedicated electric submersible pump. Since SES started excavating at the north end of the Bulkhead Deferred Area

(excavation zone 1A), the northern DP pumps were started first to begin depressurizing below Stratum D approximately 2 weeks before the start of excavation.

3.5 SUPPLEMENTAL DEWATERING MANAGEMENT

In general, the new Hackensack River steel sheetpile bulkhead greatly reduced the amount of river water infiltration. However, river water did infiltrate during partial excavation of zone 1A in the northwest corner of the Bulkhead Deferred Area excavation where the new bulkhead met a section of existing sheetpile left in place during the SA-7 Chromium Remedy completed in 2009. Simpson & Brown (Sevenson's Sheet Pile Installer Subcontractor) had installed 2 grout columns at the sheetpile intersection in this area (see Photo 36). Keller was brought in to install an additional 3 grout columns but ultimately needed a jet grout curtain of approximately 20 feet in length to stanch the flow of river water (see Photos 37 through 39). Because of this unanticipated additional infiltration of river water, SES had to modify its excavation sequencing until Keller could install the additional grout and the grout had time to set. Thus, SES postponed excavating in zone 1A and moved excavation operations to the southern end of the Bulkhead Deferred Area excavation area (Area 4) where the prescribed excavation depths were shallower (see Section 4.1 for more details).

4.0 EXCAVATION ACTIVITIES

Excavation of chromium-impacted soil in the Bulkhead Deferred Area was performed consistent with the NJDEP-approved RAWP, 100% Design Report, and subsequent DCBs 010A and 010A.1 applicable to the Bulkhead Deferred Area. Excavation was performed at the Bulkhead Deferred Area from September 2, 2020 to November 8, 2020. A progression chart was maintained throughout the project which tracked excavation and backfilling operations. This chart was utilized for the tracking of work sequence and quality control and was reviewed with all Parties at routine progress meetings/conference calls. As excavation progressed, Honeywell periodically submitted to all Parties documentation of completion of portions of the excavation operations in accordance with the SA-6 South Standard Operating Procedure - Confirmation of Excavation Limits, dated March 3, 2014 (and including Honeywell's April 24, 2014 letter and attachments). Record Drawings for excavation and backfill work are included in **Appendix C**.

4.1 PERMANENT BULKHEAD INSTALLATION

As stated previously, Wood installed approximately 270 linear feet of new permanent bulkhead along the Hackensack River. The new bulkhead installation spanned the entire western perimeter of the Bulkhead Deferred Area excavation from north to south. Bulkhead installation was performed at SA-6 South from July 20, 2020 to August 14, 2020. The new bulkhead was installed on behalf of the City of Jersey City and will be incorporated into the City's long-term redevelopment objectives for a new bulkhead to raise grades and construct a Riverwalk feature along the River. Honeywell subcontracted MRCE of New York, NY to design the new bulkhead. The new bulkhead was installed prior to the start of excavation activities because of the excavations' proximity to the River and because the depth of the excavations would be below the River level.

Prior to bulkhead installation, the concrete rubble that was located atop the existing timber bulkhead was removed and stockpiled in a staging area for later processing or offsite disposal depending on waste characterization data (see Section 2.1). Additionally, the top several feet of soil across a portion of the Bulkhead Deferred Area was removed to elevation +8.0 feet, msl to relieve pressure on the timber bulkhead (see Photos 26 through 32). The new bulkhead was constructed of marinegrade steel sheetpile NZ-38, welded pairs. The sheetpile was coated with epoxy

Honeywell

above the mud line. All of the joints between the welded pairs were sealed with Steelwall Steelant® to minimize river water infiltration.

SES subcontracted Simpson and Brown to drive the bulkhead steel. A HMC 51 vibratory hammer attached to a 75-ton crane, located on land to the east of the bulkhead area, was utilized (see Photos 33 through 35). SES commenced sheetpile installation at the north end of the Bulkhead Deferred Area adjacent to a section of existing sheetpile left in place from the SA-7 Chromium Remedy and advanced to the south. The sheets were generally driven to a tip elevation of -50 feet msl along the northern portion and -40 feet msl along the southern portion to provide for cantilevered support of the adjacent excavation without the need for tie backs or other supplemental support mechanisms. The new bulkhead sheetpile was driven no more than 2 feet outboard of the former timber bulkhead. Support structures/timbers in place to bolster the former timber bulkhead were removed above the mudline as necessary as sheetpile installation progressed.

4.2 TEMPORARY EXCAVATION SUPPORT

Temporary excavation support consisting of sheetpile was installed as shown on **Figure 8** (see Photo 40). Due to the presence of the existing HBW, the existing sheetpile at the north end of the Bulkhead Deferred Area, and the newly-installed river bulkhead, temporary excavation support was only needed in a limited area at the southern end of the Bulkhead Deferred Area excavation. Honeywell's geotechnical consultant, MRCE, designed the temporary excavation support sheeting which was documented in DCB 010A. The temporary excavation support system consisted of NZ38 and NZ14 sheetpile. Upon completion of excavation and backfilling activities, the temporary excavation support sheeting was either removed (see Photo 64) and demobilized from the Site or cut off and abandoned in place by SES.

The SES Quality Control Engineer monitored the temporary excavation supports for horizontal deflection during excavation. Vibration monitoring was performed for the duration of the project and was demobilized once backfilling activities were complete. Vibration monitoring was discussed further in Section 2.10.

Honeywell

4.3 EXCAVATION IMPLEMENTATION AND SEQUENCING

As indicated in the 100% Design, Honeywell collected post-excavation equivalent samples during the remedial investigation (RI) and PDI to establish the horizontal and vertical limits of the chromium-impacted soils and, thus, defined the extent of the excavations at SA-6 South. The PDI report included in the SA-6 South 100% Design Report documented all horizontal and vertical delineation samples for the entire SA-6 South excavation area, including the Bulkhead Deferred Area. The existing sheetpile between the north end of the Bulkhead Deferred Area and SA-7, the new Hackensack River bulkhead, and the HBW defined the horizontal limits of 75% of the Bulkhead Deferred Area excavation. Samples that were < 20 mg/kg for hexavalent chromium defined the southern and eastern horizontal limits of the southern approximately 25% of the Bulkhead Deferred Area excavation. As indicated in Section 2.2, additional post-excavation vertical delineation samples were collected during the 2019 waste characterization sampling activities to further refine excavation depths at selected locations in the Bulkhead Deferred Area (see **Table 4A).** Table 4B lists the complete set of post-excavation sidewall and bottom samples for the Bulkhead Deferred Area, including those from **Table 4A**.

To keep track of excavation and backfilling progress, Wood divided the Bulkhead Deferred Area excavation into 7 zones, labeled from north to south 1A through 1D, 2, 3, and 4 (see **Figure 8** and Photos 49 through 58). Because the deepest excavation zones in the Bulkhead Deferred Area excavation were between the new river bulkhead and the HBW, MRCE determined that the deep excavations should be limited in their north-south dimension to a maximum of 40 feet and be backfilled up to elevation +5 ft, msl prior to advancing to the next excavation area in order to minimize deflection of the adjacent sheetpile structures. Therefore, zones 1A, 1B, and 1C were further subdivided into zones 1A-1, 1A-2, 1A-3, 1B-1, 1B-2, 1C-1, 1C-2, and 1C-3. Based on the RI and PDI sample data, most of the northern extent of the Bulkhead Deferred Area (zones 1A through 1D) was excavated to Stratum D (approximately elevation -10 feet, msl). The remaining zones were shallower excavations based upon vertical delineation samples.

Wood provided global positioning system (GPS) coordinates to SES to identify the location of overburden soils (see Section 4.5), the soils characterized as hazardous waste, and the vertical limits of the excavation zones. SES loaded the GPS data into

their machine control system within the excavators and the excavation operators managed the excavation extents with the GPS machine control system.

4.4 EXCAVATION EXTENT SURVEYING AND CONFIRMATION

Similar to the overall SA-6 Chromium Remedy as documented in the RAR, once excavation zones had been completely excavated to their horizontal and/or vertical limits based upon the GPS data in the excavation machine control system, the horizontal and vertical extents of the completed cells were surveyed. SES subcontracted Maser Consulting P.A. (Maser) of Marmora, New Jersey to perform all survey services. R. Thomas Hugg, a New Jersey Professional Land Surveyor, certified all the post-excavation extent survey data and tabulated the survey information. The surveyed data included any PDI post-excavation equivalent soil samples that were located within individual excavation zones. Similar to the overall SA-6 Chromium Remedy, Honeywell submitted documentation confirming the completion of individual excavation zones. Copies of the emails, along with the tabulated excavation extent survey data and a summary figure, are provided in **Appendix M.** Honeywell provided the same information in these confirmation emails for each zone as those provided during the overall SA-6 Chromium Remedy. The email confirmation process was described in detail in the RAR and is not being repeated in this RAR Addendum.

Surveying of the final "as-built" horizontal and vertical extent of the excavations was conducted by Maser and R. Thomas Hugg certified the record drawings surveyed by Maser. Record drawings are discussed and presented in Section 18.

4.5 EXCAVATED MATERIAL (STOCKPILE) TESTING

In accordance with the SMP provided in the 100% Design Report, overburden material that had been characterized as < 20 mg/kg for hexavalent chromium from RI and/or PDI samples was initially removed, stockpiled onsite, and sampled to confirm that the soil was < 20 mg/kg for hexavalent chromium. In the Bulkhead Deferred Area, only approximately 250 CYs of overburden material was identified as < 20 mg/kg for hexavalent chromium based upon RI and/or PDI samples. This material was staged in a designated stockpile area built exclusively for this material. Four grab samples of the overburden material were collected for hexavalent chromium analysis; each sample representing approximately 50 CYs.

Table 5 summarizes the stockpile sample analytical results and indicates that each

Honeywell

sample was confirmed <20 mg/kg hexavalent chromium. Consequently, this material was reused as backfill material to supplement the common borrow material brought onsite from the offsite source (see Section 5.1).

4.6 OFFSITE TRANSPORTATION AND DISPOSAL

As indicated in Section 2.2, the soils to be excavated were characterized in-place for offsite disposal prior to mobilization by collecting soil samples from soil borings. Based on the waste characterization results, approximately 500 CYs of soil (see Photo 48) was characterized as hazardous waste and approximately 5,500 CYs was characterized as non-hazardous waste (see Photo 46). Wood subcontracted Arecon Environmental (Arecon) of Hamilton, New Jersey to provide waste disposal coordination services. Once the waste characterization results were obtained Arecon determined appropriate disposal facilities which could accept the soils and Arecon completed waste profile documentation.

During excavation activities, the soils characterized as hazardous waste were stockpiled separately from those characterized as non-hazardous waste. Once enough of the materials had been stockpiled, SES and Arecon coordinated and scheduled the trucking companies and load out activities as needed to move the material offsite. Arecon completed all waste manifests and bills of lading.

All soil characterized as non-hazardous waste was loaded into tri-axle dump trucks and shipped offsite to Middlesex County Landfill located in Monroe Township, New Jersey. A total of 9,000 tons of material was shipped offsite as non-hazardous waste. All soil characterized as hazardous waste was loaded into tri-axle dump trucks and shipped offsite to Clean Earth of North Jersey located in Kearney, NJ. A total of 900 tons of material was shipped offsite as hazardous waste. As indicated in Section 2.1, approximately 200 tons of concrete material that did not meet the reuse criteria was mixed into the soil shipped offsite as hazardous waste (see Photos 42 through 44). All waste manifests, bills of lading, and certificates of disposal are included as **Appendix F**.

All trucks hauling soils offsite were lined, loaded, and decontaminated similarly to those used to haul material offsite during the overall SA-6 Chromium Remedy as documented in the RAR.

5.0 BACKFILLING, COMPACTION, AND COMPACTION TESTING

Backfilling of the Bulkhead Deferred Area excavation zones included the spreading/placing, compacting, and grading of backfill materials that met the Specifications and were approved by the EOR.

5.1 BACKFILL SOURCES

Sources of imported backfill from offsite locations were tested and analyzed to confirm the material met the NJDEP's definition of clean fill in accordance with the TRSR and did not contain hexavalent chromium above 1 mg/kg. Tested and approved imported backfill material for the Bulkhead Deferred Area were provided from the following quarries licensed by NJDEP:

Source	Quarry	Material Type	Approximate Volume Imported (CYs)
Tilcon	Mount Hope/Pompton Lake, NJ	¾" Stone	420
Tilcon	Mount Hope/Pompton Lake, NJ	6"-18" Riprap	50
Tilcon	Mount Hope/Pompton Lake, NJ	DGA	2,800
Tilcon	Mount Hope/Pompton Lake, NJ	Screenings	2,900
Tilcon	Mount Hope/Pompton Lake, NJ	2.5" Stone	30
Tilcon	Mount Hope/Pompton Lake, NJ	1" Stone	30
Solite	962 Kings Highway, Saugerties, NY	Lightweight Fill	3,000
Dunrite	Vineland, NJ	Lean Clay	520
Eastern	Not Applicable	Flowable Fill	90
Concrete			
EME	New Egypt, NJ	Horizon C	50
EME	New Egypt, NJ	Horizon B	50

Additionally, approximately 1000 CYs of onsite concrete were tested and approved for reuse in accordance with the SMP (see Section 2.1).

5.2 BACKFILL TESTING

Backfill quality control testing was performed as indicated in the 100% Design Report. One sample for chemical analytical testing was required for each 5,000 tons brought onsite to confirm the imported backfill material met the definition of clean fill in the TRSR. Analytical results for imported backfill used in the Bulkhead Deferred Area were compared to the Residential Direct Contact Soil Remediation Standards. In addition, the 100% Design Report required imported fill to have a hexavalent chromium concentration of ≤ 1 mg/kg.

SES collected samples of imported fill material for analysis by their subcontracted analytical laboratory, Eurofins Test America, Edison. Samples were tested for hexavalent chromium by USEPA Method 7199.

In accordance with the 100% Design Report, imported fill samples were analyzed for (see **Appendix G**):

- Target Compound List (TCL) VOCs by SW8260
- TCL Semivolatiles by SW8270
- Extractable Petroleum Hydrocarbons (EPH) by NJEPH 10/08
- Target Analyte List (TAL) Metals by SW6010B/7471
- Pesticides by SW8081
- Herbicides by SW846 8151
- Polychlorinated Biphenyls by SW8082
- Cyanide SW846 9012
- Hexavalent Chromium by USEPA 7199
- Synthetic Precipitation Leaching Procedure (SPLP) Metals by SW6010B/7471 only for those contaminants that exceed Impact to Groundwater standards.

Clean fill certifications were obtained from suppliers of the imported source location and certifying that the soil material was virgin and free of hazardous material or contaminants and included in **Appendix G**. The Specifications also required one sample of each source of imported fill to be tested for maximum dry density and optimum moisture content as determined by American Society of Testing Materials (ASTM) D 698 (Standard Proctor). The Proctor results were used by the technician conducting the compaction testing in the field to determine the degree of compaction based upon a percentage of the Proctor as specified in the 100% Design Report.

5.3 BACKFILLING AND COMPACTION

The 100% Design Report allowed for the use of crushed recycled concrete as bridge lift where necessary to stabilize soft or wet subgrade materials at the bottom of excavations. Because of the depth of the excavation zones in the Bulkhead Deferred Area excavation and to protect the new permanent bulkhead and the HBW, deeper areas were partially backfilled up against the sheetpile walls immediately following excavation. Approved-for-reuse overburden soil (historic fill) or the offsite sources of clean backfill indicated above in Section 5.2 were placed over the bridge lift to bring the backfill to the appropriate design grades. The condition of all placed material was observed and any unsuitable materials were removed, either based on visual observation or by compaction testing criteria.

Bridge lifts were initially placed in nominal 12-inch lifts and compacted with 3 passes of a static steel drum roller as specified (see Photos 59 through 62). Generally, vibratory compaction equipment was not used in the bridging lift. Based on the observation of the stability of the lift, the EOR permitted increasing the lift to 18 inches using dozer placement. If the lift was stable, static rolling was initiated. In some locations it was necessary to defer rolling until up to a 3-foot-thick bridging lift was placed due to excessive pumping of groundwater. In other locations geotextile fabric was added between bridge lift layers or on top of the bridge lift to add additional reinforcing and material separation (see Photo 61). Subsequent lifts of non-bridge-lift backfill materials were placed at a maximum of 12 inches thick loose lift and compacted using vibratory smooth-drum rollers to at least 95% of the maximum dry density in accordance with the Specifications (see Photos 65 through 74).

Approved-for-reuse overburden material (historic fill) was generally placed and compacted near the bottom of the excavations and buried at an elevation no higher than -3.5 feet with additional imported clean backfill as needed to achieve the design grades. The variable nature of this material precluded testing for compaction using the Proctor density methods. Instead, a proof-roll area was set up where approved-for-reuse overburden material was compacted and tested in multiple passes of the vibratory rollers until minimal change in maximum dry density was observed in the last few passes. The final maximum dry density from this proof-roll area was then used as the target density for the remaining areas and lifts where approved-for-reuse overburden material was placed and compacted.

5.4 IN-PLACE BACKFILL DENSITY TESTING

The in-place density of the compacted imported backfill materials were verified in the field using a nuclear surface moisture-density gauge in accordance with ASTM D 2922 (see Photo 70). ATC Group Services LLC, of Burlington, New Jersey, was subcontracted to SES and performed compaction testing at the Bulkhead Deferred Area excavation area. Testing was performed in accordance with the 100% Design Report at a testing frequency of one test per 2,500 SF per compacted lift. **Appendix H** contains the in-field density test results for each lift and a figure showing the inplace density testing locations. The coordinates of the testing locations and elevations of each associated lift are also provided in **Appendix H**.

6.0 OPEN SPACE AREA CONTAINMENT SYSTEM MODIFICATION

6.1 DESIGN CRITERIA

In accordance with the SA-6 South Consent Decree and the 100% Design Report, the Chromium Remedy for the Open Space AOC included a containment system consisting of the HBW, a RCRA-equivalent cap, and a contingent groundwater extraction system to provide hydraulic control of shallow groundwater. The HBW at SA-6 South consists of steel sheetpile with sealed joints around the eastern, southern, and western perimeters of the Open Space AOC. The hydraulic barrier is connected to the existing SA-7 Soil-Cement Bentonite wall on the northern boundary of SA-6 South. The western hydraulic barrier was installed approximately 38 feet inboard of the timber bulkhead. Due to the elevations of the deeper excavation area between the bulkhead and the western HBW of the SA-6 South Open Space Area, the HBW had to be reinforced prior to the excavation of chromium-impacted soils in order to withstand lateral pressures from the east during excavation.

The RCRA-equivalent cap at SA-6 South consists of multiple layers of geosynthetic materials and soils, each designed with a specific purpose. The cap materials work together to limit infiltration of precipitation moisture into the chromium-impacted soil within the Open Space AOC and provide a medium for vegetation growth. To maintain the integrity of the cap, there are strict design criteria for allowable ground pressures on the Open Space AOC cap materials.

The implementation of the Bulkhead Deferred Area Chromium Remedy required the modification of the containment system within the Open Space AOC for the following reasons:

- Reinforcement of the HBW due to excavation of chromium-impacted soils on the western side of the HBW down to elevation -10 ft, msl;
- Access to a portion of the Open Space AOC for equipment to drive the HBW reinforcement sheetpile; and
- Temporarily reduce the soil pressure on the newly installed HBW reinforcement sheetpile by temporarily removing a zone of soil behind the HBW.

 Provide storage area for the soils removed to reduce pressure on the HBW within the Open Space AOC.

Key design features of the Open Space AOC containment system modifications were as follows:

- The water table behind the HBW wall was temporarily lowered to elevation 0.0 ft, msl to relieve hydrostatic pressure on the HBW during the Bulkhead Deferred Area excavation activities.
- A temporary access ramp was constructed in the southwestern corner of the Open Space AOC to allow for vehicle and equipment access.
- The existing soil cap materials above the geosynthetic materials were stripped from an approximately 7,500 SF area and staged for later reuse.
- The existing geosynthetic materials from this same 7,500 SF area were removed and disposed of.
- Approximately 600 cubic yards of existing chromium-impacted soil was
 excavated and staged within the Open Space AOC for later re-consolidation
 back its original location under the cap.
- A new reinforcing steel sheetpile wall was driven to a tip elevation of -47 ft. msl just east of the existing western HBW. The two walls were connected at the top using steel brackets spaced 5 feet apart.
- Once the new reinforcing wall was installed and excavation and backfilling were completed in the Bulkhead Deferred Area excavation, the chromium-impacted soil excavated from the 7,500 SF Open Space AOC area was replaced and compacted back into this area.
- The geosynthetic materials and soil cap materials above the geosynthetic materials were replaced as specified in the 100% Design.

6.2 LOWERING OF WATER TABLE IN THE OPEN SPACE AOC

The water table in the Open Space AOC, behind the HBW, had to be lowered to reduce hydrostatic pressure on the HBW once excavation was implemented. MRCE determined that the Open Space AOC water table needed to be lowered to a minimum +2.0 ft., msl. Consequently, Wood operated the Contingent Groundwater Extraction System (CGWES) pump in the SA-6 South Open Space AOC from June 5, 2020, approximately 2 weeks before excavation commenced, until November 24,

2020, once backfill material in the Bulkhead Deferred Area excavation had been brought up to an elevation of +5 ft, msl. The SA-6 South CGWES pump was operated continuously, except for occasional temporary shut-downs for minor maintenance activities and during 10 days in October when Honeywell conducted a major overhaul of the main treatment processing unit in the GWTP. The water table in the Open Space AOC was lowered to +1 ft, msl during operation of the SA-6 South CGWES pump, which was 1 foot below the design elevation.

6.3 REMOVAL OF OPEN SPACE AOC SOILS AND GEOSYNTHETIC CAP MATERIALS

Once the temporary access ramp was built and excavation equipment could access the Open Space AOC, the soils above the geosynthetic materials were removed and stockpiled on SA-7 (see Photos 19 through 23). The 100% Design mandated that multiple distinct soil horizons/types were designated for specific locations throughout the Open Space AOC. The soil horizons/types were designated as Horizon A, B, and C, GDL Cover Soil, and Structural Fill. Each soil horizon had specific soil properties depending on their function and vertical distribution. From the bottom up, the soil horizons/types were distributed as GDL Cover Soil, Structural Fill (where designated), C, B, and A.

All soil horizons/types were present in the 7,500 SF Open Space AOC area designated for the modifications. SES carefully removed each soil horizon and stockpiled it separately so that each could be replaced once the Open Space AOC restoration was to take place. Since this material was clean soil it was stockpiled on SA-7.

Once the clean Open Space AOC soils (Horizon A, Horizon B, Horizon C, GDL Cover Soil, and structural fill) were removed and stockpiled, the existing 60 mil linear low-density polyethylene liner was cut, removed, and disposed of. A geotextile was then placed in the Open Space AOC beyond the temporary access ramp and DGA was placed and compacted to allow project equipment to access the area beyond the ramp and reduce the load on the HBW.

6.4 HYDRAULIC BARRIER REINFORCEMENT

As documented in DCB 010A, MRCE designed the HBW reinforcement wall to be installed adjacent to the HBW (see Photos 24 and 25). The HBW reinforcement wall

was NZ38 sheetpile driven to a tip elevation of approximately -47 ft, msl to provide enough structural support for the HBW once excavation was implemented to an elevation of -10 ft, msl in the Bulkhead Deferred Area.

SES' subcontractor, Simpson and Brown, also drove the HBW reinforcement wall steel sheetpile. They used the same vibratory hammer attached to the 75-ton crane as was used to drive the new bulkhead sheetpile. As the new HBW reinforcement wall was driven, SES welded the steel brackets to the tops of both the reinforcement wall and the HBW to minimize deflection of the HBW.

6.5 CAP MATERIALS RESTORATION

Once the Bulkhead Deferred Area excavation was completed and backfilling activities had progressed far enough to fully support the HBW to the west, the restoration of the Open Space AOC cap materials proceeded (see Photos 75 through 99). The key components and sequence of the cap materials restoration were as follows:

- Chromium-impacted materials that had been removed were replaced and graded to match the subgrade elevations and contours from the overall SA-6 South Chromium Remedy.
- HBW reinforcing brackets were removed.
- Utility corridors in the area were restored in the subgrade.
- The multi-layered geosynthetic materials were replaced and welded or stitched to existing like materials outside of the disturbed area.
- Horizon C, B, and A, GDL Cover Soil, and Structural Fill materials initially stripped off and stockpiled for reuse were replaced above the geosynthetic materials.
- The temporary access ramp was removed.
- The topsoil (Horizon A) in the area where vegetation had been replaced or disturbed was seeded and protected with erosion control blankets.

Once the temporary access ramp was removed, it was observed that the existing liner under the ramp adjacent to the HBW was slightly damaged. This material was subsequently removed as originally planned and in accordance with DCB 10A.1. Wood then inspected the liner beyond the extent of the ramp and noted that there

was no further damaged material. The new replacement liner that was installed over the 7,500 SF area was welded to competent existing material.

6.6 GEOSYNTHETIC MATERIAL QC

Similar to the overall SA-6 Chromium Remedy, Wood subcontracted Langan to provide third-party QA/QC for cap geosynthetic materials installation activities. Langan prepared a *Cap Geosynthetics Quality Assurance Report* (see **Appendix L**).

6.7 PIEZOMETER REPLACEMENT

Prior to installation of the cap geosynthetic materials in the Open Space AOC, Wood replaced the previously abandoned piezometer, 124-PZ-20, that had been installed in the Open Space AOC during the site-wide SA-6 South Chromium Remedy (see Photos 79 and 80). Piezometer 124-PZ-20R was installed in virtually the same location as the original piezometer, 124-PZ-20, and was constructed in virtually the same way.

Additionally, the previously abandoned piezometer, 124-PZ-19, that had been installed in the Bulkhead Deferred Area excavation area was replaced. Likewise, piezometer 124-PZ-19R was installed in virtually the same location as the original piezometer and was constructed in virtually the same way. As agreed to by All Parties, piezometer 124-PZ-19R was installed within the clay packer material backfilled in the Bulkhead Deferred Area excavated area between the bulkhead and the western SA-6 South hydraulic barrier wall (see Photos 67 and 68). As provided to the Parties via email on July 9, 2020, the clay packer material has a permeability of 2.59E-06 centimeters/second which was determined by Wood and Cornerstone to be reasonably proximity to the target value and satisfied the intent of the "clay curtain" material. The purpose of such material is to minimize pore velocity of water flow adjacent to the western SA-6 South hydraulic barrier wall during tidal cycles. Replacement piezometer locations are shown on **Figure 8**.

7.0 CONSTRUCTION PERMITS

The following construction permits were obtained to complete the onsite work. The respective permits and their expiration dates are listed below. Permits that were no longer required were allowed to expire.

Permit	Status	Expiration Date	
NJDEP General	Obtained	03/12/2025	
Permit 11	03/13/2020	03/12/2029	
USACE Nationwide	Obtained	03/18/2022	
Permit 33/38	01/06/2020	03/16/2022	
PVSC SUP No. 31630040	Obtained 11/27/2019	11/27/2020	
Soil Erosion and Sedimentation Control Plan	Obtained 05/06/2020	11/06/2023	
NJDEP – Treatment Works Approval	Obtained 12/03/2019	12/03/2021	

8.0 SITE RESTORATION

Site restoration activities were performed during the demobilization phase of the project. Site restoration activities included the following:

- Construction of a Redi-Rock wall along the exposed face of the hydraulic barrier wall (see Photos 100 and 101);
- Placement and grading of stone as final surface in the Bulkhead Deferred Area (see Photos 104 through 109);
- Installation of erosion control blanket over the topsoil in the Open Space AOC (see Photos 99 and 107);
- Decontamination and demobilization of construction equipment and surplus materials;
- Decontamination, decommissioning and dismantlement of the construction wastewater treatment system piping;
- Removal of temporary office trailers and power/phone service;
- Removal of traffic control features:
- Removal of construction debris;
- Disposal of other non-regulated waste; and
- Seeding of the Open Space AOC cover soils (see Photo 98).

9.0 INSTITUTIONAL CONTROLS

Institutional controls are integral to the Chromium Remedy at SA-6 South and were made a part of the RAOs. The institutional controls are applied in accordance with Subchapter 7 of NJDEP's ARRCS (N.J.A.C. 7:26C).

Institutional controls include deed notices and remedial action permits at specific areas where chromium-impacted soils remain and a groundwater remedial action permit and Classification Exception Area for residual chromium-impacted groundwater. Additional institutional controls for the Open Space AOC include the application of an amended conservation restriction pursuant to the SA-6 South Consent Decrees, which also provide for the transfer of ownership to Jersey City after construction of roads and utility corridors.

9.1 MODIFICATION OF DEED NOTICE NO. 4

Honeywell established Deed Notice No. 4 for chromium-impacted materials remaining along the bulkhead in SA-7 and in the Bulkhead Deferred Area. Deed Notice No. 4 was recorded at Hudson County on November 30, 2017. The Deed Notice No. 4 area is shown on **Figure 3**. Tract 1 is the area on SA-7 and Tract 2 is the Bulkhead Deferred Area. Since the Bulkhead Deferred Area Chromium Remedy is now complete, Honeywell will terminate the existing Deed Notice No. 4 to remove Tract 2, and will submit a new deed notice corresponding to the Tract 1 area. The draft revised deed notice is contained in **Appendix N**. After the final text of the revised deed notice has been reviewed and approved by the NJDEP, and approved by the Court pursuant to the Study Area 6 South Consent Decree, it will be recorded at the office of the Hudson County Register.

The revised deed notice has been prepared in accordance with NJDEP's ARRCS. The deed notice specifies conditions for alteration, improvement, and/or disturbance of the engineering controls, and provide monitoring, maintenance, notification and reporting requirements. These requirements include documentation that applicable worker health and safety laws and regulations are followed during the disturbance and restoration of those controls. The deed notices contain figures and cross-sections showing the engineering controls and details regarding notification and reporting requirements.

9.2 MODIFICATION OF REMEDIAL ACTION SOIL PERMIT

Honeywell also applied for an associated NJDEP Remedial Action Soil Permit for the Deed Notice No. 4 areas. The Remedial Action Soil Permit was issued by NJDEP on June 1, 2018. Once the new Deed Notice No. 4 is recorded, Honeywell will modify the RAP including only the Tract 1 area at SA-7.

9.3 SA-6 SOUTH CONSERVATION RESTRICTION

Conservation Restrictions were prepared for both Open Space Areas at SA-6 North and SA-6 South at the time of property transfer from Jersey City Redevelopment Agency to Bayfront Redevelopment LLC per Paragraph 60(b) of the SA-6 North Consent Decree and at the time of the granting of the option to buy per Paragraph 74(b) of the SA-6 South Consent Decree. These conservation restrictions were recorded on March 25, 2010. As agreed to by Honeywell and the Parties, the amendment of the existing conservation restriction placed on the SA-6 South Open Space AOC was deferred until the Bulkhead Deferred Area Remedy could be completed. Now that the Bulkhead Deferred Area Chromium Remedy is completed, Honeywell will revise the SA-6 South Conservation Restriction area to be limited to the extents of the hydraulic barriers surrounding the Open Space Area. Hackensack River Watershed Land Trust shall be the primary holder of the conservation restrictions.

10.0 REMEDIAL ACTION COSTS

Remediation costs are summarized in the table below:

Activity	Cost (\$1MM)
Construction Costs	\$7,000,000
Soil Disposal	\$838,000
Oversight/Construction Management	\$1,000,000
Total	\$8,838,000

10.1 FINANCIAL ASSURANCE

Long term monitoring for SA 6 North and South is part of the overall financial assurance letter of credit for chromium remediation at SA-5, SA-6 North, SA-6 South, and SA-7 that are subject to the oversight of the Special Master. This letter of credit is issued by the MUFG Union Bank, N.A. in the amount of \$46,946,915 to cover all remediation and long-term monitoring activities at these sites.

11.0 REMEDIATION CLOSE OUT SUMMARY

The Chromium Remedy at the SA-6 South Deferred Area was implemented successfully in accordance with the TRSR, the Administrative Consent Order, the SA-6 South Consent Decree, the 100% Design Report and subsequent DCBs, and other clarifying correspondence between Honeywell and NJDEP and/or Plaintiffs. Therefore, no further remedial actions are required for the SA-6 South Bulkhead Deferred Area. Remediation of other Deferred Areas at SA-6 along Route 440, will be implemented at another time and will be coordinated with the Bayfront Redevelopment Project and/or the widening of Route 440.

The RAOs in the Bulkhead Deferred Area soils were met by implementation of excavation in accordance with the 100% Design Report and the subsequent DCBs. There were no RAOs for shallow groundwater associated with the Bulkhead Deferred Area. With the Bulkhead Deferred Area Chromium Remedy now complete, Honeywell can proceed to revise the existing institutional controls. The LTMP prepared for both SA-6 Sites establishes procedures and schedules for long-term inspection, maintenance, and operation of critical features of the Chromium Remedy. An updated RE Form, Cover Form, and Case Information Documents are submitted with this report as required by the TRSR.

Based on completion of the remedial actions for chromium-impacted soil in the Bulkhead Deferred Area as documented in this RAR Addendum, Honeywell is requesting NJDEP review and approval of this RAR in accordance with Paragraph 23, G of the Consent Judgment. This document will close out remediation of chromium-impacted soil in the Bulkhead Deferred Area. In accordance with paragraph 5 of the Consent Order Entering Consolidated 100% Design for Study Area 6 North and Study Area 6 South, *Jersey City Municipal Utilities Auth. v. Honeywell*, No. 2:05-cv-05955-DMC-JAD (D. N.J. July 9, 2013), ECF No. 448, Honeywell will submit a Consent Order which has appended to it (i) the 100% Design, excluding drawings and (ii) this Final RAR Addendum for entry into Federal Court. Figure 10 shows the Master Schedule for the SA-6 Sites.

12.0 REFERENCES

- AMEC Environment and Infrastructure, Inc., 2015. Long Term Monitoring Plan, Study Area 6 North (Sites 087 and 088) and Study Area 6 South (Sites 073, 124, 125, 134, 140, and 163), Jersey City, New Jersey. February 2018, Revised December 2020.
- AMEC Environment and Infrastructure, Inc., 2013. Chromium Remedy 100% Design Report – Issued for Construction, Study Area 6 North, Sites 087 and 088, Jersey City, New Jersey. June 2013.
- AMEC Environment and Infrastructure, Inc., 2013. Chromium Remedy 100% Design Report – Issued for Construction, Study Area 6 South, Sites 073, 124, 125, 134, 140, and 163, Jersey City, New Jersey. June 2013.
- Administrative Consent Order (ACO) between Honeywell, formerly Allied Signal, Inc., and the New Jersey Department of Environmental Protection, 1993.
- First Amended Consent Decree Regarding Remediation and Redevelopment of Study Area 6 South, entered August 2, 2012.
- Consent Judgment between Honeywell and the NJDEP dated September 7, 2011.
- HydroQual, Inc., 2005. HydroQual, Inc., 2005. Preliminary Deep Overburden Groundwater Report, Honeywell Study Area 7. March 31, 2005, HWEL.002.001.11.
- HydroQual, Inc., 2006. Deep Overburden Groundwater Remedial Alternatives (DORAA) Report Honeywell Study Area 7. June 2006. HWEL.002.001.11.
- HydroQual, Inc., 2007. Final Groundwater Investigation Report, Honeywell Study Area 7. February 2, 2007. HWEL 002.001.11
- MACTEC Engineering and Consulting, Inc., 2008. Supplemental Remedial Investigation Report/Remedial Action Selection Report/Remedial Action Work Plan for Chromium, Study Area 6 South, Kellogg Street Properties, Jersey City, New Jersey. December 2008.
- NJDEP, 2007; Chromium Policy Memorandum dated February 8, 2007.
- NJDEP, 2012. New Jersey Administrative Code, Chapter 26C Administrative Requirements for the Remediation of Contaminated Sites; last revised May 7, 2012, Trenton, New Jersey.

REFERENCES Honeywell


NJDEP, 2018a; Technical Requirements for Site Remediation, N.J.A.C. 7:26E; last amended August 6, 2018

- NJDEP, 2018b; Administrative Requirements for the Remediation of Contaminated Sites, N.J.A.C. 7:26C. Last amended August 6, 2018
- Settlement Consent Order by and between the Jersey City Entities and Honeywell International Inc., entered April 21, 2008.
- TetraTech, Inc., 2000. Draft Remedial Investigation Report Addendum, Study Area 6 NJDEP Site No. 073, 087, 088, 124, 125, 134, 140, and 163, Jersey City, New Jersey. July 2000.
- Wood Environment & Infrastructure Solutions, Inc., 2020. Perimeter Air Monitoring Plan, Deferred Area Remediation Project, Study Area 6 South, Jersey City, New Jersey, January 2020.

13.0 LIST OF ACRONYMS AND ABBREVIATIONS

AOC	Area of Concern	GCL	Geosynthetic Composite
ARRCS	Administrative		Layer
	Requirements for	GDL	Geosynthetic Drainage
	Remediation of		Layer
	Contaminated Sites	gpm	gallons per minute
ASTM	American Society of	GPS	Global Positioning
	Testing Materials		System
		GWTP	Groundwater Treatment
bgs	Below ground surface		Plant
O	3	GVL	Geosynthetic Venting
CASP	Concrete and Asphalt		Layer
	Sampling Plan		
CGWES	Contingent Groundwater	HASP	Health and Safety Plan
	Extraction System	HBW	Hydraulic Barrier Wall
COC	Contaminants of Concern	HDPE	High-density
CWTP	Construction Water		polyethylene
	Treatment Plant		
CY	Cubic Yards	JCMUA	Jersey City Municipal
			Utilities Authority
DCB	Design Change Bulletins		·
DGA	Dense Grade Aggregate	LTMP	Long Term Monitoring
DKQP	Data of Known Quality		Plan
•	Protocols		
DMP	Data Management Plan	μg/m³	micrograms per cubic
DP	Deep Pressurization	10	meter
	1	mg/kg	milligrams per kilogram
EA	Each	MRCE	Mueser Rutledge
EDD	Electronic Data		Consulting Engineers
	Deliverables		0 0
EOR	Engineer of Record	N.J.A.C.	New Jersey
EPH	Extractable Petroleum		Administrative Code
	Hydrocarbons	NJDEP	New Jersey Department
			of Environmental
			Protection

NTU	Nephelometric Turbidity Unit	SPLP	Synthetic Precipitation Leaching Procedure
O CITA		SVOC	Semi-Volatile Organic
OSHA	Occupational Safety and Health Administration		Compounds
		TAL	Target Analyte List
PAMP	Perimeter Air Monitoring	TCL	Target Compound List
PDI	Plan Pre-Design Investigation	TRSR	Technical Regulations for Site Remediation
PPE	Personal Protective		Site Remediation
IIL	Equipment	USEPA	United States
PVC	Polyvinyl Chloride		Environmental Protection
PVSC	Passaic Valley Sewerage		Agency
	Commission		
		VOC	Volatile Organic
QA/QC	Quality		Compound
	Assurance/Quality		
	Control		
RAOs	Remedial Action		
	Objectives		
RAR	Remedial Action Report		
RAP	Remedial Action Permit		
RAWP	Remedial Action Work		
	Plan		
RCRA	Resource Conservation		
D.F.	and Recovery Act		
RI	Remedial Investigation		
RPMAL	Respirable Particulate		
RVMS	Matter Action Level Remote Vibration		
RVINS	Monitoring System		
	Monitoring Dystein		
SA	Study Area		
SF	Square Feet		
SMP	Soil Management Plan		

TABLE 1A

Bulkhead Air Sample Tracking Log - Hexavalent Chromium Air Samples Study Area 6 South

Study Area 6 South
Honeywell International Inc.
Jersey City, New Jersey

Entry	Date	Sample #	Location	Start	Stop	Minutes	Volume		Analytical Results for Hexavalent Chromium (ng/m³)
1	Friday, June 19, 2020	MD-2-061920-CR6	MD-2	7:55	15:15	440	1734	<	17.0
2	Friday, June 26, 2020	MD-2-062620-CR6	MD-2	7:20	15:05	465	1860	<	16.0
3	Thursday, July 2, 2020	MD-4-070220-CR6	MD-4	8:25	15:00	395	1580	<	19.0
4	Friday, July 10, 2020	MD-4-071020-CR6	MD-4	7:30	11:00	210	630	<	48.0
5	Tuesday, July 14, 2020	MD-3-071420-CR6	MD-3	7:55	16:30	515	2060	<	15.0
6	Wednesday, July 22, 2020	MD-4-072220-CR6	MD-4	7:50	15:30	460	1380	<	22.0
7	Wednesday, July 29, 2020	MD-2-072920-CR6	MD-2	7:45	14:45	420	1260	<	24.0
8	Wednesday, August 5, 2020	MD-1-080520-CR6	MD-1	7:50	14:30	400	1600	<	6.5
9	Wednesday, August 12, 2020	MD-4-081220-CR6	MD-4	7:30	13:15	345	1380	<	7.6
10	Tuesday, August 18, 2020	MD-4-081820-CR6	MD-4	7:50	14:35	405	1620	<	6.4
11	Tuesday, August 25, 2020	MD-4-082520-CR6	MD-4	7:45	13:09	444	1776	<	5.8
12	Tuesday, September 1, 2020	MD-4-090120-CR6	MD-4	7:35	15:00	445	1780		9.0
13	Tuesday, September 8, 2020	MD-3-090820-CR6	MD-3	7:15	15:32	497	1466		13.0
14	Tuesday, September 15, 2020	MD-4-091520-CR6	MD-4	7:50	14:50	420	1680	<	6.2
15	Tuesday, September 22, 2020	MD-4-092220-CR6	MD-4	7:45	15:00	435	1740	<	5.9
16	Tuesday, September 29, 2020	MD-4-092920-CR6	MD-4	8:00	15:19	439	1756	<	5.9
17	Wednesday, October 7, 2020	MD-2-10072020-CR6	MD-4	8:00	14:50	410	1640	<	6.3
18	Wednesday, October 14, 2020	MD-4-10142020-CR6	MD-4	7:40	14:48	428	1712	<	6.0
19	Wednesday, October 21, 2020	MD-4-102120-CR6	MD-4	7:47	14:30	403	1612	<	6.4
20	Friday, October 30, 2020	MD-4-103020-CR6	MD-4	7:00	13:30	390	1560	<	6.6
21	Wednesday, November 4, 2020	MD-2-110420-CR6	MD-2	7:40	14:45	425	1081		6.5
22	Tuesday, November 11, 2020	MD-4-111020-CR6	MD-4	8:00	15:00	420	1680		7.6
23	Tuesday, November 17, 2020	MD-4-111720-CR6	MD-4	8:00	15:00	420	1680	<	6.1
24	Tuesday, November 24, 2020	MD-4-112420-CR6	MD-4	8:37	15:15	398	1592	<	6.5
25	Wednesday, December 2, 2020	MD-4-12220-CR6	MD-4	8:00	15:00	420	1680	<	6.1
26	Wednesday, December 9, 2020	MD-4-120920-CR6	MD-4	8:00	15:05	425	1700	<	5.9

TABLE 1A

Bulkhead Air Sample Tracking Log - Hexavalent Chromium Air Samples

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

Entry	Date	Sample #	Location	Start	Stop	Minutes	Volume		Analytical Results for Hexavalent Chromium (ng/m³)
27	Tuesday, December 15, 2020	MD-4-121520-CR6	MD-4	7:55	14:51	416	1664	<	6.1
28	Tuesday, December 22, 2020	MD-2-122220-CR6	MD-2	7:30	17:10	580	1311	<	7.7
29	Thursday, January 7, 2021	MD-4-010721-CR6	MD-4	7:48	15:00	432	1728	<	5.9
30	Tuesday, January 12, 2021	MD-4-011221-CR6	MD-4	8:00	14:57	417	1668	<	6.1

Notes:

Bold concentrations are detections

ng/m³: nanograms per cubic meter

TABLE 1B

Bulkhead Air Sample Tracking Log - Total Respirable Particulates Air Samples Study Area 6 South

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

Entry	Date	Sample #	Location	Start	Stop	Minutes	Volume		Analytical Results for Respirable Particulate (μg/m³)
1	Friday, June 19, 2020	MD-2-061920-RP	MD-2	7:55	15:15	440	1320	<	38.0
2	Friday, June 26, 2020	MD-2-062620-RP	MD-2	7:20	15:05	465	1395	<	36.0
3	Thursday, July 2, 2020	MD-4-070220-RP	MD-4	8:25	15:00	395	1185	<	42.0
4	Friday, July 10, 2020	MD-4-071020-RP	MD-4	7:30	11:00	210	840	<	60.0
5	Tuesday, July 14, 2020	MD-3-071420-RP	MD-3	7:55	16:30	515	1545		42.0
6	Wednesday, July 22, 2020	MD-4-072220-RP	MD-4	7:50	15:30	460	1840	<	27.0
7	Wednesday, July 29, 2020	MD-2-072920-RP	MD-2	7:45	14:45	420	1050	<	48.0
8	Wednesday, August 5, 2020	MD-1-080520-RP	MD-1	7:50	14:30	400	1024	<	98.0
9	Wednesday, August 12, 2020	MD-4-081220-RP	MD-4	7:30	13:15	345	900	<	11.0
10	Tuesday, August 18, 2020	MD-4-081820-RP	MD-4	7:50	14:35	405	1057	<	95.0
11	Tuesday, August 25, 2020	MD-4-082520-RP	MD-4	7:45	13:09	444	1137	<	88.0
12	Tuesday, September 1, 2020	MD-4-090120-RP	MD-4	7:35	15:00	445	1164	<	86.0
13	Tuesday, September 8, 2020	MD-4-090820-RP	MD-3	7:15	15:32	497	1081	<	93.0
14	Tuesday, September 15, 2020	MD-4-091520-RP	MD-4	7:50	14:50	420	1088	<	92.0
15	Tuesday, September 22, 2020	MD-4-092220-RP	MD-4	7:45	15:00	435	1133	<	88.0
16	Tuesday, September 29, 2020	MD-4-092920-RP	MD-4	8:00	15:19	439	1137	<	88.0
17	Wednesday, October 7, 2020	MD-2-1007202RP	MD-4	8:00	14:50	410	1070	<	93.0
18	Wednesday, October 14, 2020	MD-4-1014202RP	MD-4	7:40	14:48	428	1087	<	92.0
19	Wednesday, October 21, 2020	MD-4-102120-RP	MD-4	7:47	14:30	403	1005	<	100.0
20	Friday, October 30, 2020	MD-4-103020-RP	MD-4	7:00	13:30	390	1024	<	98.0
21	Wednesday, November 4, 2020	MD-2-110420-RP	MD-2	7:40	14:45	425	1692	<	93.0
22	Tuesday, November 11, 2020	MD-4-111020-RP	MD-4	8:00	15:00	420	1079	<	93.0
23	Tuesday, November 17, 2020	MD-4-111720-RP	MD-4	8:00	15:00	420	1056	<	95.0
24	Tuesday, November 24, 2020	MD-4-112420-RP	MD-4	8:37	15:15	398	1017	<	98.0
25	Wednesday, December 2, 2020	MD-4-12220-CRP	MD-4	8:00	15:00	420	1079	<	93.0
26	Wednesday, December 9, 2020	MD-4-120920-RP	MD-4	8:00	15:05	425	1086	<	92.0

TABLE 1B

Bulkhead Air Sample Tracking Log - Total Respirable Particulates Air Samples

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

Entry	Date	Sample #	Location	Start	Stop	Minutes	Volume		Analytical Results for Respirable Particulate (μg/m³)
27	Tuesday, December 15, 2020	MD-4-121520-RP	MD-4	7:55	14:51	416	1063	<	94.0
28	Tuesday, December 22, 2020	MD-2-122220-RP	MD-2	7:30	17:10	580	1224	<	82.0
29	Thursday, January 7, 2021	MD-4-010721-RP	MD-4	7:48	15:00	432	1231	<	81.0
30	Tuesday, January 12, 2021	MD-4-011221-RP	MD-4	8:00	14:57	417	1130	<	88.0

Note:

μg/m³: micrograms per cubic meter

TABLE 2A

Concrete Sample Results - VOCs

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

		Location	073-WC-109		073-WC-110	T	073-WC-111	073-WC-112	073-WC-113	073-WC-114	073-WC-115
		Sample ID	073-WC-109-10211	9	073-WC-110-10211	9	073-WC-111-102119	073-WC-112-102119	073-WC-113-102119	073-WC-114-120619	073-WC-115-120619
		ab Sample ID	JC97156-1		JC97156-2		JC97156-3	JC97156-4	JC97156-5	JC99775-1	JC99775-2
		Date	10/21/2019		10/21/2019		10/21/2019	10/21/2019	10/21/2019	12/6/2019	12/6/2019
Chemical	Units	RDC	, ,	Q		Q	CONC Q	CONC Q	, ,	, ,	CONC Q
1.1.1-Trichloroethane	mg/kg	160000		U		U	0.0021 U	0.002 U	·		0.00071 J
1,1,2,2-Tetrachloroethane	mg/kg	1		U		U	0.0021 U	0.002 U		0.0021 U	0.002 U
1.1.2-Trichloro-1.2.2-Trifluoroethane	mg/kg	NC		U		U	0.0052 U	0.0051 U		0.0052 U	0.005 U
1.1.2-Trichloroethane	mg/kg	2		U		U	0.0021 U	0.002 U		0.0021 U	0.002 U
1.1-Dichloroethane	mg/kg	8		U		U	0.001 U	0.001 U			0.001 U
1,1-Dichloroethene	mg/kg	11		U	0.00096	U	0.001 U	0.001 U	0.0011 U	0.001 U	0.001 U
1,2,3-Trichlorobenzene	mg/kg	NC	0.0052	U	0.0048	U	0.0052 U	0.0051 U	0.0053 U	0.0052 U	0.005 U
1,2,4-Trichlorobenzene	mg/kg	73	0.0052	U	0.0048	U	0.0052 U	0.0051 U	0.0053 U	0.0052 U	0.005 U
1,2-Dibromo-3-Chloropropane	mg/kg	0.08	0.0021	U	0.0019	U	0.0021 U	0.002 U	0.0021 U	0.0021 U	0.002 U
1,2-Dibromoethane	mg/kg	0.008	0.001	U	0.00096	U	0.001 U	0.001 U	0.0011 U	0.001 U	0.001 U
1,2-Dichlorobenzene	mg/kg	5300	0.001	U		U	0.001 U	0.001 U	0.0011 U	0.001 U	0.001 U
1,2-Dichloroethane	mg/kg	0.9	0.001	U	0.00096	U	0.001 U	0.001 U	0.0011 U	0.001 U	0.001 U
1,2-Dichloropropane	mg/kg	2	0.0021	U	0.0019	U	0.0021 U	0.002 U	0.0021 U	0.0021 U	0.002 U
1,3-Dichlorobenzene	mg/kg	5300	0.001	U	0.00096	U	0.001 U	0.001 U	0.0011 U	0.001 U	0.001 U
1,4-Dichlorobenzene	mg/kg	5	0.001	U	0.00096	U	0.001 U	0.001 U	0.0011 U	0.001 U	0.001 U
2-Butanone	mg/kg	3100	0.01	U	0.0096	U	0.01 U	0.01 U	0.011 U	0.0057 J	0.01 U
2-Hexanone	mg/kg	NC	0.0052	U	0.0048	U	0.0052 U	0.0051 U	0.0053 U	0.0052 U	0.005 U
4-Methyl-2-Pentanone	mg/kg	NC	0.0052	U	0.0048	U	0.0052 U	0.0051 U	0.0053 U	0.0291	0.005 U
Acetone	mg/kg	70000	0.01	U	0.0057	J	0.0072 J	0.0122	0.0067 J	0.0463	0.0256
Benzene	mg/kg	2	0.00052	U	0.00048	U	0.00052 U	0.00051 U	0.00053 U	0.00052 U	0.0005 U
Bromochloromethane	mg/kg	NC	0.0052	U	0.0048	U	0.0052 U	0.0051 U	0.0053 U	0.0052 U	0.005 U
Bromodichloromethane	mg/kg	1	0.0021	U	0.0019	U	0.0021 U	0.002 U	0.0021 U	0.0021 U	0.002 U
Bromoform	mg/kg	81	0.0052	U	0.0048	U	0.0052 U	0.0051 U	0.0053 U	0.0052 U	0.005 U
Bromomethane	mg/kg	25	0.0052	U		U	0.0052 U	0.0051 U	*******	0.0052 U	0.005 U
Carbon Disulfide	mg/kg	7800	0.0021	U		U	0.0021 U	0.002 U		0.0023	0.002 U
Carbon Tetrachloride	mg/kg	2	0.0021	U	0.0019	U	0.0021 U	0.002 U		0.0021 U	0.002 U
Chlorobenzene	mg/kg	510		U		U	0.0021 U	0.002 U	0.0021 U	0.0021 U	0.002 U
Chloroethane	mg/kg	220		U		U	0.0052 U	0.0051 U	0.0053 U	0.0052 U	0.005 U
Chloroform	mg/kg	0.6		U		U	0.0021 U	0.002 U	0.0021 U	0.0021 U	0.002 U
Chloromethane	mg/kg	4		U		U	0.0052 U	0.0051 U	0.0053 U	0.0052 U	0.005 U
cis-1,2-Dichloroethene	mg/kg	230	*****	U		U	0.001 U	0.001 U	0.0011 U	0.001 U	0.001 U
cis-1,3-Dichloropropene	mg/kg	2	*****	U		U	0.0021 U	0.002 U	0.0021 U	0.0021 U	0.002 U
Cyclohexane	mg/kg	NC		U		U	0.0021 U	0.002 U		0.0021 U	0.002 U
Dibromochloromethane	mg/kg	3		U		U	0.0021 U	0.002 U	0.0021 U	0.0021 U	0.002 U
Dichlorodifluoromethane	mg/kg	490		U		U	0.0052 U	0.0051 U	*******	0.0052 U	0.005 U
Ethylbenzene 	mg/kg	7800		U		U	0.001 U	0.001 U	******	0.001 U	0.001 U
Isopropylbenzene	mg/kg	NC		U		U	0.0021 U	0.002 U	0.0021 U	0.0021 U	0.002 U
m&p-Xylenes	mg/kg	NC		U		U	0.001 U	0.001 U			0.001 U
Methyl Acetate	mg/kg	78000		U		U	0.0052 U	0.0051 U	0.0053 U	0.0052 U	0.005 U
Methyl Tert-Butyl Ether	mg/kg	110		U		U	0.001 U	0.001 U	0.0011 U	0.001 U	0.001 U
Methylcyclohexane	mg/kg	NC		U		U	0.0021 U	0.002 U	0.0021 U	0.0021 U	0.002 U
Methylene Chloride	mg/kg	46	0.0052	U	0.0012	J	0.0012 J	0.0019 J	0.0012 J	0.0052 U	0.005 U

TABLE 2A

Concrete Sample Results - VOCs

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

		Location	073-WC-10	9	073-WC-11	0	073-WC-11	.1	073-WC-112	2	073-WC-11	3	073-WC-11	.4	073-WC-11	15
		Sample ID	073-WC-109-10	2119	073-WC-110-10	2119	073-WC-111-10	02119	073-WC-112-102	2119	073-WC-113-10	2119	073-WC-114-12	20619	073-WC-115-12	20619
	L	ab Sample ID	JC97156-1		JC97156-2		JC97156-3	3	JC97156-4		JC97156-5		JC99775-1		JC99775-2	2
	Chemical Units me mg/kg me mg/kg thloroethene mg/kg me mg/kg thloroethene mg/kg		10/21/2019)	10/21/2019	9	10/21/201	9	10/21/2019	1	10/21/201	9	12/6/2019)	12/6/2019	€
Chemical	lene mg/kg N ene mg/kg 9		CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC	Q
o-Xylene	mg/kg	NC	0.001	U	0.00096	U	0.001	U	0.001	U	0.0011	U	0.001	U	0.001	U
Styrene	mg/kg	90	0.0021	U	0.0019	U	0.0021	U	0.002	U	0.0021	U	0.0021	U	0.002	U
Tetrachloroethene	mg/kg	43	0.0021	Ω	0.0019	Ω	0.0021	U	0.002	Ω	0.0021	Ω	0.0021	U	0.002	U
Toluene	mg/kg	6300	0.001	С	0.00096	С	0.001	U	0.001	С	0.0011	С	0.001	U	0.001	U
Total Xylenes	mg/kg	12000	0.001	U	0.00096	U	0.001	U	0.001	U	0.0011	U	0.001	U	0.001	U
trans-1,2-Dichloroethene	mg/kg	300	0.001	U	0.00096	U	0.001	U	0.001	U	0.0011	U	0.001	U	0.001	U
trans-1,3-Dichloropropene	mg/kg	2	0.0021	U	0.0019	U	0.0021	U	0.002	U	0.0021	U	0.0021	U	0.002	U
Trichloroethene	mg/kg	3	0.001	U	0.00096	U	0.001	U	0.001	U	0.0011	U	0.0106		0.0189	
Trichlorofluoromethane	mg/kg	23000	0.0052	U	0.0048	U	0.0052	U	0.0051	U	0.0053	U	0.0052	U	0.005	U
Vinyl Chloride	mg/kg	0.7	0.0021	U	0.0019	U	0.0021	U	0.002	U	0.0021	U	0.0021	U	0.002	U
Total TICs, Volatile	mg/kg	NC	0	NJ	0	NJ	0	NJ	0.0063	NJ	0	NJ	0	NJ	0	NJ

Notes:

RDC: NJDEP Residential Direct Contact Soil Remediation Standards [N.J.A.C. 7:26D; last amended 9/18/2017].

NC: No criterion established

Bold concentrations exceed the RDC

Depths reported in feet below ground surface

J: Estimated concentration

N: Negated by laboratory or data validator

U: Not detected above method detection limit

Results with a value of "0" indicates no TICs were detected

N: Indicates presumptive evidence of a compound

TABLE 2B

Concrete Sample Results - SVOCs

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

		Location	073-WC-109		073-WC-110	073-WC-111	Ī	073-WC-112	073-WC-113	073-WC-114	073-WC-115	5
		Sample ID	073-WC-109-1021	19	073-WC-110-102119	073-WC-111-102119	9	073-WC-112-102119	073-WC-113-102119	073-WC-114-120619	073-WC-115-120	0619
	L	ab Sample ID	JC97156-1		JC97156-2	JC97156-3		JC97156-4	JC97156-5	JC99775-1	JC99775-2	
		Date	10/21/2019		10/21/2019	10/21/2019		10/21/2019	10/21/2019	12/6/2019	12/6/2019	
Chemical	Units	RDC	CONC	Q	CONC C	CONC C	Q	CONC Q	CONC Q	CONC Q	CONC	Q
1,1'-Biphenyl	mg/kg	61	0.07	U	0.067 L	0.069 L	U	0.067 U	0.071 U	0.069 U	0.07	U
1,2,4,5-Tetrachlorobenzene	mg/kg	NC	0.18	U	0.17 L	0.17 L	U	0.17 U	0.18 U	0.17 U	0.18	U
1,4-Dioxane	mg/kg	NC	0.035	U	0.034 L	0.034 L	U	0.033 U	0.035 U	0.034 U	0.035	U
2,2'-Oxybis(1-Chloropropane)	mg/kg	23	0.07	U	0.067 L	0.069 L	U	0.067 U	0.071 U	0.069 U	0.07	U
2,3,4,6-Tetrachlorophenol	mg/kg	NC	0.18	U	0.17 L	0.17 L	U	0.17 U	0.18 U	0.17 U	0.18	U
2,4,5-Trichlorophenol	mg/kg	6100	0.18	U	0.17 L	0.17 L	U	0.17 U	0.18 U	0.17 U	0.18	U
2,4,6-Trichlorophenol	mg/kg	19	0.18	U	0.17 L	0.17 L	U	0.17 U	0.18 U	0.17 U	0.18	U
2,4-Dichlorophenol	mg/kg	180	0.18	U	0.17 L	0.17 L	U	0.17 U	0.18 U	0.17 U	0.18	U
2,4-Dimethylphenol	mg/kg	1200	0.18	U	0.17 L	0.17 L	U	0.17 U	0.18 U	0.17 U	0.18	U
2,4-Dinitrophenol	mg/kg	120	0.18	U	0.17 L	0.17 L	U	0.17 U	0.18 U	0.17 U	0.18	U
2,4-Dinitrotoluene	mg/kg	0.7	0.035	U	0.034 L		U	0.033 U	0.035 U	0.034 U	0.035	U
2,6-Dinitrotoluene	mg/kg	0.7	0.035	U	0.034 L	0.034 L	U	0.033 U	0.035 U	0.034 U	0.035	U
2-Chloronaphthalene	mg/kg	NC	0.07	U	0.067 L	0.069 L	U	0.067 U	0.071 U	0.069 U	0.07	U
2-Chlorophenol	mg/kg	310	0.07	U	0.067 L	0.069 L	U	0.067 U	0.071 U	0.069 U	0.07	U
2-Methylnaphthalene	mg/kg	230	0.035	U	0.034 L	0.034 L	U	0.033 U	0.035 U	0.034 U	0.035	U
2-Methylphenol	mg/kg	310	0.07	U	0.067 L	0.069 L	U	0.067 U	0.071 U	0.069 U	0.07	U
2-Nitroaniline	mg/kg	39	0.18	U	0.17 L	0.17 L	U	0.17 U	0.18 U	0.17 U	0.18	U
2-Nitrophenol	mg/kg	NC	0.18	U	0.17 L	0.17 L	U	0.17 U	0.18 U	0.17 U	0.18	U
3,3'-Dichlorobenzidine	mg/kg	1	0.07	U	0.067 L	0.069 L	U	0.067 U	0.071 U	0.069 U	0.07	U
3-Nitroaniline	mg/kg	NC	0.18	U	0.17 L	0.17 L	U	0.17 U	0.18 U	0.17 U	0.18	U
4,6-Dinitro-2-Methylphenol	mg/kg	6	0.18	U	0.17 L	0.17 L	U	0.17 U	0.18 U	0.17 U	0.18	U
4-Bromophenyl Phenyl Ether	mg/kg	NC	0.07	U	0.067 L	0.069 L	U	0.067 U	0.071 U	0.069 U	0.07	U
4-Chloro-3-Methylphenol	mg/kg	NC	0.18	U	0.17 L	0.17 L	U	0.17 U	0.18 U	0.17 U	0.18	U
4-Chloroaniline	mg/kg	NC	0.18	U	0.17 L	0.17 L	U	0.17 U	0.18 U	0.17 U	0.18	U
4-Chlorophenyl Phenyl Ether	mg/kg	NC	0.07	U	0.067 L	0.069 L	U	0.067 U	0.071 U	0.069 U	0.07	U
4-Nitroaniline	mg/kg	NC	0.18	U	0.17 L	0.17 L	U	0.17 U	0.18 U	0.17 U	0.18	U
4-Nitrophenol	mg/kg	NC	0.35	U	0.34 L	0.34 L	U	0.33 U	0.35 U	0.34 U	0.35	U
Acenaphthene	mg/kg	3400	0.035	U	0.034 L	0.034 L	U	0.033 U	0.035 U	0.034 U	0.035	U
Acenaphthylene	mg/kg	NC	0.035	U	0.034 L	0.034 L	U	0.033 U	0.035 U	0.034 U	0.035	U
Acetophenone	mg/kg	2	0.18	U	0.17 L	0.17 L	U	0.17 U	0.18 U	0.17 U	0.18	U
Anthracene	mg/kg	17000	0.035	U	0.034 L	0.034 L	U	0.033 U	0.035 U	0.034 U	0.035	U
Atrazine	mg/kg	210	0.07	U	0.067 L	0.069 L	U	0.067 U	0.071 U	0.069 U	0.07	U
Benzaldehyde	mg/kg	6100	0.18	U	0.17 L	0.17 L	U	0.17 U	0.18 U	0.17 U	0.18	U
Benzo(A)Anthracene	mg/kg	5	0.035	U	0.034 L	0.034 L	U	0.033 U	0.035 U	0.0164 J	0.035	U
Benzo(A)Pyrene	mg/kg	0.5	0.035	U	0.034 L	0.034 L	U	0.033 U	0.035 U	0.0171 J	0.035	U
Benzo(B)Fluoranthene	mg/kg	5	0.035	U	0.034 L	0.034 L	U	0.033 U	0.035 U	0.0203 J	0.035	U
Benzo(G,H,I)perylene	mg/kg	380000	0.035	U	0.034 L	0.034 L	U	0.033 U	0.035 U	0.034 U	0.035	U
Benzo(K)Fluoranthene	mg/kg	45	0.035	U	0.034 L	0.034 L	U	0.033 U	0.035 U	0.034 U	0.035	U
bis-(2-Chloroethoxy)Methane	mg/kg	NC	0.07	U	0.067 L	0.069 L	U	0.067 U	0.071 U	0.069 U	0.07	U
bis-(2-Chloroethyl)Ether	mg/kg	0.4	0.07	U	0.067 L	0.069 L	U	0.067 U	0.071 U	0.069 U	0.07	U
bis-(2-Ethylhexyl)Phthalate	mg/kg	35	0.07	U	0.067 L	0.069 L	U	0.067 U	0.071 U	0.069 U	0.07	U
Butylbenzyl Phthalate	mg/kg	1200	0.07	U	0.067 L	0.069 L	U	0.067 U	0.071 U	0.069 U	0.07	U

TABLE 2B

Concrete Sample Results - SVOCs

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

		Location	073-WC-109		073-WC-110		073-WC-111		073-WC-112	T	073-WC-113		073-WC-114		073-WC-1	15
		Sample ID	073-WC-109-102119	0	73-WC-110-102	119	073-WC-111-102119	Э	073-WC-112-102119) (073-WC-113-10211	9	073-WC-114-120	619	073-WC-115-1	.20619
	L	ab Sample ID	JC97156-1		JC97156-2		JC97156-3		JC97156-4		JC97156-5		JC99775-1		JC99775-	2
		Date	10/21/2019		10/21/2019		10/21/2019		10/21/2019		10/21/2019		12/6/2019		12/6/201	.9
Chemical	Units	RDC	CONC C	Į	CONC	Q	CONC C	Q	CONC C	2	CONC	Q	CONC	Q	CONC	Q
Caprolactam	mg/kg	31000	0.07 L	J	0.067	U	0.069 L	J	0.067 L	J	0.071	U	0.069	U	0.07	U
Carbazole	mg/kg	24	0.07 L	J	0.067	U	0.069 L	J	0.067 L	J	0.071	U	0.069	U	0.07	U
Chrysene	mg/kg	450	0.035 L	J	0.034	U	0.034 L	J	0.033 L	J	0.035	U	0.0138	J	0.035	U
Dibenzo(a,h)Anthracene	mg/kg	0.5	0.035 L	J	0.034	U	0.034 L	J	0.033 L	J	0.035	U	0.034	U	0.035	U
Dibenzofuran	mg/kg	NC	0.07 L	J	0.067	U	0.069 L	J	0.067 L	J	0.071	U	0.069	U	0.07	U
Diethyl Phthalate	mg/kg	49000	0.07 L	J	0.067	U	0.069 L	J	0.067 L	J	0.071	U	0.069	U	0.07	U
Dimethyl Phthalate	mg/kg	NC	0.07 L	J	0.067	U	0.069 L	J	0.067 L	J	0.071	U	0.069	U	0.07	U
Di-n-Butyl Phthalate	mg/kg	6100	0.07 L	J	0.067	U	0.069 L	J	0.067 L	J	0.071	U	0.069	U	0.07	U
Di-n-Octyl Phthalate	mg/kg	2400	0.07 L	J	0.067	U	0.069 L	J	0.067 L	J	0.071	U	0.069	U	0.07	U
Fluoranthene	mg/kg	2300	0.035 L	J	0.034	U	0.034 L	J	0.033 L	J	0.035	U	0.0238	J	0.035	U
Fluorene	mg/kg	2300	0.035 L	J	0.034	U	0.034 L	J	0.033 L	J	0.035	U	0.034	U	0.035	U
Hexachlorobenzene	mg/kg	0.3	0.07 L	J	0.067	U	0.069 L	J	0.067 L	J	0.071	U	0.069	U	0.07	U
Hexachlorobutadiene	mg/kg	6	0.035 L	J	0.034	U	0.034 L	J	0.033 L	J	0.035	U	0.034	U	0.035	U
Hexachlorocyclopentadiene	mg/kg	45	0.35 L	J	0.34	U	0.34 L	J	0.33 L	J	0.35	U	0.34	U	0.35	U
Hexachloroethane	mg/kg	12	0.18 L	J	0.17	U	0.17 L	J	0.17 L	J	0.18	U	0.17	U	0.18	U
Indeno(1,2,3-Cd)Pyrene	mg/kg	5	0.035 L	J	0.034	U	0.034 L	J	0.033 L	J	0.035	U	0.034	U	0.035	U
Isophorone	mg/kg	510	0.07 L	J	0.067	U	0.069 L	J	0.067 L	J	0.071	U	0.069	U	0.07	U
m,p-Cresol	mg/kg	NC	0.07 L	J	0.067	U	0.069 L	J	0.067 L	J	0.071	U	0.069	U	0.07	U
Naphthalene	mg/kg	6	0.035 L	J	0.034	U	0.034 L	J	0.0116 J		0.035	U	0.034	U	0.035	U
Nitrobenzene	mg/kg	5	0.07 L	J	0.067	U	0.069 L	J	0.067 L	J	0.071	U	0.069	U	0.07	U
n-Nitroso-di-n-Propylamine	mg/kg	0.2	0.07 L	J	0.067	U	0.069 L	J	0.067 L	J	0.071	U	0.069	U	0.07	U
n-Nitrosodiphenylamine	mg/kg	99	0.18 L	J	0.17	U	0.17 L	J	0.17 L	J	0.18	U	0.17	U	0.18	U
Pentachlorophenol	mg/kg	0.9	0.14 L	J	0.13	U	0.14 L	J	0.13 L	J	0.14	U	0.14	U	0.14	U
Phenanthrene	mg/kg	NC	0.035 L	J	0.034	U	0.034 L	J	0.033 L	J	0.035	U	0.0208	J	0.035	U
Phenol	mg/kg	18000	0.07 L	J	0.067	U	0.069 L	J	0.0633 J	ı	0.071	U	0.069	U	0.07	U
Pyrene	mg/kg	1700	0.035 L	J	0.034	U	0.034 L	J	0.033 L	J	0.035	U	0.0248	J	0.035	U
Total TICs SVOC	mg/kg	NC	1.37 N	IJ	0	NJ	0 N	11	0.69 N	IJ	0	NJ	2.39	NJ	1.98	NJ

Notes:

RDC: NJDEP Residential Direct Contact Soil Remediation Standards [N.J.A.C. 7:26D; last amended 9/18/2017].

NC: No criterion established

Depths reported in feet below ground surface

J: Estimated concentration

N: Negated by laboratory or data validator

U: Not detected above method detection limit

Results with a value of "0" indicates no TICs were detected

N: Indicates presumptive evidence of a compound

TABLE 2C

Concrete Sample Results - Metals

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

		Location	073-WC-109		073-WC-11	0	073-WC-11	1	073-WC-11	2	073-WC-11	3	073-WC-11	4	073-WC-1	15
		Sample ID	073-WC-109-102	119	073-WC-110-10	2119	073-WC-111-10	2119	073-WC-112-10	2119	073-WC-113-10	2119	073-WC-114-12	0619	073-WC-115-1	20619
	L	ab Sample ID	JC97156-1		JC97156-2		JC97156-3		JC97156-4	1	JC97156-5		JC99775-1		JC99775-	
		Date	10/21/2019		10/21/201	9	10/21/201	9	10/21/201	9	10/21/2019)	12/6/2019	1	12/6/201	9
Chemical	Units	RDC	CONC	Q	CONC	Q	CONC	Q	CONC	σ	CONC	Q	CONC	Q	CONC	Q
Aluminum	mg/kg	78000	7000		4570		4750		6270		8060		7260		6100	
Antimony	mg/kg	31	2	U	2.1	U	2.1	U	2	U	2.1	U	2.2	U	2.1	U
Arsenic	mg/kg	19	2.1		2.4		3.9		3.2		16.7		3.9		3.1	
Barium	mg/kg	16000	31.2		27.2		36.4		40.4		118		42.3		37.7	
Beryllium	mg/kg	16	0.22		0.21	U	0.21	U	0.26		0.95		0.22	U	0.21	U
Cadmium	mg/kg	78	0.51	U	0.52	Ω	0.54	U	0.51	Ω	0.52	U	0.54	Ω	0.53	U
Calcium	mg/kg	NC	72200		65800		94400		87300		61800		103000		118000	
Chromium	mg/kg	120000	35.3		59.7		55.3		15.8		25.6		24.6		21.2	
Cobalt	mg/kg	1600	10.2		5.2	Ω	5.4	U	5.1	Ω	6.2		5.4	Ω	5.3	U
Copper	mg/kg	3100	24.3		11		6.2		19.1		28.4		11.9		8.6	
Iron	mg/kg	NC	13200		7780		6110		9340		10400		8150		6750	
Lead	mg/kg	400	10.9		6.4		2.2		6.9		19.3		9.9		5.2	
Magnesium	mg/kg	NC	4580		2870		3340		3840		2570		15500		27600	
Manganese	mg/kg	11000	190		103		132		150		86.7		155		142	
Mercury	mg/kg	23	0.031	U	0.033	Ω	0.033	U	0.031	Ω	0.032	U	0.045		0.033	U
Nickel	mg/kg	1600	16.8		24.3		4.4		7.3		14.5		8.7		8.3	
Potassium	mg/kg	NC	1000	U	1000	Ω	1100	U	1000	Ω	1000	U	1100	Ω	1160	
Selenium	mg/kg	390	2	U	2.1	Ω	2.1	U	2	Ω	2.1	U	11	Ω	<u>21</u>	<u>U</u>
Silver	mg/kg	390	<u>2.6</u>	<u>U</u>	<u>2.6</u>	<u>U</u>	<u>2.7</u>	<u>U</u>	<u>2.5</u>	<u>U</u>	<u>2.6</u>	<u>U</u>	<u>2.7</u>	<u>U</u>	<u>5.3</u>	<u>U</u>
Sodium	mg/kg	NC	1000	U	1000	U	1100	U	1000	U	1000	U	1100	U	1100	U
Thallium	mg/kg	NC	1	U	1	U	1.1	U	1	U	1	U	<u>5.4</u>	<u>U</u>	<u>11</u>	<u>U</u>
Vanadium	mg/kg	78	25.7		12.2		9.2		23.4		24.9		19.6		11.2	
Zinc	mg/kg	23000	60.1		15.5		54.8		26		71.6		26.2		19.3	

Notes:

RDC: NJDEP Residential Direct Contact Soil Remediation Standards [N.J.A.C. 7:26D; last amended 9/18/2017].

NC: No criterion established

Bold concentrations exceed the RDC

Italicized values not detected; reporting limit exceeds criteria

Depths reported in feet below ground surface

U: Not detected above method detection limit

TABLE 2D

Concrete Sample Results - Pesticides and PCBs

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

		Location	073-WC-109		073-WC-110	073-WC-111		073-WC-112	073-WC-113	073-WC-114	073-WC-115
		Sample ID	073-WC-109-10211	9	073-WC-110-102119	073-WC-111-102119	07	73-WC-112-102119	073-WC-113-102119	073-WC-114-120619	073-WC-115-120619
	L	ab Sample ID	JC97156-1		JC97156-2	JC97156-3		JC97156-4	JC97156-5	JC99775-1	JC99775-2
		Date	10/21/2019		10/21/2019	10/21/2019		10/21/2019	10/21/2019	12/6/2019	12/6/2019
Chemical	Units	RDC	CONC	Q	CONC Q	CONC Q	ג	CONC Q	CONC Q	CONC Q	CONC Q
Pesticides											
4,4'-DDD	mg/kg	3	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
4,4'-DDE	mg/kg	2	0.0007	U	0.00068 U	0.0015		0.00063 U	0.00072 U	0.00068 U	0.00071 U
4,4'-DDT	mg/kg	2	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Aldrin	mg/kg	0.04	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Alpha-BHC	mg/kg	0.1	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Alpha-Chlordane	mg/kg	0.2	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Beta-BHC	mg/kg	0.4	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Chlordane	mg/kg	0.2	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Delta-BHC	mg/kg	NC	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Dieldrin	mg/kg	0.04	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Endosulfan I	mg/kg	470	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Endosulfan II	mg/kg	470	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Endosulfan Sulfate	mg/kg	470	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Endrin	mg/kg	23	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Endrin Aldehyde	mg/kg	NC	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Endrin Ketone	mg/kg	NC	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Gamma-BHC (Lindane)	mg/kg	0.4	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Heptachlor	mg/kg	0.1	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Heptachlor Epoxide	mg/kg	0.07	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
Methoxychlor	mg/kg	390	0.0014	U	0.0014 U	0.0014 U	J	0.0013 U	0.0014 U	0.0014 U	0.0014 U
Toxaphene	mg/kg	0.6	0.017	U	0.017 U	0.017 U	J	0.016 U	0.018 U	0.017 U	0.018 U
trans-Chlordane	mg/kg	NC	0.0007	U	0.00068 U	0.00068 U	J	0.00063 U	0.00072 U	0.00068 U	0.00071 U
PCBs											
Aroclor-1016	mg/kg	NC	0.034	U	0.034 U	0.034 U	J	0.031 U	0.036 U	0.034 U	0.035 U
Aroclor-1221	mg/kg	NC	0.034	U	0.034 U	0.034 U	J	0.031 U	0.036 U	0.034 U	0.035 U
Aroclor-1232	mg/kg	NC	0.034	U	0.034 U	0.034 U	J	0.031 U	0.036 U	0.034 U	0.035 U
Aroclor-1242	mg/kg	NC	0.034	U	0.034 U	0.034 U	J	0.0777	0.036 U	0.034 U	0.035 U
Aroclor-1248	mg/kg	NC	0.034	U	0.034 U	0.034 U	J	0.031 U	0.036 U	0.034 U	0.035 U
Aroclor-1254	mg/kg	NC	0.034	U	0.034 U	0.034 U	J	0.031 U	0.036 U	0.034 U	0.035 U
Aroclor-1260	mg/kg	NC	0.034	U	0.034 U	0.034 U	J	0.031 U	0.036 U	0.034 U	0.035 U
Aroclor-1262	mg/kg	NC	0.034	U	0.034 U	0.034 U	J	0.031 U	0.036 U	0.773	0.035 U
Aroclor-1268	mg/kg	NC	0.034	U	0.034 U	0.034 U	J	0.031 U	0.036 U	0.034 U	0.035 U
TOTAL PCBs	mg/kg	0.2	0.034	U	0.034 U	0.034 U	J	0.0777	0.036 U	0.773	0.035 U

Notes

RDC: NJDEP Residential Direct Contact Soil Remediation Standards [N.J.A.C. 7:26D; last amended 9/18/2017].

NC: No criterion established

Bold concentrations exceed the RDC

Depths reported in feet below ground surface

U: Not detected above method detection limit

TABLE 2E

Concrete Sample Results - EPH/Petroleum Hydrocarbons

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

		Location	073-WC-10	9	073-WC-11	10	073-WC-11	1	073-WC-11	2	073-WC-11	3	073-WC-11	4	073-WC-11	5
	Sa Lab Sa		073-WC-109-10	2119	073-WC-110-1	02119	073-WC-111-10	2119	073-WC-112-10	2119	073-WC-113-10	2119	073-WC-114-12	0619	073-WC-115-12	0619
	L	ab Sample ID. Date	JC97156-1 10/21/201		JC97156-2 10/21/201		JC97156-3 10/21/2019		JC97156-4 10/21/2019		JC97156-5 10/21/201		JC99775-1 12/6/2019		JC99775-2 12/6/2019	
Chemical	Units	RDC	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC	Q
C28-C40 Petroleum Hydrocarbons	mg/kg	NC	19		6.9	U	6.9	U	6.8	U	6.9	U	40.6		26.1	
EPH (C9-C28)	mg/kg	NC	6.8	U	6.9	U	6.9	U	6.8	U	6.9	U	33.4		14.2	
Total EPH (C9-C40)	mg/kg	NC	19		6.9	U	6.9	U	6.8	U	6.9	U	74.1		40.4	

Notes:

RDC: NJDEP Residential Direct Contact Soil Remediation Standards [N.J.A.C. 7:26D; last amended 9/18/2017].

NC: No criterion established

Depths reported in feet below ground surface

U: Not detected above method detection limit

TABLE 2F

Concrete Sample Results - General Chemistry

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

		Location	073-WC-109)	073-WC-110	073-WC-111	073-WC-112	073-WC-113	073-WC-114	073-WC-115
		Sample ID	073-WC-109-102	2119	073-WC-110-102119	073-WC-111-102119	073-WC-112-102119	073-WC-113-102119	073-WC-114-120619	073-WC-115-120619
	Sa Lab Sa Chemical Units		JC97156-1		JC97156-2	JC97156-3	JC97156-4	JC97156-5	JC99775-1	JC99775-2
	Lab Chemical Units		10/21/2019		10/21/2019	10/21/2019	10/21/2019	10/21/2019	12/6/2019	12/6/2019
Chemical	Units	RDC	CONC	Q	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Hexavalent Chromium	mg/kg	20	4.9		5.1	7.2	2.1	4.7	0.53	0.48

Notes:

RDC: NJDEP Residential Direct Contact Soil Remediation Standards [N.J.A.C. 7:26D; last amended 9/18/2017].

NC: No criterion established

Depths reported in feet below ground surface

TABLE 2G

Concrete Sample Results - TCLP

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

		Location	073-WC-109	9	073-WC-110		073-WC-11	1	073-WC-11	2	073-WC-113		073-WC-11	4	073-WC-11	15
		Sample ID	073-WC-109-10	2119	073-WC-110-1021	19	073-WC-111-10	2119	073-WC-112-10	02119	073-WC-113-10211	9	073-WC-114-12	0619	073-WC-115-1	20619
		Lab Sample ID	JC97156-1A	4	JC97156-2A		JC97156-3A	4	JC97156-4	Α	JC97156-5A		JC99775-1A	4	JC99775-2	Α
		Date	10/21/2019)	10/21/2019		10/21/2019	9	10/21/201	9	10/21/2019		12/6/2019		12/6/2019	9
		RCRA Toxicity Characteristics														
Chemical	Units	(40 CFR261.24)	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC	Q
Arsenic	mg/L	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Barium	mg/L	100	1	U	1	C	1	U	1	U	1	U	1	U	1	U
Cadmium	mg/L	1	0.02	U	0.02	С	0.02	U	0.02	С	0.02	U	0.02	U	0.02	U
Chromium	mg/L	5	0.05	U	0.073		0.18		0.05	U	0.11		0.05	U	0.05	U
Lead	mg/L	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Mercury	mg/L	0.2	0.0002	U	0.0002	U	0.0002	U	0.0002	U	0.0002	U	0.0002	U	0.0002	U
Selenium	mg/L	1	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Silver	mg/L	5	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U

Depths reported in feet below ground surface

CONC: Concentration reported in milligrams per liter (mg/L)

Q: Data qualifier assigned by laboratory or data validator
U: Not detected above method detection limit

TABLE 3A Soil Waste Class Analysis - VOCs

Study Area 6 South
Honeywell International Inc.
Jersey City, New Jersey

			Location ID	073-WC-0	10	073-WC-09	1	073-WC-09	-	073-WC-10	073-WC-10	073-WC-11	073-WC-11	073-WC-11	073-WC-13	073-WC-13	073-WC-14	073-WC-15
		C	lient Sample ID	073-WC-0		073-WC-09		073-WC-09-101		073-WC-10 073-WC-10-0610	073-WC-10 073-WC-10-1418	073-WC-11	073-WC-11	073-WC-11 073-WC-11-0910	073-WC-13 073-WC-13-0102	073-WC-13	073-WC-14 073-WC-14-0103	073-WC-13
			Lab Sample ID	JC97631-:		JC97631-2	Ί,	JC97631-3)14	JC97631-4	JC97631-5	JC99893-1	JC99893-2	JC99893-3	JC99893-4	JC99893-5	JC99893-6	JC99893-7
			Date Sampled	10/28/201		10/28/2019		10/28/2019	.	10/28/2019	10/28/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019
Method	Parameter	Units	RDC	CONC	Q	CONC Q	+	CONC	Q	CONC Q	CONC Q	CONC Q		CONC Q	CONC Q		CONC Q	CONC Q
					ν ::		\		<u> </u>		,		•	`	,	•	`	· '
SW8260	1,1,1-Trichloroethane	mg/kg	160000	0.002	- 11	0.0026 U		0.0027	- 11	0.0025 U	0.0028 U 0.0028 U	0.0025 U	0.0027 U	0.0023 U	0.0024 U	0.002 U	0.0028 U	0.0025 U
SW8260 SW8260	1,1,2,2-Tetrachloroethane	mg/kg	1 NC	0.002	11	0.0026 U 0.0066 U		0.0027 0.0067	- 11	0.0025 U 0.0062 U		0.0025	0.0027 U 0.0068 U	0.0023 U 0.0057 U	0.0024 U 0.0059 U	0.002 U 0.0051 U	0.0028 U 0.007 U	0.0025 U 0.0063 U
		mg/kg	NC 2	0.0049	- 11	0.0026 U		0.0067	- 11	0.0062 U		0.0063 U 0.0025 U	0.0068 U	0.0057 U 0.0023 U	0.0039 U	0.0031 U	0.007 U	0.0063 U
SW8260 SW8260	1,1,2-Trichloroethane 1,1-Dichloroethane	mg/kg	8	0.002	- 11	0.0026 U		0.0027	- 11	0.0023 U	0.0028 U 0.0014 U	0.0023 U	0.0027 U	0.0023 U	0.0024 U	0.002 U	0.0028 U	0.0023 U
SW8260	1.1-Dichloroethene	mg/kg	11	0.00099	- 11	0.0013 U		0.0013	- 11	0.0012 U	0.0014 U	0.0013 U	0.0014 U	0.0011 U	0.0012 U	0.001 U	0.0014 U	0.0013 U
SW8260	1,2,3-Trichlorobenzene	mg/kg	NC	0.00099	- 11	0.0013 U	_	0.0013	- 11	0.0012 U	0.0014 U	0.0013 U	0.0014 U	0.0011 U	0.0012 U	0.001 U	0.0014 U	0.0013 U
SW8260	1,2,4-Trichlorobenzene	mg/kg	73	0.0049	- 11	0.0066 U		0.0067	11	0.0062 U	0.0071 U	0.0063 U	0.0068 U	0.0057 U	0.0039 U	0.0051 U	0.007 U	0.0063 U
SW8260	, ,	mg/kg	0.08	0.0049	- 11	0.0026 U		0.0007	- 11	0.0002 U	0.0071 U	0.0065 U	0.0008 U	0.0037 U	0.0039 U	0.0031 U	0.007 U	0.0003 U
SW8260	1,2-Dibromoethane	mg/kg	0.08	0.002	- 11	0.0026 U		0.0027	11	0.0023 U	0.0028 U	0.0023 U	0.0027 U	0.0023 U	0.0024 U	0.002 U	0.0028 U	0.0023 U
SW8260	1,2-Dichlorobenzene	mg/kg mg/kg	5300	0.00099	- 11	0.0013 U		0.0013	- 11	0.0012 U	0.0014 U	0.0013 U	0.0014 U	0.0011 U	0.0012 U	0.001 U	0.0014 U	0.0013 U
SW8260	1,2-Dichloroethane	mg/kg	0.9	0.00099	- 11	0.0013 U	_	0.0013	- 11	0.0012 U	0.0014 U	0.0013 U	0.0014 U	0.0011 U	0.0012 U	0.001 U	0.0014 U	0.0013 U
SW8260	1,2-Dichloropropane	mg/kg	2	0.00033	- 11	0.0013 U		0.0013	11	0.0012 U	0.0014 U	0.0013 U	0.0014 U	0.0011 U	0.0012 U	0.001 U	0.0014 U	0.0013 U
SW8260	1,3-Dichlorobenzene		5300	0.002	- 11	0.0026 U		0.0027	- 11	0.0023 U	0.0028 U	0.0023 U	0.0027 U	0.0023 U	0.0024 U	0.002 U	0.0028 U	0.0023 U
SW8260	1.4-Dichlorobenzene	mg/kg	5	0.00099	- 11	0.0013 U	_	0.0013	- 11	0.0012 U	0.0014 U	0.0013 U	0.0014 U	0.0011 U	0.0012 U	0.001 U	0.0014 U	0.0013 U
SW8260		mg/kg	3100	0.00099	- 11	0.0013 U		0.0013	- 11	0.0012 U	0.0014 U	0.0013 U	0.0014 U	0.0011 U	0.0012 U	0.001 U	0.0014 U	0.0013 U
SW8260	2-Butanone	mg/kg	NC	0.0033	- 11	0.0066 U	_	0.013	- 11	0.0062 U	0.0071 U	0.0063 U	0.014 U	0.0057 U	0.012 U	0.001 U	0.014 U	0.0063 U
SW8260	2-Hexanone 4-Methyl-2-Pentanone	mg/kg	NC NC	0.0049	- 11	0.0066 U	_	0.0067	- 11	0.0062 U	0.0071 U	0.0063 U	0.0068 U	0.0057 U	0.0059 U	0.0031 U	0.007 U	0.0063 U
SW8260	Acetone	mg/kg	70000	0.0049	- 11	0.0000 J	+	0.0007	-	0.0316	0.0071 U	0.0003 U	0.0181	0.0037	0.0039 U	0.0031 U	0.007 U	0.0303
SW8260	Benzene	mg/kg mg/kg	2	0.0099	- 11	0.00066 U	+	0.0098	J	0.00062 U	0.0023 J	0.00063 U	0.0068 U	0.0057 U	0.002 U	0.00051 U	0.0007 U	0.00063 U
SW8260	Bromochloromethane	mg/kg	NC NC	0.00049	11	0.0066 U	1	0.0067	II	0.0062 U	0.0071 U	0.0063 U	0.0068 U	0.0057 U	0.0059 U	0.0051 U	0.0007 U	0.0063 U
SW8260	Bromodichloromethane	mg/kg	1	0.0049	- 11	0.0026 U		0.0007	11	0.0002 U	0.0071 U	0.0065 U	0.0008 U	0.0037 U	0.0039 U	0.0031 U	0.007 U	0.0003 U
SW8260	Bromoform	mg/kg	81	0.002	- 11	0.0020 U	+	0.0027	11	0.0023 U	0.0028 U	0.0023 U	0.0027 U	0.0023 U	0.0059 U	0.002 U	0.0028 U	0.0023 U
SW8260	Bromomethane	mg/kg	25	0.0049	- 11	0.0066 U	_	0.0067	11	0.0062 U	0.0071 U	0.0063 U	0.0068 U	0.0057 U	0.0059 U	0.0051 U	0.007 U	0.0063 U
SW8260	Carbon Disulfide	mg/kg	7800	0.0043	П	0.0043	╁	0.0007	ij	0.0025 U	0.0071 U	0.0005 U	0.0008 U	0.0037 J	0.0033 U	0.0031 J	0.007 U	0.0003 U
SW8260	Carbon Tetrachloride	mg/kg	2	0.002	- 11	0.0026 U	╁	0.0012	-	0.0025 U	0.0028 U	0.0025 U	0.0027 U	0.0013 U	0.0024 U	0.001 J	0.0028 U	0.0025 U
SW8260		mg/kg	510	0.002	П	0.0026 U	_	0.0027	П	0.0025 U	0.0028 U	0.0025 U	0.0027 U	0.0023 U	0.0024 U	0.002 U	0.0028 U	0.0025 U
SW8260	Chloroethane	mg/kg	220	0.0049	IJ	0.0066 U	1	0.0027	U	0.0062 U	0.0071 U	0.0063 U	0.0068 U	0.0057 U	0.0059 U	0.0051 U	0.0020 U	0.0023 U
SW8260		mg/kg	0.6	0.002	U	0.0026 U	<u> </u>	0.0027	IJ	0.0025 U	0.0028 U	0.0025 U	0.0027 U	0.0023 U	0.0024 U	0.002 U	0.0028 U	0.0025 U
SW8260	Chloromethane	mg/kg	4	0.0049	U	0.0066 U	<u> </u>	0.0067	U	0.0062 U	0.0071 U	0.0063 U	0.0068 U	0.0057 U	0.0059 U	0.0051 U	0.007 U	0.0063 U
SW8260	cis-1,2-Dichloroethene	mg/kg	230	0.00099	U	0.0013 U	,	0.0013	U	0.0012 U	0.0014 U	0.0013 U	0.0014 U	0.0011 U	0.0012 U	0.001 U	0.0014 U	0.0013 U
SW8260	cis-1,3-Dichloropropene	mg/kg	2	0.002	U	0.0026 U	,	0.0027	U	0.0025 U	0.0028 U	0.0025 U	0.0027 U	0.0023 U	0.0024 U	0.002 U	0.0028 U	0.0025 U
SW8260	Cyclohexane	mg/kg	NC	0.002	U	0.0026 U	, ,	0.0027	U	0.0025 U	0.0028 U	0.0025 U	0.0027 U	0.0023 U	0.0024 U	0.002 U	0.0028 U	0.0025 U
	•	mg/kg	3	0.002	U	0.0026 U	,	0.0027	U	0.0025 U	0.0028 U		0.0027 U	0.0023 U	0.0024 U	0.002 U	0.0028 U	0.0025 U
		mg/kg	490	0.0049	U	0.0066 U	,	0.0067	U	0.0062 U	0.0071 U	0.0063 U	0.0068 U	0.0057 U	0.0059 U	0.0051 U	0.007 U	0.0063 U
		mg/kg	7800	0.00099	U	0.0013 U	,	0.0013	U	0.0012 U	0.0014 U	0.0013 U	0.0014 U	0.0011 U	0.0012 U	0.001 U	0.0014 U	0.0013 U
		mg/kg	NC	0.002	U	0.0026 U	,	0.0027	U	0.0025 U	0.0028 U	0.0025 U	0.0027 U	0.0023 U	0.0024 U	0.002 U	0.0028 U	0.0025 U
	m&p-Xylenes	mg/kg	NC	0.00099	U	0.0037		0.0022		0.0012 U	0.0014 U	0.0013 U	0.0014 U	0.0011 U	0.0012 U	0.001 U	0.0014 U	0.0012 J
		mg/kg	78000	0.0049	U	0.0066 U	J	0.0067	U	0.0062 U	0.0071 U	0.0063 U	0.0068 U	0.0057 U	0.0059 U	0.0051 U	0.007 U	0.0063 U
SW8260		mg/kg	110	0.00099	U	0.0013 U	J	0.0013	U	0.0012 U	0.0014 U	0.0013 U	0.0014 U	0.0011 U	0.0012 U	0.001 U	0.0014 U	0.0013 U
	Methylcyclohexane	mg/kg	NC	0.002	U	0.0026 U	J	0.0027	U	0.0025 U	0.0028 U	0.0025 U	0.0027 U	0.0023 U	0.0024 U	0.002 U	0.0028 U	0.0025 U
		mg/kg	46	0.0025	J	0.0022 J		0.0026	J	0.0019 J	0.0032 J	0.0063 U	0.0068 U	0.0057 U	0.0059 U	0.0051 U	0.007 U	0.0063 U
SW8260		mg/kg	NC	0.00099	U	0.0029		0.0019		0.0012 U	0.0014 U	0.0013 U	0.0014 U	0.0011 U	0.0012 U	0.001 U	0.0014 U	0.0013 U
		mg/kg	90	0.002	U	0.0026 U	J	0.0027	U	0.0025 U	0.0028 U	0.0025 U	0.0027 U	0.0023 U	0.0024 U	0.002 U	0.0028 U	0.0025 U
SW8260		mg/kg	43	0.002	U	0.0026 U	J	0.0027	U	0.0025 U	0.0028 U	0.0025 U	0.0027 U	0.0023 U	0.0024 U	0.002 U	0.0028 U	0.0025 U
SW8260		mg/kg	6300	0.00099	U	0.0013 U	J	0.0013	U	0.0012 U	0.0014 U	0.0013 U	0.0014 U	0.0011 U	0.0012 U	0.001 U	0.0014 U	0.0013 U
SW8260		mg/kg	12000	0.00099	U	0.0066		0.0041		0.0012 U	0.0014 U	0.0013 U	0.0014 U	0.0011 U	0.0012 U	0.001 U	0.0014 U	0.0012 J
SW8260		mg/kg	300	0.00099	U	0.0013 U	J	0.0013	U	0.0012 U	0.0014 U	0.0013 U	0.0014 U	0.0011 U	0.0012 U	0.001 U	0.0014 U	0.0013 U

Prepared by: DP 3/6/2020 Reviewed by: BA 3/6/2020

TABLE 3A Soil Waste Class Analysis - VOCs

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

			Location ID	073-WC-0	09	073-WC-0	9	073-WC-0	9	073-WC-1	0	073-WC-1	0	073-WC-11		073-WC-11		073-WC-11		073-WC-13	073-WC-13	073-	WC-14	073	3-WC-15	٦
		Cl	ient Sample ID	073-WC-09-	0103	073-WC-09-0	510	073-WC-09-2	1014	073-WC-10-0	610	073-WC-10-1	418	073-WC-11-020	03	073-WC-11-0708	3 0	073-WC-11-0910		073-WC-13-0102	073-WC-13-0611	073-W0	-14-0103	073-W	/C-15-0002	
			Lab Sample ID	JC97631-	·1	JC97631-2	2	JC97631-	3	JC97631-	4	JC97631-5	5	JC99893-1		JC99893-2		JC99893-3		JC99893-4	JC99893-5	JC99	893-6	JC9	9893-7	
			Date Sampled	10/28/20:	19	10/28/201	9	10/28/201	19	10/28/201	.9	10/28/201	.9	12/9/2019		12/9/2019		12/9/2019		12/9/2019	12/9/2019	12/9	/2019	12/	/9/2019	
Method	Parameter	Units	RDC	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC C	2	CONC C	Q	CONC Q	CONC Q	CON	C Q	СО	NC C	Į
SW8260 trans-1,	1,3-Dichloropropene	mg/kg	2	0.002	U	0.0026	U	0.0027	U	0.0025	U	0.0028	U	0.0025	U	0.0027 L	J	0.0023 L	J	0.0024 U	0.002 U	0.00	28 U	0.0	025 U	,
SW8260 Trichlor	roethene	mg/kg	3	0.00099	U	0.0013	U	0.0013	U	0.0012	U	0.0014	U	0.0013	U	0.0014 U	J	0.0011 U	J	0.0012 U	0.001 U	0.00	L4 U	0.0	013 U	,
SW8260 Trichlor	rofluoromethane	mg/kg	23000	0.0049	U	0.0066	U	0.0067	U	0.0062	U	0.0071	U	0.0063	U	0.0068 L	J	0.0057 L	J	0.0059 U	0.0051 U	0.00	7 U	0.0	063 U	,
SW8260 Vinyl Ch	Chloride	mg/kg	0.7	0.002	U	0.0026	U	0.0027	U	0.0025	U	0.0028	U	0.0025	U	0.0027 L	J	0.0023 L	J	0.0024 U	0.002 U	0.00	28 U	0.0	025 U	į
SW8260 Total TI	TCs, Volatile	mg/kg	NC	0	NJ	0	NJ	0.017	NJ	0	NJ	0.0099	NJ	0	NJ	0 N	11	0 N	IJ	0 NJ	0 NJ	0	NJ	(N	J

Page 2 of 2

Notes:

RDC: NJDEP Residential Direct Contact Soil Remediation Standards

[N.J.A.C. 7:26D; last amended 9/18/2017].

NC: No criterion established

Bold and underlined concentrations exceed the RDC

Italicized values not detected; reporting limit exceeds criteria
CONC: Concentration reported in milligrams per kilogram (mg/kg)
J: Estimated concentration

- Q: Data qualifier assigned by laboratory or data validator
 N: Indicates presumptive evidence of a compound
- U: Not detected above method detection limit

Results with a value of "0" indicates no TICs were detected

VOCs: Volatile Organic Compounds

Prepared by: DP 3/6/2020 Reviewed by: BA 3/6/2020

TABLE 3B

Soil Waste Class Analysis - SVOCs
Study Area 6 South
Honeywell International Inc.
Jersey City, New Jersey

		Location ID	073-WC-09	073-WC-09	073-WC-09	073-WC-10	073-WC-10	073-WC-11	073-WC-11	073-WC-11	073-WC-13	073-WC-13	073-WC-14	073-WC-15
	CI	ient Sample ID	073-WC-09-0103	073-WC-09-0510	073-WC-09-1014	073-WC-10-0610	073-WC-10-1418	073-WC-11-0203	073-WC-11-0708	073-WC-11-0910	073-WC-13-0102	073-WC-13-0611	073-WC-14-0103	073-WC-15-0002
		Lab Sample ID	JC97631-1	JC97631-2	JC97631-3	JC97631-4	JC97631-5	JC99893-1	JC99893-2	JC99893-3	JC99893-4	JC99893-5	JC99893-6	JC99893-7
		Date Sampled	10/28/2019	10/28/2019	10/28/2019	10/28/2019	10/28/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019
Method Parameter	Units	RDC	CONC Q	CONC Q		CONC Q	CONC Q		CONC Q	CONC Q	CONC Q	CONC Q		CONC Q
SW8270 1,1'-Biphenyl	mg/kg	61	0.073 U	0.082 U	0.096 U	0.0232 J	0.08 U	0.0062 J	0.0131 J	0.081 U	0.087 U	0.081 U	0.0547 J	0.0156 J
SW8270 1,2,4,5-Tetrachlorobenzene	mg/kg	NC	0.18 U	0.21 U	0.24 U	0.23 U	0.2 U	0.18 U	0.23 U	0.2 U	0.22 U	0.2 U	0.2 U	0.19 U
SW8270 1,4-Dioxane	mg/kg	NC	0.037 U	0.041 U	0.048 U	0.046 U	0.04 U	0.036 U	0.045 U	0.041 U	0.043 U	0.041 U	0.04 U	0.038 U
SW8270 2,2'-Oxybis(1-Chloropropane)	mg/kg	23	0.073 U	0.082 U	0.096 U	0.091 U	0.08 U	0.073 U	0.091 U	0.081 U	0.087 U	0.081 U	0.08 U	0.076 U
SW8270 2,3,4,6-Tetrachlorophenol	mg/kg	NC	0.18 U	0.21 U	0.24 U	0.23 U	0.2 U	0.18 U	0.23 U	0.2 U	0.22 U	0.2 U	0.2 U	0.19 U
SW8270 2,4,5-Trichlorophenol	mg/kg	6100	0.18 U	0.21 U	0.24 U	0.23 U	0.2 U	0.18 U	0.23 U	0.2 U	0.22 U	0.2 U	0.2 U	0.19 U
SW8270 2,4,6-Trichlorophenol	mg/kg	19	0.18 U	<u>0.21</u> <u>U</u>	<u>0.24</u> <u>U</u>	<u>0.23</u> <u>U</u>	0.2 U	0.18 U	<u>0.23</u> <u>U</u>	0.2 U	0.22 U	0.2 U	0.2 U	0.19 U
SW8270 2,4-Dichlorophenol	mg/kg	180	0.18 U	0.21 U	0.24 U	0.23 U	0.2 U	0.18 U	0.23 U	0.2 U	0.22 U	0.2 U	0.2 U	0.19 U
SW8270 2,4-Dimethylphenol	mg/kg	1200	0.18 U	0.21 U	0.24 U	0.23 U	0.2 U	0.18 U	0.23 U	0.2 U	0.22 U	0.2 U	0.2 U	0.19 U
SW8270 2,4-Dinitrophenol	mg/kg	120	0.18 U	0.21 U	0.24 U	0.23 U	0.2 U	0.18 U	0.23 U	0.2 U	0.22 U	0.2 U	0.2 U	0.19 U
SW8270 2,4-Dinitrotoluene	mg/kg	0.7	0.037 U	0.041 U	0.048 U	0.046 U	0.04 U	0.036 U	0.045 U	0.041 U	0.043 U	0.041 U	0.04 U	0.038 U
SW8270 2,6-Dinitrotoluene	mg/kg	0.7	0.037 U	0.041 U	0.048 U	0.046 U	0.04 U	0.036 U	0.045 U	0.041 U	0.043 U	0.041 U	0.04 U	0.038 U
SW8270 2-Chloronaphthalene	mg/kg	NC	0.073 U	0.082 U	0.096 U	0.091 U	0.08 U	0.073 U	0.091 U	0.081 U	0.087 U	0.081 U	0.08 U	0.076 U
SW8270 2-Chlorophenol	mg/kg	310	0.073 U	0.082 U	0.096 U	0.091 U	0.08 U	0.073 U	0.091 U	0.081 U	0.087 U	0.081 U	0.08 U	0.076 U
SW8270 2-Methylnaphthalene	mg/kg	230	0.037 U	0.013 J	0.048 U	0.0867	0.04 U	0.0164 J	0.0583	0.041 U	0.043 U	0.041 U	0.242	0.059
SW8270 2-Methylphenol	mg/kg	310	0.073 U	0.082 U	0.096 U	0.091 U	0.08 U	0.073 U	0.091 U	0.081 U	0.087 U	0.081 U	0.08 U	0.076 U
SW8270 2-Nitroaniline	mg/kg	39	0.18 U	0.21 U	0.24 U	0.23 U	0.2 U	0.18 U	0.23 U	0.2 U	0.22 U	0.2 U	0.2 U	0.19 U
SW8270 2-Nitrophenol	mg/kg	NC	0.18 U	0.21 U	0.24 U	0.23 U	0.2 U	0.18 U	0.23 U	0.2 U	0.22 U	0.2 U	0.2 U	0.19 U
SW8270 3,3'-Dichlorobenzidine	mg/kg	1	0.073 U	0.082 U	0.096 U	0.091 U	0.08 U	0.073 U	0.091 U	0.081 U	0.087 U	0.081 U	0.08 U	0.076 U
SW8270 3-Nitroaniline	mg/kg	NC	0.18 U	0.21 U	0.24 U	0.23 U	0.2 U	0.18 U	0.23 U	0.2 U	0.22 U	0.2 U	0.2 U	0.19 U
SW8270 4,6-Dinitro-2-Methylphenol	mg/kg	6	0.18 U	0.21 U	0.24 U	0.23 U	0.2 U	0.18 U	0.23 U	0.2 U	0.22 U	0.2 U	0.2 U	0.19 U
SW8270 4-Bromophenyl Phenyl Ether	mg/kg	NC	0.073 U	0.082 U	0.096 U	0.091 U	0.08 U	0.073 U	0.091 U	0.081 U	0.087 U	0.081 U	0.08 U	0.076 U
SW8270 4-Chloro-3-Methylphenol	mg/kg	NC	0.18 U	0.21 U	0.24 U	0.23 U	0.2 U	0.18 U	0.23 U	0.2 U	0.22 U	0.2 U	0.2 U	0.19 U
SW8270 4-Chloroaniline	mg/kg	NC	0.18 U	0.21 U	0.24 U	0.23 U	0.2 U	0.18 U	0.23 U	0.2 U	0.22 U	0.2 U	0.2 U	0.19 U
SW8270 4-Chlorophenyl Phenyl Ether	mg/kg	NC	0.073 U	0.082 U	0.096 U	0.091 U	0.08 U	0.073 U	0.091 U	0.081 U	0.087 U	0.081 U	0.08 U	0.076 U
SW8270 4-Nitroaniline	mg/kg	NC	0.18 U	0.21 U	0.24 U	0.23 U	0.2 U	0.18 U	0.23 U	0.2 U	0.22 U	0.2 U	0.2 U	0.19 U
SW8270 4-Nitrophenol	mg/kg	NC	0.37 U	0.41 U	0.48 U	0.46 U	0.4 U	0.36 U	0.45 U	0.41 U	0.43 U	0.41 U	0.4 U	0.38 U
SW8270 Acenaphthene	mg/kg	3400	0.037 U	0.041 U	0.048 U	0.0863	0.04 U	0.036 U	0.045 U	0.041 U	0.043 U	0.041 U	0.0969	0.091
SW8270 Acenaphthylene	mg/kg	NC	0.037 U	0.041 U	0.048 U	0.0439 J	0.04 U	0.036 U	0.031 J	0.041 U	0.043 U	0.041 U	0.182	0.0726
SW8270 Acetophenone	mg/kg	2	0.18 U	0.21 U	0.24 U	0.23 U	0.2 U	0.18 U	0.23 U	0.2 U	0.22 U	0.2 U	0.2 U	0.19 U
SW8270 Anthracene	mg/kg	17000	0.037 U	0.041 U	0.048 U	0.278	0.04 U	0.036 U	0.0448 J	0.041 U	0.043 U	0.041 U	1.32	0.233
SW8270 Atrazine	mg/kg	210	0.073 U	0.082 U	0.096 U	0.091 U	0.08 U	0.073 U	0.091 U	0.081 U	0.087 U	0.081 U	0.08 U	0.076 U
SW8270 Benzaldehyde	mg/kg	6100	0.18 U	0.21 U	0.24 U	0.23 U	0.2 U	0.18 U	0.23 U	0.2 U	0.22 U	0.2 U	0.2 U	0.19 U
SW8270 Benzo(A)Anthracene	mg/kg	5	0.0123 J	0.019 J	0.048 U	0.7	0.0133 J	0.051	0.0984	0.0321 J	0.0367 J	0.0204 J	1.1	0.623
SW8270 Benzo(A)Pyrene	mg/kg	0.5	0.037 U	0.0203 J	0.048 U	<u>0.595</u>	0.04 U	0.0572	0.106	0.0229 J	0.0327 J	0.041 U	<u>1.4</u>	<u>0.621</u>
SW8270 Benzo(B)Fluoranthene	mg/kg	5	0.037 U	0.0248 J	0.048 U	0.71	0.04 U	0.0695	0.163	0.0239 J	0.051	0.041 U	2.42	0.845
SW8270 Benzo(G,H,I)perylene	mg/kg	380000	0.037 U	0.041 U	0.048 U	0.371	0.04 U	0.0557	0.096	0.041 U	0.0327 J	0.041 U	0.901	0.432
SW8270 Benzo(K)Fluoranthene	mg/kg	45	0.037 U	0.041 U	0.048 U	0.299	0.04 U	0.0331 J	0.0567	0.041 U	0.0233 J	0.041 U	0.608	0.286
SW8270 bis-(2-Chloroethoxy)Methane	mg/kg	NC	0.073 U	0.082 U	0.096 U	0.091 U	0.08 U	0.073 U	0.091 U	0.081 U	0.087 U	0.081 U	0.08 U	0.076 U
SW8270 bis-(2-Chloroethyl)Ether	mg/kg	0.4	0.073 U	0.082 U	0.096 U	0.091 U	0.08 U			0.081 U	0.087 U	0.081 U	0.08 U	0.076 U
SW8270 bis-(2-Ethylhexyl)Phthalate	mg/kg	35	0.073 U	0.082 U	0.096 U	0.24	0.08 U		0.091 U	0.081 U	0.087 U	0.081 U	0.08 U	0.218
SW8270 Butylbenzyl Phthalate	mg/kg	1200	0.073 U	0.082 U	0.096 U	0.091 U	0.08 U		0.091 U	0.081 U	0.087 U	0.081 U	0.08 U	0.076 U
SW8270 Caprolactam	mg/kg	31000	0.073 U	0.082 U	0.096 U	0.091 U	0.08 U	0.073 U	0.091 U	0.081 U	0.087 U	0.081 U	0.08 U	0.076 U
SW8270 Carbazole	mg/kg	24	0.073 U	0.082 U	0.096 U	0.141	0.08 U	0.0091 J	0.0147 J	0.081 U	0.087 U	0.081 U	0.159	0.0996
SW8270 Chrysene	mg/kg	450	0.037 U	0.0237 J	0.048 U	0.815	0.04 U	0.0634	0.123	0.026 J	0.0327 J	0.041 U	1.78	0.728
SW8270 Dibenzo(a,h)Anthracene	mg/kg	0.5	0.037 U	0.041 U	0.048 U	0.109	0.04 U	0.036 U	0.0338 J	0.041 U	0.043 U	0.041 U	0.273	0.136
SW8270 Dibenzofuran	mg/kg	NC	0.073 U	0.082 U	0.096 U	0.0957	0.08 U		0.0249 J	0.081 U	0.087 U	0.081 U	0.159	0.043 J
SW8270 Diethyl Phthalate	mg/kg	49000	0.073 U	0.082 U	0.096 U	0.091 U	0.08 U	0.073 U	0.091 U	0.081 U	0.087 U	0.081 U	0.08 U	0.076 U

TABLE 3B Soil Waste Class Analysis - SVOCs

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

			Location ID	073-WC-09	073-WC-09	073-WC-09	073-WC-10	073-WC-1	0	073-WC-11		073-WC-11	073-WC-11		073-WC-13	073-WC-13	073-WC-14	\top	073-WC-15
		Cli	ent Sample ID	073-WC-09-0103	073-WC-09-0510	073-WC-09-1014	073-WC-10-061	073-WC-10-	1418	073-WC-11-020	03	073-WC-11-0708	073-WC-11-09	910	073-WC-13-0102	073-WC-13-0611	073-WC-14-010	.03	073-WC-15-0002
			Lab Sample ID	JC97631-1	JC97631-2	JC97631-3	JC97631-4	JC97631-	5	JC99893-1		JC99893-2	JC99893-3		JC99893-4	JC99893-5	JC99893-6		JC99893-7
			Date Sampled	10/28/2019	10/28/2019	10/28/2019	10/28/2019	10/28/202	19	12/9/2019		12/9/2019	12/9/2019		12/9/2019	12/9/2019	12/9/2019		12/9/2019
Method	Parameter	Units	RDC	CONC Q	CONC Q	CONC C	CONC	Q CONC	Q	CONC	Q	CONC Q	CONC	Q	CONC Q	CONC Q	CONC	Q	CONC Q
SW8270	Dimethyl Phthalate	mg/kg	NC	0.073 U	0.082 U	0.096 U	0.091	J 0.08	U	0.073	U	0.091 U	0.081	U	0.087 U	0.081 U	0.08	U	0.076 U
SW8270	Di-n-Butyl Phthalate	mg/kg	6100	0.073 U	0.082 U	0.096 L	0.091	U 0.08	U	0.073	U	0.091 U	0.007	J	0.087 U	0.0092 J	0.08	U	0.076 U
SW8270	Di-n-Octyl Phthalate	mg/kg	2400	0.073 U	0.082 U	0.096 L	0.091	U 0.08	U	0.073	U	0.091 U	0.081	U	0.087 U	0.081 U	0.08	U	0.076 U
SW8270	Fluoranthene	mg/kg	2300	0.037 U	0.0324 J	0.048 L	1.07	0.04	U	0.0813		0.156	0.0319	J	0.0398 J	0.0181 J	1.85		1.03
SW8270	Fluorene	mg/kg	2300	0.037 U	0.041 U	0.048 L	0.0756	0.04	U	0.036	U	0.045 U	0.041	U	0.043 U	0.041 U	0.116		0.104
SW8270	Hexachlorobenzene	mg/kg	0.3	0.073 U	0.082 U	0.096 L	0.091	U 0.08	U	0.073	U	0.091 U	0.081	U	0.087 U	0.081 U	0.08	U	0.076 U
SW8270	Hexachlorobutadiene	mg/kg	6	0.037 U	0.041 U	0.048 L	0.046	J 0.04	U	0.036	U	0.045 U	0.041	U	0.043 U	0.041 U	0.04	U	0.038 U
SW8270	Hexachlorocyclopentadiene	mg/kg	45	0.37 U	0.41 U	0.48 L	0.46	J 0.4	U	0.36	U	0.45 U	0.41	U	0.43 U	0.41 U	0.4	U	0.38 U
SW8270	Hexachloroethane	mg/kg	12	0.18 U	<u>0.21</u> <u>U</u>	<u>0.24</u> <u>L</u>	<u>0.23</u>	<u>J</u> 0.2	U	0.18	U	<u>0.23</u> <u>U</u>	0.2	U	<u>0.22</u> <u>U</u>	0.2 U	0.2	U	0.19 U
SW8270	Indeno(1,2,3-Cd)Pyrene	mg/kg	5	0.037 U	0.041 U	0.048 L	0.402	0.04	U	0.0548		0.0968	0.041	U	0.0285 J	0.041 U	0.979		0.46
SW8270	Isophorone	mg/kg	510	0.073 U	0.082 U	0.096 L	0.091	U 0.08	U	0.073	U	0.091 U	0.081	U	0.087 U	0.081 U	0.08	U	0.076 U
SW8270	m,p-Cresol	mg/kg	NC	0.073 U	0.082 U	0.096 L	0.091	J 0.08	U	0.073	U	0.091 U	0.081	U	0.087 U	0.081 U	0.08	U	0.076 U
SW8270	Naphthalene	mg/kg	6	0.037 U	0.0218 J	0.048 L	0.147	0.04	U	0.0288	J	0.084	0.041	U	0.043 U	0.041 U	0.47		0.0618
SW8270	Nitrobenzene	mg/kg	5	0.073 U	0.082 U	0.096 L	0.091	J 0.08	U	0.073	U	0.091 U	0.081	U	0.087 U	0.081 U	0.08	U	0.076 U
SW8270	n-Nitroso-di-n-Propylamine	mg/kg	0.2	0.073 U	0.082 U	0.096 L	0.091	J 0.08	U	0.073	U	0.091 U	0.081	U	0.087 U	0.081 U	0.08	U	0.076 U
SW8270	n-Nitrosodiphenylamine	mg/kg	99	0.18 U	0.21 U	0.24 L	0.23	U 0.2	U	0.18	U	0.23 U	0.2	U	0.22 U	0.2 U	0.2	U	0.19 U
SW8270	Pentachlorophenol	mg/kg	0.9	0.15 U	0.16 U	0.19 U	0.18	U 0.16	U	0.15	U	0.18 U	0.16	U	0.17 U	0.16 U	0.16	U	0.15 U
SW8270	Phenanthrene	mg/kg	NC	0.037 U	0.0201 J	0.048 L	1.32	0.04	U	0.0525		0.105	0.041	U	0.0172 J	0.041 U	0.749		0.611
SW8270	Phenol	mg/kg	18000	0.073 U	0.082 U	0.096 L	0.091	U 0.08	U	0.073	U	0.091 U	0.081	U	0.087 U	0.081 U	0.08	U	0.076 U
SW8270	Pyrene	mg/kg	1700	0.0159 J	0.0332 J	0.0219	1.41	0.0219	J	0.0777		0.147	0.0347	J	0.0335 J	0.0204 J	3.02		0.99
SW8270	Total TICs SVOC	mg/kg	NC	0.21 NJ	1.85 NJ	0.2 N	7.02	NJ 0.22	NJ	16.67	NJ	0.8 NJ	0.21	NJ	0.2 NJ	0 NJ	9.14	NJ	7.74 NJ

RDC: NJDEP Residential Direct Contact Soil Remediation Standards

[N.J.A.C. 7:26D; last amended 9/18/2017].

NC: No criterion established

Bold and underlined concentrations exceed the RDC

Italicized values not detected; reporting limit exceeds criteria

CONC: Concentration reported in milligrams per kilogram (mg/kg)

J: Estimated concentration
Q: Data qualifier assigned by laboratory or data validator
N: Indicates presumptive evidence of a compound

U: Not detected above method detection limit

Results with a value of "0" indicates no TICs were detected

SVOCs: Semi-Volatile Organic Compounds

TABLE 3C Soil Waste Class Analysis - PCBs

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

			Location ID	073-WC-09	073-WC-09	073-WC-09	073-WC-10	073-WC-10	073-WC-11	073-WC-11	073-WC-11	073-WC-13	073-WC-13	073-WC-14	073-WC-15
		Cl	ient Sample ID	073-WC-09-0103	073-WC-09-0510	073-WC-09-1014	073-WC-10-0610	073-WC-10-1418	073-WC-11-0203	073-WC-11-0708	073-WC-11-0910	073-WC-13-0102	073-WC-13-0611	073-WC-14-0103	073-WC-15-0002
			Lab Sample ID	JC97631-1	JC97631-2	JC97631-3	JC97631-4	JC97631-5	JC99893-1	JC99893-2	JC99893-3	JC99893-4	JC99893-5	JC99893-6	JC99893-7
			Date Sampled	10/28/2019	10/28/2019	10/28/2019	10/28/2019	10/28/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019
Method	Parameter	Units	RDC	CONC Q											
SW8082	Aroclor-1016	mg/kg	NC	0.037 U	0.039 U	0.043 U	0.044 U	0.037 U	0.036 U	0.044 U	0.042 U	0.043 U	0.042 U	0.04 U	0.038 U
SW8082	Aroclor-1221	mg/kg	NC	0.037 U	0.039 U	0.043 U	0.044 U	0.037 U	0.036 U	0.044 U	0.042 U	0.043 U	0.042 U	0.04 U	0.038 U
SW8082	Aroclor-1232	mg/kg	NC	0.037 U	0.039 U	0.043 U	0.044 U	0.037 U	0.036 U	0.044 U	0.042 U	0.043 U	0.042 U	0.04 U	0.038 U
SW8082	Aroclor-1242	mg/kg	NC	0.037 U	0.039 U	0.043 U	0.044 U	0.037 U	0.036 U	0.044 U	0.042 U	0.043 U	0.042 U	0.04 U	0.038 U
SW8082	Aroclor-1248	mg/kg	NC	0.037 U	0.039 U	0.043 U	0.044 U	0.037 U	0.216	0.044 U	0.042 U	0.043 U	0.042 U	0.04 U	0.146
SW8082	Aroclor-1254	mg/kg	NC	0.037 U	0.039 U	0.043 U	0.0295 J	0.037 U	0.161	0.044 U	0.042 U	0.043 U	0.042 U	0.04 U	0.038 U
SW8082	Aroclor-1260	mg/kg	NC	0.037 U	0.039 U	0.043 U	0.044 U	0.037 U	0.036 U	0.044 U	0.042 U	0.043 U	0.042 U	0.04 U	0.038 U
SW8082	Aroclor-1262	mg/kg	NC	0.037 U	0.039 U	0.043 U	0.044 U	0.037 U	0.036 U	0.044 U	0.042 U	0.043 U	0.042 U	0.04 U	0.038 U
SW8082	Aroclor-1268	mg/kg	NC	0.037 U	0.039 U	0.043 U	0.044 U	0.037 U	0.036 U	0.044 U	0.042 U	0.043 U	0.042 U	0.04 U	0.038 U

RDC: NJDEP Residential Direct Contact Soil Remediation Standards [N.J.A.C. 7:26D; last amended 9/18/2017].

NC: No criterion established

Bold and underlined concentrations exceed the RDC

Italicized values not detected; reporting limit exceeds criteria
CONC: Concentration reported in milligrams per kilogram (mg/kg)

J: Estimated concentration

Q: Data qualifier assigned by laboratory or data validator

U: Not detected above method detection limit

PCBs: Polychlorinated biphenyls

Prepared by: DP 3/6/2020 Page 1 of 1 Reviewed by: BA 3/6/2020

TABLE 3D Soil Waste Class Analysis - Metals

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

		Location ID	073-WC-09	073-WC-09	073-WC-09	073-WC-10	073-WC-10	073-WC-11	073-WC-11	073-WC-11	073-WC-13	073-WC-13	073-WC-14	073-WC-15
	Cl	lient Sample ID	073-WC-09-0103	073-WC-09-0510	073-WC-09-1014	073-WC-10-0610	073-WC-10-1418	073-WC-11-0203	073-WC-11-0708	073-WC-11-0910	073-WC-13-0102	073-WC-13-0611	073-WC-14-0103	073-WC-15-0002
		Lab Sample ID	JC97631-1	JC97631-2	JC97631-3	JC97631-4	JC97631-5	JC99893-1	JC99893-2	JC99893-3	JC99893-4	JC99893-5	JC99893-6	JC99893-7
		Date Sampled	10/28/2019	10/28/2019	10/28/2019	10/28/2019	10/28/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019
Method Parameter	Units	RDC	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
SW6010 Arsenic	mg/kg	19	4.7 U	12 U	3 U	14 U	2.4 U	5.8	<u>22.1</u>	4.7	13 U	3.9	10	10.8
SW6010 Barium	mg/kg	16000	45.5	40.9	53.4	125	24 U	140	146	97.5	27 U	81.4	81.3	91.3
SW6010 Beryllium	mg/kg	16	0.47 U	0.27	0.39	0.74	0.24 U	0.43	0.83	0.64	<u>1.3</u> <u>U</u>	0.51	0.39	0.42
SW6010 Cadmium	mg/kg	78	0.59 U	0.62 U	0.75 U	<u>3.6</u> <u>U</u>	0.61 U	0.69	1.4 U	0.63 U	<u>3.3</u> <u>U</u>	0.65 U	<u>3</u> <u>U</u>	<u>3</u> <u>U</u>
SW6010 Chromium	mg/kg	120000	62.8	2810	1130	3100	772	146	324	265	6070	773	1680	1610
SW6010 Copper	mg/kg	3100	70.6	22	9.1	24.2	3.9	121	115	15.7	19.7	12.3	172	176
SW6010 Lead	mg/kg	400	11.3	12.7	5.1	16.6	2.4 U	269	149	9.3	13 U	9.3	128	229
SW7471 Mercury	mg/kg	23	0.037 U	0.044	0.044 U	0.98	0.039 U	0.75	0.76	0.031 U	0.035	0.036 U	1	0.61
SW6010 Nickel	mg/kg	1600	105	74.4	12.9	88.3	6	40.8	36.6	19	612	15.6	147	111
SW6010 Selenium	mg/kg	390	4.7 U	2.5 U	0.98 U	<u>14</u> <u>U</u>	2.4 U	2.2 U	5.4 U	2.5 U	<u>13</u> <u>U</u>	2.6 U	<u>12</u> <u>U</u>	<u>12</u> <u>U</u>
SW6010 Silver	mg/kg	390	<u>1.2</u> <u>U</u>	0.62 U	0.75 U	<u>3.6</u> <u>U</u>	0.61 U	0.7	1.8	0.63 U	6.2	0.65 U	<u>3</u> <u>U</u>	<u>3</u> <u>U</u>
SW6010 Vanadium	mg/kg	78	42.7	36.6	15.3	46.9	6.7	30.8	33.2	23.5	<u>670</u>	22.8	<u>99.1</u>	<u>115</u>
SW6010 Zinc	mg/kg	23000	41	734	37.8	896	14.8	583	208	44	276	38.3	294	290

Notes:

RDC: NJDEP Residential Direct Contact Soil Remediation Standards

[N.J.A.C. 7:26D; last amended 9/18/2017].

NC: No criterion established

Bold and underlined concentrations exceed the RDC

Italicized values not detected; reporting limit exceeds criteria
CONC: Concentration reported in milligrams per kilogram (mg/kg)

J: Estimated concentration

Q: Data qualifier assigned by laboratory or data validator U: Not detected above method detection limit

Prepared by: DP 3/6/2020 Page 1 of 1 Reviewed by: BA 3/6/2020

TABLE 3E Soil Waste Class Analysis - NJEPH

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

		Loc	ation ID	073-WC-	9	073-WC-0	9	073-WC-0	9	073-WC-10		073-WC-10		073-WC-11	073-WC-11	073-WC-11	073-WC-13	073-WC-13	073-WC-14		073-WC-15
		Client Sa	ample ID	073-WC-09-	0103	073-WC-09-0	510	073-WC-09-1	L014	073-WC-10-06	510	073-WC-10-14	118	073-WC-11-0203	073-WC-11-0708	073-WC-11-0910	073-WC-13-0102	073-WC-13-0611	073-WC-14-010	03	073-WC-15-0002
		Lab Sa	ample ID	JC97631-	1	JC97631-2	2	JC97631-3	3	JC97631-4		JC97631-5		JC99893-1	JC99893-2	JC99893-3	JC99893-4	JC99893-5	JC99893-6		JC99893-7
		Date 9	Sampled	10/28/20	19	10/28/201	.9	10/28/201	L9	10/28/2019)	10/28/2019)	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019		12/9/2019
Method	Parameter	Units	RDC	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC Q	CONC Q	CONC Q	CONC Q	CONC C	CONC	Q	CONC Q
NJDEPEPH	EPH (C9-C28)	mg/kg	NC	7	U	7.6	U	9.3	U	60.4		7.4	U	127	85.7	7.9 U	18.1	7.7 U	155		401
SW8015	Petroleum Hydrocarbons Above C-10	mg/kg	NC	11	U	12	U	14	C	204		12	U	263	260	12 U	22.8	12 U	228		565
SW8015	PHC As Gasoline	mg/kg	NC	12	С	14	U	18	С	18	U	15	U	12 U	17 U	15 U	16 U	15 U	14	U	17.8
NJDEPEPH	Residual Range Organics C28-C40	mg/kg	NC	7	U	7.6	U	9.3	U	80.8		7.4	U	253	258	7.9 U	52.7	7.7 U	180		519
NJDEPEPH	Total EPH (C9-C40)	mg/kg	NC	7	С	7.6	U	9.3	С	141		7.4	U	381	344	7.9 U	70.8	7.7 U	336		920

Notes:

RDC: NJDEP Residential Direct Contact Soil Remediation Standards
[N.J.A.C. 7:26D; last amended 9/18/2017].

NC: No criterion established

Bold and underlined concentrations exceed the RDC

<u>Italicized values not detected; reporting limit exceeds criteria</u>

CONC: Concentration reported in milligrams per kilogram (mg/kg)
J: Estimated concentration

Q: Data qualifier assigned by laboratory or data validator
U: Not detected above method detection limit

NJEPH: Extractable and Petroleum Hydrocarbons

TABLE 3F Soil Waste Class Analysis - Pesticides and Herbicides

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

			Location ID	073-WC-0	9	073-WC-09		073-WC-09)	073-WC-10)	073-WC-10	073-WC-11		073-WC-11	L	073-WC-11	I	073-WC-13	073-WC-	13	073-WC-14	073-WC-15
		C	lient Sample ID	073-WC-09-	0103	073-WC-09-05	10	073-WC-09-10	014	073-WC-10-06	510	073-WC-10-1418	073-WC-11-02	203	073-WC-11-07	708	073-WC-11-0910		073-WC-13-0102	073-WC-13	-0611	073-WC-14-0103	073-WC-15-0002
			Lab Sample ID	JC97631-	1	JC97631-2		JC97631-3		JC97631-4		JC97631-5	JC99893-1		JC99893-2		JC99893-3		JC99893-4	JC99893	-5	JC99893-6	JC99893-7
			Date Sampled	10/28/20	19	10/28/2019)	10/28/2019	9	10/28/2019	9	10/28/2019	12/9/2019		12/9/2019		12/9/2019		12/9/2019	12/9/20	19	12/9/2019	12/9/2019
Method	Parameter	Units	RDC	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC Q	CONC	Q	CONC	Q	CONC C	Q	CONC Q	CONC	Q	CONC Q	CONC Q
SW8151	2,4,5-T	mg/kg	NC	0.0037	U	0.004	U	0.0046	U	0.0046	U	0.0039 U	0.0036	U	0.0044	U	0.0043 L	U	0.0041 U	0.0039	U	0.0039 U	0.0036 U
SW8151	2,4,5-TP (Silvex)	mg/kg	NC	0.0037	U	0.004	U	0.0046	U	0.0046	U	0.0039 U	0.0036	U	0.0044	U	0.0043 L	U	0.0041 U	0.0039	U	0.0039 U	0.0036 U
SW8151	2,4-D	mg/kg	NC	0.018	U	0.02	U	0.023	U	0.023	U	0.02 U	0.018	U	0.022	U	0.021 l	U	0.021 U	0.02	U	0.019 U	0.018 U
SW8151	2,4-DB	mg/kg	NC	0.018	U	0.02	U	0.023	U	0.023	U	0.02 U	0.018	U	0.022	U	0.021 l	U	0.021 U	0.02	U	0.019 U	0.018 U
SW8081	4,4'-DDD	mg/kg	3	0.00073	U	0.00082	U	0.00095	U	0.00091	U	0.00072 U	0.01		0.00088	U	0.00085 U	U	0.00085 U	0.00084	U	0.002	0.00078 U
SW8081	4,4'-DDE	mg/kg	2	0.00073	C	0.00082	U	0.00095	U	0.0023		0.00072 U	0.0034		0.00088	U	0.00085 U	U	0.00085 U	0.00084	U	0.00081 U	0.00078 U
SW8081	4,4'-DDT	mg/kg	2	0.00073	U	0.00082	U	0.00095	U	0.00091	U	0.00072 U	0.00073	U	0.009		0.0032		0.00085 U	0.00084	U	0.00081 U	0.00078 U
SW8081	Aldrin	mg/kg	0.04	0.00073	U	0.00082	U	0.00095	U	0.00091	U	0.00072 U	0.00073	U	0.00088	U	0.00085 L	U	0.00085 U	0.00084	U	0.00081 U	0.00078 U
SW8081	Alpha-BHC	mg/kg	0.1	0.00073	U	0.00082	U	0.00095	U	0.00091	U	0.00072 U	0.00073	U	0.00088	U	0.00085 L	U	0.00085 U	0.00084	U	0.00081 U	0.00078 U
SW8081	Alpha-Chlordane	mg/kg	0.2	0.00073	U	0.00082	U	0.00095	С	0.00091	U	0.00072 U	0.0027		0.00088	U	0.00085 L	U	0.00085 U	0.00084	U	0.00081 U	0.00078 U
SW8081	Beta-BHC	mg/kg	0.4	0.00073	U	0.00082	U	0.00095	С	0.00091	U	0.00072 U	0.00073	U	0.00088	U	0.00085 U	U	0.00085 U	0.00084	U	0.00081 U	0.00078 U
SW8081	Chlordane	mg/kg	0.2	0.00073	U	0.00082	U	0.00095	U	0.00091	U	0.00072 U	0.0027		0.00088	U	0.00085 L	U	0.00085 U	0.00084	U	0.00081 U	0.00078 U
SW8151	Dalapon	mg/kg	NC	0.0037	U	0.004	U	0.0046	U	0.0046	U	0.0039 U	0.0036	U	0.0044	U	0.0043 L	U	0.0041 U	0.0039	U	0.0039 U	0.0036 U
SW8081	Delta-BHC	mg/kg	NC	0.00073	U	0.00082	U	0.00095	С	0.00091	U	0.00072 U	0.00073	U	0.00088	U	0.00085 L	U	0.00085 U	0.00084	U	0.00081 U	0.00078 U
SW8151	Dicamba	mg/kg	NC	0.0037	U	0.004	U	0.0046	U	0.0046	U	0.0039 U	0.0036	U	0.0044	U	0.0043 L	U	0.0041 U	0.0039	U	0.0039 U	0.0036 U
SW8151	Dichloroprop	mg/kg	NC	0.018	U	0.02	U	0.023	U	0.023	U	0.02 U	0.018	U	0.022	U	0.021 l	U	0.021 U	0.02	U	0.019 U	0.018 U
SW8081	Dieldrin	mg/kg	0.04	0.00073	U	0.00082	U	0.00095	U	0.00084	J	0.00072 U	0.0054		0.00088	U	0.00085 L	U	0.00085 U	0.0044		0.00081 U	0.00078 U
SW8151	Dinoseb	mg/kg	NC	0.018	U	0.02	U	0.023	U	0.023	U	0.02 U	0.018	U	0.022	U	0.021 l	U	0.021 U	0.02	U	0.019 U	0.018 U
SW8081	Endosulfan I	mg/kg	470	0.00073	U	0.00082	U	0.00095	U	0.00091	U	0.00072 U	0.00073	U	0.00088	U	0.00085 L	U	0.00085 U	0.00084	U	0.00081 U	0.00078 U
SW8081	Endosulfan II	mg/kg	470	0.00073	U	0.00082	U	0.00095	U	0.00091	U	0.00072 U	0.00073	U	0.00088	U	0.00085 L	U	0.00085 U	0.00084	U	0.00081 U	0.00078 U
SW8081	Endosulfan Sulfate	mg/kg	470	0.00073	U	0.00082	U	0.00095	U	0.00091	U	0.00072 U	0.00073	U	0.00088	U	0.00085 L	U	0.00085 U	0.00084	U	0.00081 U	0.00078 U
SW8081	Endrin	mg/kg	23	0.00073	U	0.00082	U	0.00095	U	0.00091	U	0.00072 U	0.00073	U	0.00088	U	0.00085 L	U	0.00085 U	0.0016		0.00081 U	0.00078 U
SW8081	Endrin Aldehyde	mg/kg	NC	0.00073	U	0.00082	U	0.00095	U	0.00091	U	0.00072 U	0.00073	U	0.00088	U	0.00085 L	U	0.00085 U	0.00084	U	0.00081 U	0.00078 U
SW8081	Endrin Ketone	mg/kg	NC	0.00073	U	0.00082	U	0.00095	U	0.00091	U	0.00072 U	0.00073	U	0.00088	U	0.00085 L	U	0.00085 U	0.00084	U	0.00081 U	0.00078 U
SW8081	Gamma-BHC (Lindane)	mg/kg	0.4	0.00073	U	0.00082	U	0.00095	U	0.00091	U	0.00072 U	0.00073	U	0.00088	U	0.00085 L	U	0.00085 U	0.00084	U	0.00081 U	0.00078 U
SW8081	Heptachlor	mg/kg	0.1	0.00073	U	0.00082	U	0.00095	U	0.00091	U	0.00072 U	0.00073	U	0.0064		0.00085 L	U	0.00085 U	0.00084	U	0.00081 U	0.00078 U
SW8081	Heptachlor Epoxide	mg/kg	0.07	0.00073	U	0.00082	U	0.00095	U	0.00091	U	0.00072 U	0.00073	U	0.00088	U	0.00085 L	U	0.00085 U	0.00084	U	0.00081 U	0.00078 U
SW8151	MCPA	mg/kg	NC	1.8	U	2	U	2.3	U	2.3	U	2 U	1.8	U	2.2	U	2.1 l	_	2.1 U	2	U	1.9 U	1.8 U
SW8151	Mecoprop	mg/kg	NC	1.8	U	2	U	2.3	U	2.3	U	2 U	1.8	U	2.2	U	2.1 l	_	2.1 U	2	U	1.9 U	1.8 U
SW8081	Methoxychlor	mg/kg	390	0.0015	U	0.0016	U	0.0019	U	0.0018	U	0.0014 U	0.0015	U	0.0018	U	0.0017 L	U	0.0017 U	0.0017	U	0.0016 U	0.0016 U
SW8151	Pentachlorophenol	mg/kg	0.9	0.0018	U	0.002	U	0.0023	U	0.0023	U	0.002 U	0.0018	U	0.0022	U	0.0021 l	U	0.0021 U	0.002	U	0.0019 U	0.0018 U
SW8081	Toxaphene	mg/kg	0.6	0.018	U	0.021	U	0.024	U	0.023	U	0.018 U	0.018	U	0.022	U	0.021 l	U	0.021 U	0.021	U	0.02 U	0.019 U
SW8081	trans-Chlordane	mg/kg	NC	0.00073	U	0.00082	U	0.00095	U	0.00091	U	0.00072 U	0.00073	U	0.00088	U	0.00085 L	U	0.00085 U	0.00084	U	0.00081 U	0.00078 U

RDC: NJDEP Residential Direct Contact Soil Remediation Standards [N.J.A.C. 7:26D; last amended 9/18/2017].

NC: No criterion established

Bold and underlined concentrations exceed the RDC

<u>Italicized values not detected; reporting limit exceeds criteria</u>
CONC: Concentration reported in milligrams per kilogram (mg/kg)

J: Estimated concentration

Q: Data qualifier assigned by laboratory or data validator
U: Not detected above method detection limit

PEST-HERB: Pesticides and Herbicides

TABLE 3G Soil Waste Class Analysis - General Chemistry

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

			Location ID	073-WC-09	073-WC-09	073-WC-09	073-WC-10	073-WC-10	073-WC-11	073-WC-11	073-WC-11	073-WC-13	073-WC-13	073-WC-14	073-WC-15
			Client Sample ID	073-WC-09-0103	073-WC-09-0510	073-WC-09-1014	073-WC-10-0610	073-WC-10-1418	073-WC-11-0203	073-WC-11-0708	073-WC-11-0910	073-WC-13-0102	073-WC-13-0611	073-WC-14-0103	073-WC-15-0002
			Lab Sample ID	JC97631-1/1A	JC97631-2/2A	JC97631-3/3A	JC97631-4/4A	JC97631-5/5A	JC99893-1/1A	JC99893-2/2A	JC99893-3/3A	JC99893-4/4A	JC99893-5/5A	JC99893-6/6A	JC99893-7/7A
			Date Sampled	10/28/2019	10/28/2019	10/28/2019	10/28/2019	10/28/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019
Method	Parameter	Units	RDC	CONC Q											
SW9045	Corrosivity	SU	NC	0	0	0	0	0	0 U	0 U	0 U	0 U	0 U	0 U	0 U
SW9012	Cyanide Anion (CN)	mg/kg	47	0.23 U	0.29 U	0.32 U	0.87	0.24 U	0.28 U	0.38	0.28 U	0.4	0.29 U	0.46	0.33 U
SW7196/SW7199	Hexavalent Chromium	mg/kg	20	2.9	<u>27</u>	<u>51</u>	<u>21.5</u>	<u>32.4</u>	0.82	0.54 U	2.7	<u>347</u>	<u>64</u>	<u>31.8</u>	1.5
SW1010	Ignitability	deg F	NC	0 U	0 U	0 U	0 U	0 U	0 U	0 U	0 U	0 U	0 U	0 U	0 U
SW9095	Paint Filter Test	NEG	NC	0.5 U											
SW9045	рН	SU	NC	NS	NS	NS	NS	NS	7.93	8.03	9.68	9.81	9.11	8.25	8.11
SW9012	Reactive Cyanide	mg/kg	NC	12 U	13 U	15 U	14 U	12 U	12 U	14 U	13 U	13 U	13 U	12 U	12 U
SW9034	Reactive Sulfide	mg/kg	NC	120 U	130 U	150 U	140 U	120 U	120 U	140 U	130 U	130 U	130 U	120 U	120 U
ASTM D1498	Redox Potential	mV	NC	NS	NS	NS	NS	NS	345	342	147	196	174	217	225
SM2540D/SM2540E	Solids	%	NC	87.4	80.3	69.3	71.6	82.1	86.6	73.2	NS	74.3	77.7	82.7	85.8

Notes:

RDC: NJDEP Residential Direct Contact Soil Remediation Standards
[N.J.A.C. 7:26D; last amended 9/18/2017].

NC: No criterion established

Bold and underlined concentrations exceed the RDC

Italicized values not detected; reporting limit exceeds criteria

CONC: Concentration reported in milligrams per kilogram (mg/kg)

J: Estimated concentration
Q: Data qualifier assigned by laboratory or data validator
U: Not detected above method detection limit

SU: Standard Units mV: Millivolts

GENCHEM: General Chemistry

Prepared by: DP 3/6/2020 Page 1 of 1 Reviewed by: BA 3/6/2020

TABLE 3H Soil Waste Class Analysis - TCLP

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

			Location ID	073-WC-0	09	073-WC-09		073-WC-09	073-WC-10	073-WC-10	073-WC-11	073-WC-11	073-WC-11	073-WC-13	073-WC-13	073-WC-14	073-WC-15
			Client Sample ID	073-WC-09-0		073-WC-09-05		073-WC-09-1014	073-WC-10-0610	073-WC-10-1418	073-WC-11-0203	073-WC-11-0708	073-WC-11-0910	073-WC-13-0102	073-WC-13-0611	073-WC-14-0103	073-WC-15-0002
			Lab Sample ID	JC97631-1		JC97631-2A		JC97631-3A	JC97631-4A	JC97631-5A	JC99893-1A	JC99893-2A	JC99893-3A	JC99893-4A	JC99893-5A	JC99893-6A	JC99893-7A
			Date Sampled	10/28/201		10/28/2019		10/28/2019	10/28/2019	10/28/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019
Method	Parameter	Units	RCRA Toxicity Characteristics (40 CFR261.24)	cons	•	60116		20112	6000	2011	20112		50110	2011	2010	6000	20112
			,	CONC	Q	CONC	Q	CONC Q	•	CONC Q	CONC Q	CONC Q	<u> </u>	CONC Q	CONC Q	CONC Q	CONC Q
SW6010	Arsenic	mg/L	5	0.5	U	0.5	U	0.5 U		0.5 U	0.5 U			0.5 U	0.5 U	0.5 U	0.5 U
SW6010	Barium	mg/L	100	0.067	U	1	U	1 U	1 U	0.067 U	1 U	1 U		1 U	1 U	1 U	1 U
SW6010	Cadmium	mg/L	1	0.02	U	0.02	U	0.02 U	0.02 U	0.02 U	0.02 U		****	0.02 U	0.02 U	0.02 U	0.02 U
SW6010	Chromium	mg/L	5	1.9		3.2		6.8	0.05 U	3.6	0.05 U	0.072	0.059	4.9	0.12	0.05 U	0.17
SW6010	Copper	mg/L	NC	0.05	U	0.05	U	0.05 U		0.05 U	0.052	0.05 U			0.05 U	0.05 U	0.13
SW6010	Lead	mg/L	5	0.5	U	0.5	U	0.5 U		0.5 U	0.5 U			0.5 U	0.5 U	0.5 U	0.5 U
SW6010	Nickel	mg/L	NC	0.05	U	0.17		0.05 U		0.05 U	0.066	0.11	0.05 U		0.05 U	0.13	0.37
SW6010	Selenium	mg/L	1	0.5	U	0.5	U	0.5 U		0.5 U	0.5 U		1	0.5 U	0.5 U	0.5 U	0.5 U
SW6010	Silver	mg/L	5	0.05	U	0.05	U	0.05 U		0.05 U	0.05 U				0.05 U	0.05 U	0.05 U
SW6010	Zinc	mg/L	NC	0.1	U	0.1	U	0.1 U		0.1 U	0.6	1.1	0.1 U	0.1 U	0.1 U	0.19	1
SW7470	Mercury	mg/L	0.2	0.0002	U	0.0002	U	0.0002 U		0.0002 U	0.0002 U			0.0002 U	0.0002 U	0.0002 U	0.0002 U
SW8260	1,1-Dichloroethene	mg/L	0.7	0.005	U	0.005	U	0.005 U		0.005 U	0.005 U	0.005 U	0.000	0.005 U	0.005 U	0.005 U	0.005 U
SW8260	1,2-Dichloroethane	mg/L	0.5	0.005	U	0.005	U	0.005 U		0.005 U	0.005 U			0.005 U	0.005 U	0.005 U	0.005 U
SW8260	1,4-Dichlorobenzene	mg/L	7.5	0.005	U	0.005	U	0.005 U	0.005 U	0.005 U	0.005 U			0.005 U	0.005 U	0.005 U	0.005 U
SW8260	2-Butanone	mg/L	200	0.1	U	0.1	U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U
SW8260	Benzene	mg/L	0.5	0.0025	U	0.0025	U	0.0025 U	***************************************	0.0025 U	0.0025 U			0.0025 U	0.0025 U	0.0025 U	0.0025 U
SW8260	Carbon Tetrachloride	mg/L	0.5	0.005	U	0.005	U	0.005 U	0.005 U	0.005 U	0.005 U		0.000	0.005 U	0.005 U	0.005 U	0.005 U
SW8260	Chlorobenzene	mg/L	100	0.005	U	0.005	U	0.005 U		0.005 U	0.005 U			0.005 U	0.005 U	0.005 U	0.005 U
SW8260	Chloroform	mg/L	6	0.005	U	0.005	U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		0.005 U	0.005 U	0.005 U	0.005 U
SW8260	Tetrachloroethene	mg/L	0.7	0.005	U	0.005	U	0.005 U	0.005 U	0.005 U	0.005 U			0.005 U	0.005 U	0.005 U	0.005 U
SW8260	Trichloroethene	mg/L	0.5	0.005	U	0.005	U	0.005 U	0.005 U	0.005 U	0.005 U			0.005 U	0.005 U	0.005 U	0.005 U
SW8260	Vinyl Chloride	mg/L	0.2	0.005	U	0.005	U	0.005 U		0.005 U	0.005 U			0.005 U	0.005 U	0.005 U	0.005 U
SW8270	1,4-Dichlorobenzene	mg/L	7.5	0.02	U	0.02	U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
SW8270	2,4,5-Trichlorophenol	mg/L	400	0.05	U	0.05	U	0.05 U	0.05 U	0.05 U	0.05 U			0.05 U	0.05 U	0.05 U	0.05 U
SW8270	2,4,6-Trichlorophenol	mg/L	2	0.05	U	0.05	U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
SW8270	2,4-Dinitrotoluene	mg/L	0.13	0.02	U	0.02	U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
SW8270	2-Methylphenol	mg/L	200	0.02	U	0.02	U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
SW8270	Hexachlorobenzene	mg/L	0.13	0.02	U	0.02	U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
SW8270	Hexachlorobutadiene	mg/L	0.5	0.01	U	0.01	U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
SW8270	Hexachloroethane	mg/L	3	0.05	U	0.05	U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
SW8270	m,p-Cresol	mg/L	NC	0.02	U	0.02	U	0.02 U	0.02 U	0.02 U	0.02 U				0.02 U	0.02 U	0.02 U
SW8270	Nitrobenzene	mg/L	2	0.02	U	0.02	U	0.02 U		0.02 U	0.02 U			0.02 U	0.02 U	0.02 U	0.02 U
SW8270	Pentachlorophenol	mg/L	100	0.1	U	0.1	U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U
SW8270	Pvridine	mg/L	5	0.02	U	0.02	U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U		0.02 U	0.02 U	0.02 U

Notes:
RCRA Toxicity Characteristics from 40 CFR 261.24
NC: No criterion established

Bold and shaded concentrations exceed the Toxicity Characteristics Depths reported in feet below ground surface CONC: Concentration reported in milligrams per liter (mg/L)

J: Estimated concentration

Q: Data qualifier assigned by laboratory or data validator
U: Not detected above method detection limit

TABLE 4A

2019 Soil Delineation Sample Results

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

				Location	073-WC-11		073-WC-12		073-WC-14		073-WC-16	,	073-WC-1	6
				Sample ID	073-WC-11-09	10	073-WC-12-09	10	073-WC-14-08	809	073-WC-16-08	309	073-WC-16-0	809B
				Lab Sample ID	JC99783-1/1F	R	JC99783-2/2	R	JC99783-3/3	R	JC99783-4/4	R	JC99782-13/	/13R
				Date	12/6/2019		12/6/2019		12/6/2019		12/6/2019		12/6/201	.9
			Sa	mple Depth (ft)	9.5 - 10		9.5 - 10		8 - 8.5		8 - 8.5		8.5 - 9	
Chemical	Units	RDC	NRDC	IGW	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC	Q
Hexavalent Chromium	mg/kg	20	20	NC	13		8.2		15		24.2		18.8	J

Notes:

RDC: NJDEP Residential Direct Contact Soil Remediation Standards [N.J.A.C. 7:26D; last amended 9/18/2017].

NRDC: NJDEP Non-Residential Direct Contact Soil Remediation Standards [N.J.A.C. 7:26D; last amended 9/18/2017].

IGW - NJDEP Impact to Groundwater Soil Screening Levels [N.J.A.C. 7:26D; last amended November 2013]

NC: No criterion established

Bold and shaded concentrations exceed the RDC or NRDC

Italicized values not detected; reporting limit exceeds criteria

Depths reported in feet below ground surface

J: Estimated concentration

R or N: Rejected or negated by laboratory or data validator

U: Not detected above method detection limit

TABLE 4B

Final Post-Excavation Samples

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

Location ID	Date Sampled	Top of Sample Depth (ft)	Elevation (ft., msl)	Excavation Surveyed Elevation (ft., msl)	Hexavalent Chromium Concentration (mg/kg)	Validation Qualifier	Lab Sample ID	Designation
073-SB-002	7/14/2008	9.0	0.5	-3.30	7.20	J	J95590-12A	В
073-SB-003	7/14/2008	1	8.8	NS	0.90	UJ	J95590-18A	SW
073-SB-003	7/14/2008	2.5	7.3	NS	1.70		J95590-19A	SW
073-SB-003	7/14/2008	4	5.8	NS	0.97	U	J95590-20A	SW
073-SB-003	7/14/2008	7	2.8	4.22	0.92	U	J95590-21A	SW
073-SB-024	4/19/2010	10.5	-0.8	-3.76	1.00	U	JA44697-36A	В
073-SB-025	4/19/2010	4.5	5.0	-3.55	6.10		JA44697-40AR	В
073-SB-029	4/20/2010	6.0	3.8	0.91	9.20		JA44697-51A	SW
073-SB-053R	10/25/2010	5.5	4.3	-0.89	6.80		JA59782-2A	В
073-SB-054	5/24/2010	5.0	4.4	NS	0.96	U	JA47480-10A	SW
073-SB-055	8/5/2010	3.0	7.0	-1.36	7.40		JA53418-2A	В
073-SB-070	11/29/2010	19.0	-10.0	-10.91	6.80		JA62707-44A	В
073-SB-101	5/5/2014	13.5	-3.8	-4.32	4.10		JB66204-5/5R	В
073-WC-11	12/6/2019	9.5	2.0	0.77	13.00		JC99783-1/1R	В
073-WC-12	12/6/2019	9.5	2.0	0.57	8.20		JC99783-2/2R	В
073-WC-14	12/6/2019	8.0	2.0	-1.00	15.00		JC99783-3/3R	В
073-WC-16	12/6/2019	8.5	1.0	-3.47	18.80	J	JC99783-13/13R	В

Notes:

mg/kg = milligrams per kilogram

ft. msl = feet mean sea level

SW = post-excavation sidewall sample

B = post-excavation base sample

J = Estimated concentration

U = Not detected above method detection limit

NS = Not surveyed

Created by: DEN 03/01/2021 Checked by: NAW 03/02/2021

TABLE 5

Soil Stockpile Sample Results

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

	Location						073-WC-116B		073-WC-116C		073-WC-116D	
Sample ID					073-WC-116A-09082	0	073-WC-116B-090820 073-WC-2		073-WC-116C-09082	20	073-WC-116D-090)820
Lab Sample ID					JD12798-1/1R		JD12798-2/2R		JD12798-3/3R		JD12798-4/4R	
Date				9/8/2020		9/8/2020		9/8/2020		9/8/2020		
Chemical	Units	RDC	NRDC	IGW	CONC (Q	CONC	Q	CONC	Q	CONC	Q
Hexavalent Chromium	mg/kg	20	20	NC	1.1		0.47		9.2		3.1	

Notes:

RDC: NJDEP Residential Direct Contact Soil Remediation Standards [N.J.A.C. 7:26D; last amended 9/18/2017].

NRDC: NJDEP Non-Residential Direct Contact Soil Remediation Standards [N.J.A.C. 7:26D; last amended 9/18/2017].

IGW - NJDEP Impact to Groundwater Soil Screening Levels [N.J.A.C. 7:26D; last amended November 2013].

NC: No criterion established

Bold and shaded concentrations exceed the RDC or NRDC

Italicized values not detected; reporting limit exceeds criteria

J: Estimated concentration

R or N: Rejected or negated by laboratory or data validator

U: Not detected above method detection limit

TABLE 6A

CWTP Effluent Results - VOCs

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

SAMPI	E LOCATION		073-TW-4	17	073-TW-4	18	073-TW-4	19	073-TW-5	50
FIELI	SAMPLE ID		073-TW-47-09	90320	073-TW-48-10	00920	073-TW-49-12	10620	073-TW-50-12	20320
SAN	IPLING DATE	SA-6 CWTP	9/3/2020	0	10/9/202	0	11/6/202	0	12/3/202	20
LA	B SAMPLE ID	Effluent Criteria	JD12665-	-1	JD14493-	1	JD15828-	1	JD17093-	·1
	Filtered		No		No		No		No	
PARAMETER	UNITS		CONC	Q	CONC	Q	CONC	Q	CONC	Q
1,1,1-Trichloroethane	μg/L	NC	1	U	1	U	1	U	1	U
1,1,2,2-Tetrachloroethane	μg/L	NC	1	U	1	U	1	U	1	U
1,1,2-Trichloroethane	μg/L	NC	1	U	1	U	1	U	1	U
1,1-Dichloroethane	μg/L	NC	1	U	1	U	1	U	1	U
1,1-Dichloroethene	μg/L	NC	1	U	1	U	1	U	1	U
1,2-Dibromoethane	μg/L	NC	1	U	1	U	1	U	1	U
1,2-Dichlorobenzene	μg/L	NC	1	U	1	U	1	U	1	U
1,2-Dichloroethane	μg/L	NC	1	U	1	U	1	U	1	U
1,2-Dichloropropane	μg/L	NC	1	U	1	U	1	U	1	U
1,3-Dichlorobenzene	μg/L	NC	1	U	1	U	1	U	1	U
1,4-Dichlorobenzene	μg/L	NC	1	U	1	U	1	U	1	U
1,4-Dioxane	μg/L	NC	130	U	130	U	130	U	130	U
2-Chloroethyl Vinyl Ether	μg/L	NC	5	U	5	U	5	U	5	U
Acrolein	μg/L	NC	10	U	10	U	10	U	10	U
Acrylonitrile	μg/L	NC	10	U	10	U	10	U	10	U
Benzene	μg/L	NC	1	U	1	U	1	U	1	U
bis-(Chloromethyl)Ether	μg/L	NC			0	U	0	U	0	U
Bromodichloromethane	μg/L	NC	1	U	1	U	1	U	1	U
Bromoform	μg/L	NC	1	U	1	U	1	U	1	U
Bromomethane	μg/L	NC	1	U	1	U	1	U	1	U
Carbon Tetrachloride	μg/L	NC	1	U	1	U	1	U	1	U
Chlorobenzene	μg/L	NC	1	U	1	U	1	U	1	U
Chloroethane	μg/L	NC	1	U	1	U	1	U	1	U
Chloroform	μg/L	NC	1	U	1	U	1	U	1	U
Chloromethane	μg/L	NC	1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	μg/L	NC	1	U	1	U	1	U	1	U
cis-1,3-Dichloropropene	μg/L	NC	1	U	1	U	1	U	1	U
Dibromochloromethane	μg/L	NC	1	U	1	U	1	U	1	U

TABLE 6A

CWTP Effluent Results - VOCs

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

SAM	IPLE LOCATION		073-TW-4	17	073-TW-4	18	073-TW-4	9	073-TW-5	0
FI	ELD SAMPLE ID		073-TW-47-09	90320	073-TW-48-10	00920	073-TW-49-11	L0620	073-TW-50-12	20320
SA	AMPLING DATE	SA-6 CWTP	9/3/2020	9/3/2020		10/9/2020		0	12/3/202	0
	LAB SAMPLE ID		JD12665-	1	JD14493-1		JD15828-1		JD17093-	1
Filtered			No		No		No		No	
PARAMETER	PARAMETER UNITS		CONC	Q	CONC	Q	CONC	Q	CONC	Q
Dichlorodifluoromethane	μg/L	NC	2	U	2	U	2	U	2	U
Ethylbenzene	μg/L	NC	1	C	0.41	J	0.52	J	1	C
Ethylenimine	μg/L	NC			0	U	0	U	0	U
Methylene Chloride	μg/L	NC	1	U	1	U	1	U	1	U
Tetrachloroethene	μg/L	NC	1	U	1	U	1	U	1	U
Toluene	μg/L	NC	1	U	1	U	1	U	1	U
Total Xylenes	μg/L	NC	1	U	1.9		4.3		1	U
trans-1,2-Dichloroethene	μg/L	NC	1	U	1	U	1	U	1	U
trans-1,3-Dichloropropene	μg/L	NC	1	U	1	U	1	U	1	U
Trichloroethene	μg/L	NC	1	U	1	U	1	U	1	U
Trichlorofluoromethane	μg/L	NC	2	U	2	U	2	U	2	U
Vinyl Chloride	μg/L	NC	1	U	1	U	1	U	1	U
Total VOCs	μg/L	2130	0		2.31		4.82		0	

Notes:

SA-6 CWTP Effluent Criteria is the discharge limitation criteria from Sewer Use Permit #31630019

NC: No criterion established

CONC: Concentration reported in micrograms per liter (µg/L)

J: Estimated concentration

R or N: Rejected or negated by laboratory or data validator

U: Not detected above method detection limit

TABLE 6B

CWTP Effluent Results - SVOCs

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

SAMPLE LO	CATION		073-TW-4	7	073-TW-4	18	073-TW-4	9	073-TW-5	50
FIELD SA	MPLE ID		073-TW-47-09	0320	073-TW-48-10	00920	073-TW-49-11	L0620	073-TW-50-1	20320
SAMPLI	NG DATE	SA-6 CWTP	9/3/2020)	10/9/202	0	11/6/202	0	12/3/202	20
LAB SA	MPLE ID	Effluent Criteria	JD12665-	1	JD14493-	1	JD15828-	1	JD17093-	-1
	Filtered		No		No		No		No	
PARAMETER	UNITS		CONC	Q	CONC	Q	CONC	Q	CONC	Q
1,2,4-Trichlorobenzene	μg/L	NC	0.98	U	1	U	0.97	U	0.95	U
1,2-Dichlorobenzene	μg/L	NC	0.98	U	1	U	0.97	U	0.95	U
1,2-Diphenylhydrazine/Azobenzene	μg/L	NC	0.98	U	1	U	0.97	U	0.95	U
1,3-Dichlorobenzene	μg/L	NC	0.98	U	1	U	0.97	U	0.95	U
1,4-Dichlorobenzene	μg/L	NC	0.98	U	1	U	0.97	U	0.95	U
2,2'-Oxybis(1-Chloropropane)	μg/L	NC	2	U	2	U	1.9	U	1.9	U
2,4,6-Trichlorophenol	μg/L	NC	4.9	U	5	U	4.9	U	4.8	U
2,4-Dichlorophenol	μg/L	NC	2	U	2	U	1.9	U	1.9	U
2,4-Dimethylphenol	μg/L	NC	4.9	U	5	U	2.5	J	4.8	U
2,4-Dinitrophenol	μg/L	NC	9.8	U	10	U	9.7	U	9.5	U
2,4-Dinitrotoluene	μg/L	NC	0.98	U	1	U	0.97	U	0.95	U
2,6-Dinitrotoluene	μg/L	NC	0.98	U	1	U	0.97	U	0.95	U
2-Chloronaphthalene	μg/L	NC	2	U	2	U	1.9	U	1.9	U
2-Chlorophenol	μg/L	NC	4.9	U	5	U	4.9	U	4.8	U
2-Nitrophenol	μg/L	NC	4.9	U	5	U	4.9	U	4.8	U
3,3'-Dichlorobenzidine	μg/L	NC	2	U	2	UJ	1.9	U	1.9	U
4,6-Dinitro-2-Methylphenol	μg/L	NC	4.9	U	5	U	4.9	U	4.8	U
4-Bromophenyl Phenyl Ether	μg/L	NC	2	U	2	U	1.9	U	1.9	U
4-Chloro-3-Methylphenol	μg/L	NC	4.9	U	5	U	4.9	U	4.8	U
4-Chloroaniline	μg/L	NC	4.9	U	5	UJ	4.9	U	4.8	U
4-Chlorophenyl Phenyl Ether	μg/L	NC	2	U	2	U	1.9	U	1.9	U
4-Nitrophenol	μg/L	NC	9.8	U	10	U	9.7	U	9.5	U
Acenaphthene	μg/L	NC	0.98	U	1	U	0.35	J	0.31	J
Acenaphthylene	μg/L	NC	0.98	U	1	U	0.97	U	0.95	U
Anthracene	μg/L	NC	0.98	U	1	U	0.97	U	0.95	U
Benzidine	μg/L	NC	9.8	U	10	UJ	9.7	UJ	9.5	UJ
Benzo(A)Anthracene	μg/L	NC	0.98	U	1	U	0.97	U	0.95	U
Benzo(A)Pyrene	μg/L	NC	0.98	U	1	UJ	0.97	U	0.95	U

TABLE 6B

CWTP Effluent Results - SVOCs

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

FIELD SAMP	I E ID						073-TW-49	-		0
			073-TW-47-09	0320	073-TW-48-10	0920	073-TW-49-11	0620	073-TW-50-12	20320
SAMPLING I	DATE	SA-6 CWTP	9/3/2020)	10/9/202	0	11/6/2020)	12/3/202	0
LAB SAMP	LE ID	Effluent Criteria	JD12665-	1	JD14493-	1	JD15828-1		JD17093-	1
Filt	tered		No		No		No		No	
PARAMETER U	INITS		CONC	Q	CONC	Q	CONC	Q	CONC	Q
Benzo(B)Fluoranthene	μg/L	NC	0.98	U	1	UJ	0.97	U	0.95	U
Benzo(G,H,I)perylene	μg/L	NC	0.98	U	1	U	0.97	U	0.95	U
Benzo(K)Fluoranthene	μg/L	NC	0.98	U	1	UJ	0.97	C	0.95	U
ois-(2-Chloroethoxy)Methane	μg/L	NC	2	U	2	U	1.9	C	1.9	U
ois-(2-Chloroethyl)Ether	μg/L	NC	2	U	2	U	1.9	U	1.9	U
ois-(2-Ethylhexyl)Phthalate	μg/L	NC	2	U	2	U	1.9	U	1.9	U
Butylbenzyl Phthalate	μg/L	NC	2	U	2	U	1.9	U	1.9	U
Chrysene ,	μg/L	NC	0.98	U	1	U	0.97	U	0.95	U
ال Dibenzo(a,h)Anthracene	μg/L	NC	0.98	U	1	UJ	0.97	U	0.95	U
Diethyl Phthalate	μg/L	NC	2	U	2	U	1.9	U	1.9	U
Dimethyl Phthalate	μg/L	NC	2	U	2	U	1.9	U	1.9	U
	μg/L	NC	2	U	2	U	1.9	U	1.9	U
ان-n-Octyl Phthalate پ	μg/L	NC	2	U	2	UJ	1.9	U	1.9	U
luoranthene ,	μg/L	NC	0.98	U	1	U	0.97	U	0.6	J
luorene ,	μg/L	NC	0.98	U	1	U	0.97	U	0.29	J
Hexachlorobenzene ,	μg/L	NC	0.98	U	1	U	0.97	U	0.95	U
Hexachlorobutadiene ,	μg/L	NC	0.98	U	1	U	0.97	U	0.95	U
Hexachlorocyclopentadiene μ	μg/L	NC	9.8	U	10	U	9.7	U	9.5	U
Hexachloroethane ,	μg/L	NC	2	U	2	U	1.9	U	1.9	U
ndeno(1,2,3-Cd)Pyrene	μg/L	NC	0.98	U	1	UJ	0.97	U	0.95	U
sophorone ,	μg/L	NC	2	U	2	U	1.9	U	1.9	U
Naphthalene ,	μg/L	NC	0.98	U	1	U	0.97	U	0.95	U
Nitrobenzene "	μg/L	NC	2	U	2	U	1.9	U	1.9	U
n-Nitrosodimethylamine μ	μg/L	NC	2	U	2	U	1.9	U	1.9	U
ո-Nitroso-di-n-Propylamine լ	μg/L	NC	2	U	2	U	1.9	U	1.9	U
n-Nitrosodiphenylamine μ	μg/L	NC	4.9	U	5	U	4.9	U	4.8	U
	μg/L	NC	4.9	U	5	U	4.9	U	4.8	U
Phenanthrene L	μg/L	NC	0.98	U	1	U	0.97	U	0.48	J

TABLE 6B

CWTP Effluent Results - SVOCs

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

S.	AMPLE LOCATION		073-TW-4	17	073-TW-4	18	073-TW-4	19	073-TW-5	0
	FIELD SAMPLE ID		073-TW-47-09	90320	073-TW-48-10	00920	073-TW-49-11	10620	073-TW-50-12	20320
	SAMPLING DATE		9/3/2020		10/9/2020		11/6/2020		12/3/2020	
LAB SAMPLE ID		Effluent Criteria	JD12665-1		JD14493-1		JD15828-1		JD17093-	1
	Filtered		No		No		No		No	
PARAMETER	PARAMETER UNITS		CONC	Q	CONC	Q	CONC	Q	CONC	Q
Phenol	henol μg/L		2	U	2	U	1.9	U	1.9	U
Pyrene μg/L		NC	0.98	U	1	U	0.97	U	0.23	J

Notes:

SA-6 CWTP Effluent Criteria is the discharge limitation criteria from Sewer Use Permit #31630019

NC: No criterion established

CONC: Concentration reported in micrograms per liter (μ g/L)

J: Estimated concentration

R or N: Rejected or negated by laboratory or data validator

U: Not detected above method detection limit

TABLE 6C

CWTP Effluent Results - Metals

Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

SAMPLE LO	CATION		073-TW-47	,	073-TW-4	8	073-TW-49	9	073-TW-5	0
FIELD SA	MPLE ID		073-TW-47-09	0320	073-TW-48-100920		073-TW-49-110620		073-TW-50-12032	
SAMPLII	SAMPLING DATE		9/3/2020	9/3/2020)	11/6/2020)	12/3/2020	
LAB SAMPLE ID		Effluent Criteria	JD12665-1		JD14493-1		JD15828-1		JD17093-1	
Filtered			No		No		No		No	
PARAMETER	UNITS		CONC	Q	CONC	Q	CONC	Q	CONC	Q
Chromium	mg/L	NC	0.229		0.301		0.416		0.331	J
Copper	mg/L	306	0.204		0.0329		0.0216		0.011	
Lead	mg/L	1	<u>1.34</u>		0.0371		0.0151		0.015	U
Mercury	mg/L	0.08	0.0002	U	0.0002	U	0.0002	U	0.0002	U
Nickel	mg/L	3.9	0.0642		0.01	U	0.05	U	0.01	U
Zinc	mg/L	4.2	0.149		0.0232		0.0247		0.02	U

Notes:

SA-6 CWTP Effluent Criteria is the discharge limitation criteria from Sewer Use Permit #31630019

NC: No criterion established

Bold and underlined concentrations exceed the CWTP Effluent Criteria

CONC: Concentration reported in micrograms per liter (ug/l)

J: Estimated concentration

R or N: Rejected or negated by laboratory or data validator

U: Not detected above method detection limit

TABLE 6D

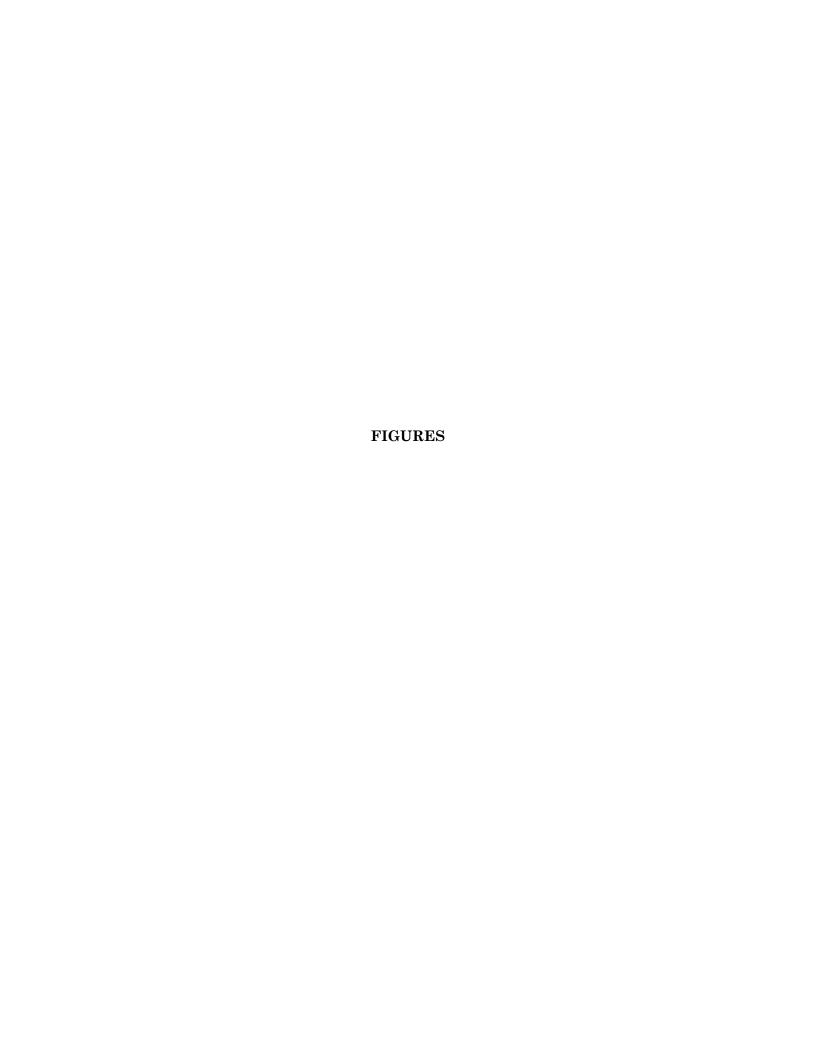
CWTP Effluent Results - General Chemistry

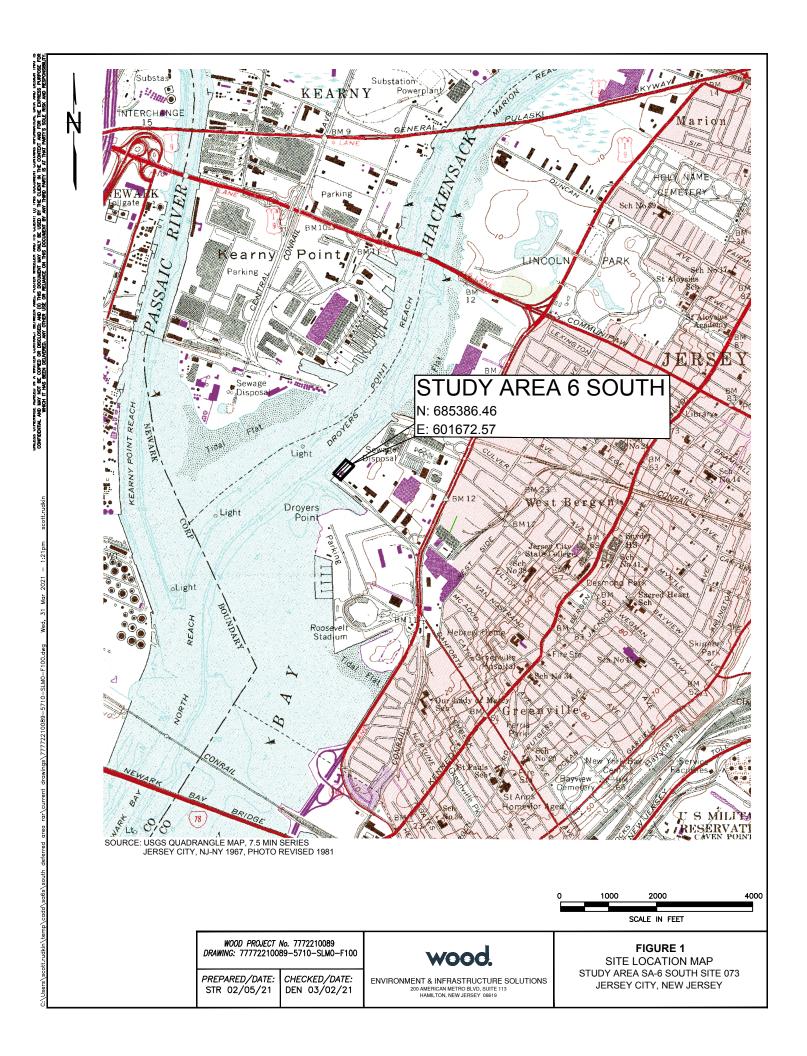
Study Area 6 South Honeywell International Inc. Jersey City, New Jersey

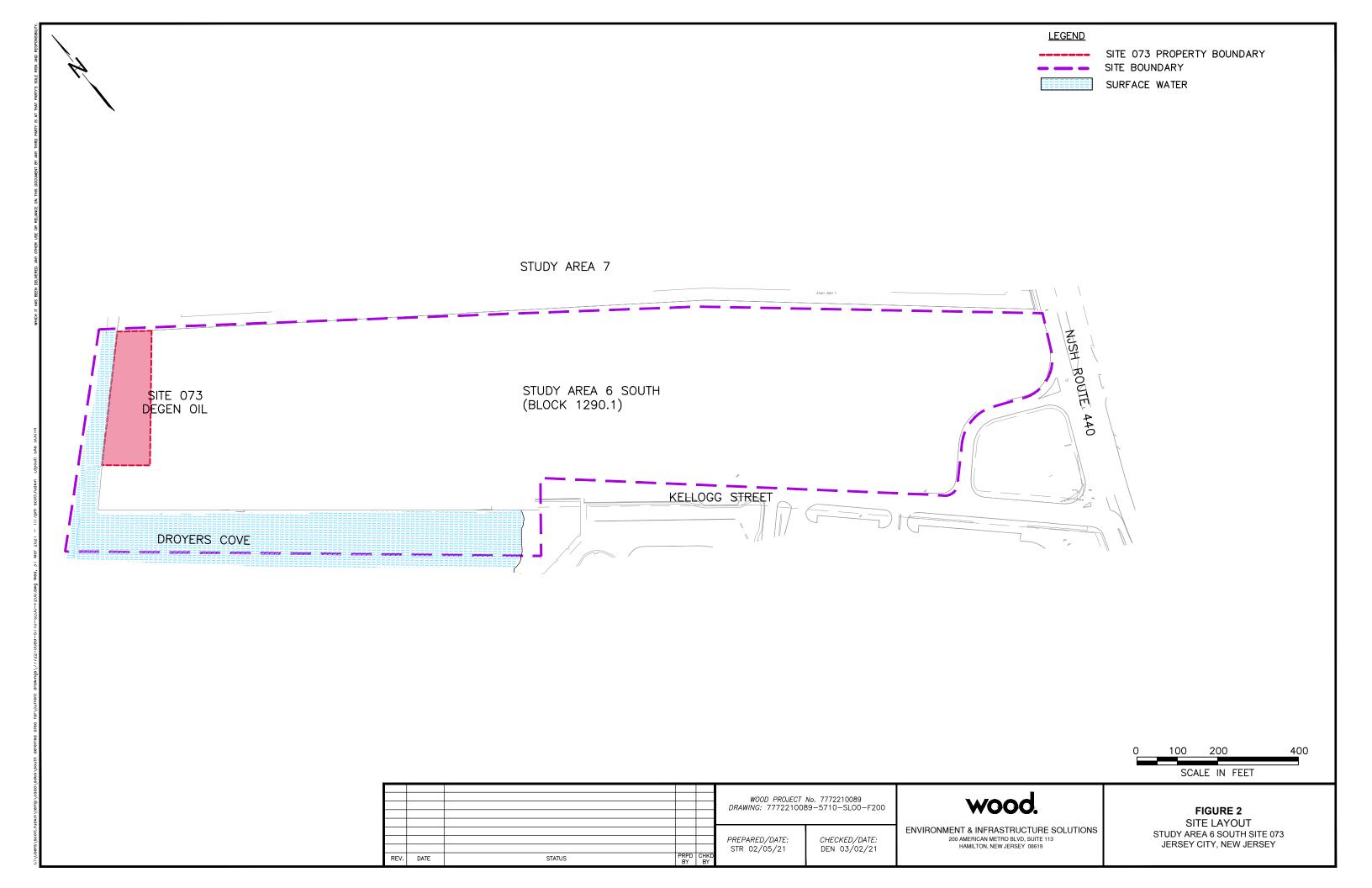
SAMPLE LO	CATION		073-TW-4	7	073-TW-4	8	073-TW-4	9	073-TW-5	0
FIELD SAI	FIELD SAMPLE ID		073-TW-47-09	0320	073-TW-48-10	0920	073-TW-49-11	.0620	073-TW-50-12	20320
SAMPLING DATE		SA-6 CWTP	9/3/2020		10/9/2020		11/6/2020		12/3/202	0
LAB SAMPLE ID		Effluent Criteria	JD12665-1		JD14493-1		JD15828-1		JD17093-	1
Filtered			No		No		No		No	
PARAMETER	UNITS		CONC	Q	CONC	Q	CONC	Q	CONC	Q
Biochemical Oxygen Demand, Five Day	mg/L	NC	1210		14.1		11.4		1	U
Hexane Ext Material Silica Gel Treated mg/L		100	5	U	5	U	5	U	5	U
Hexavalent Chromium mg/L		NC	0.0055	U	0.28		0.38		0.34	J

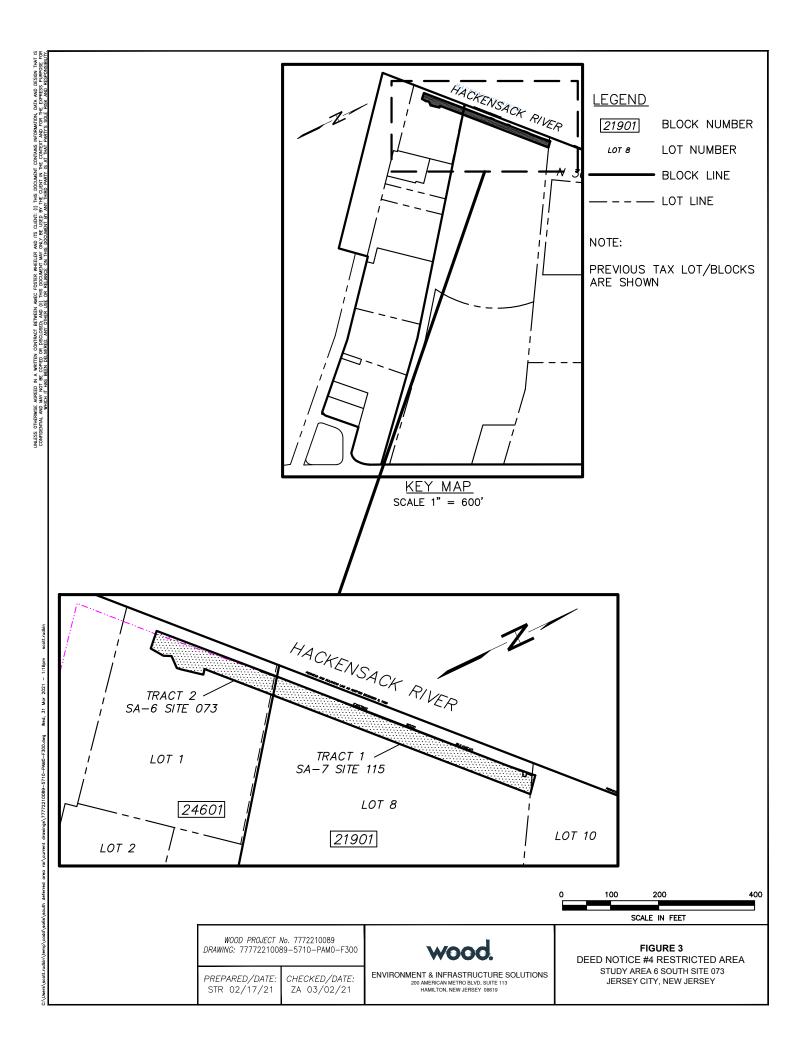
Notes:

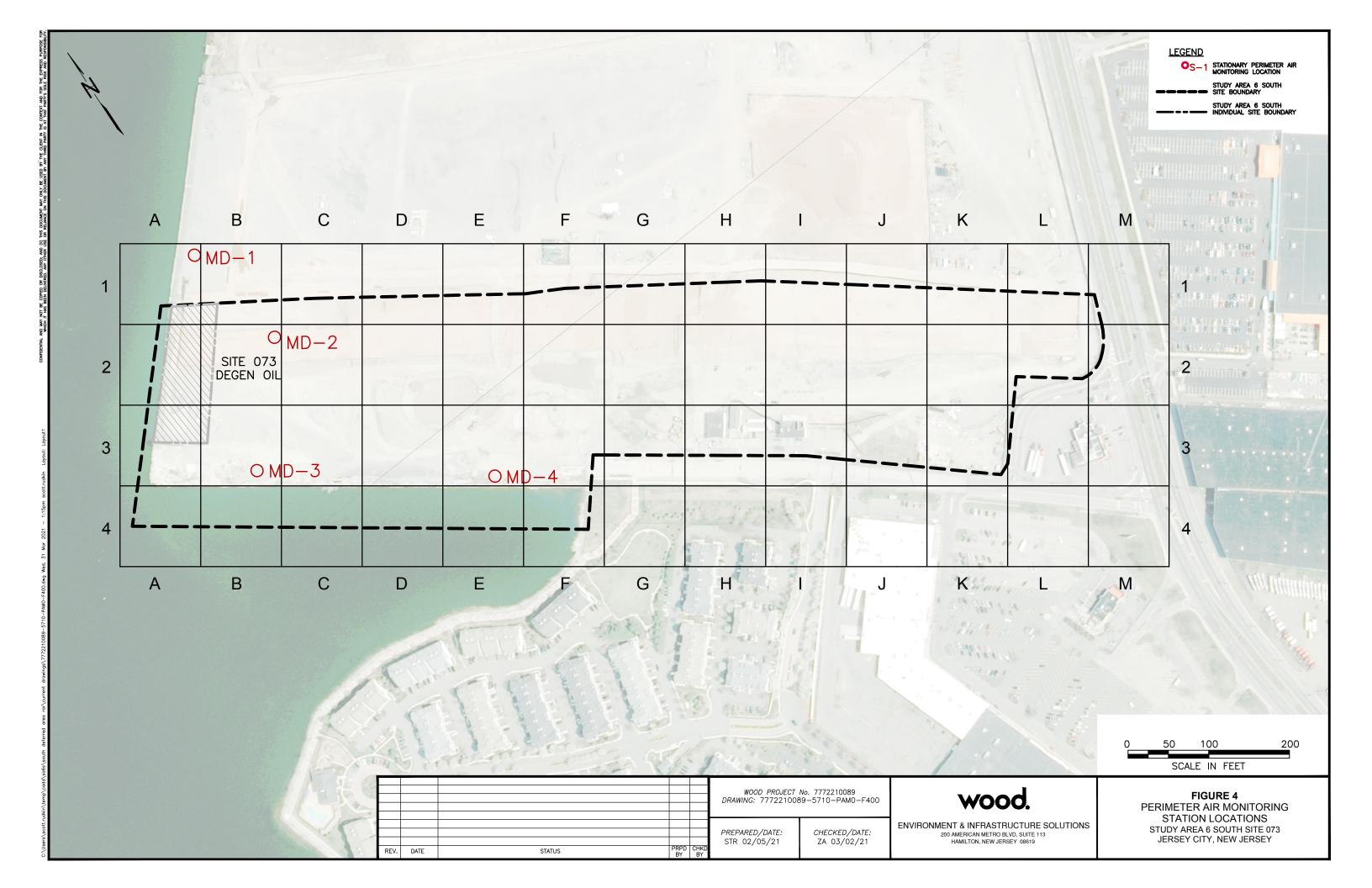
SA-6 CWTP Effluent Criteria is the discharge limitation criteria from Sewer Use Permit #3163001\$

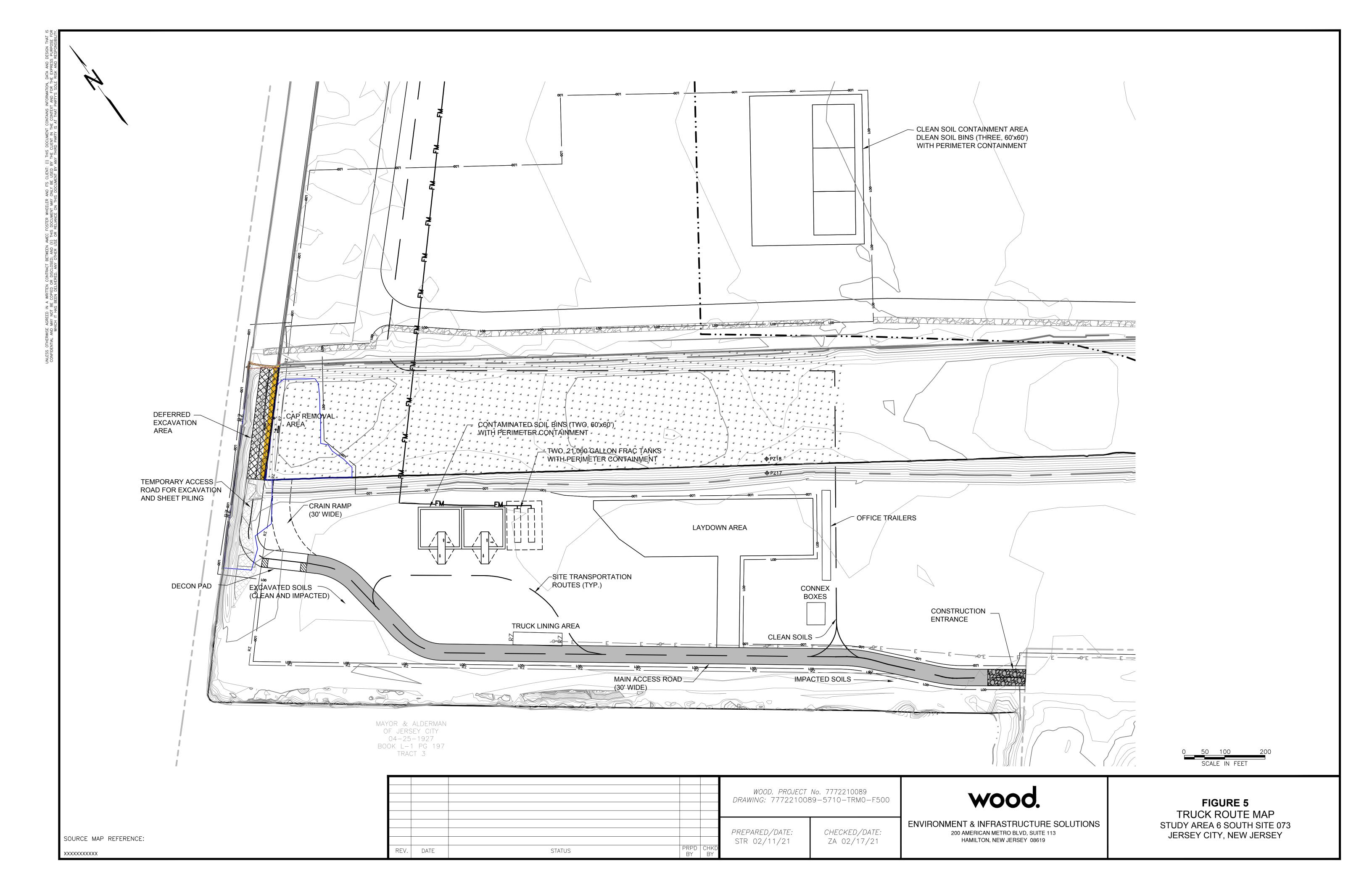

NC: No criterion established

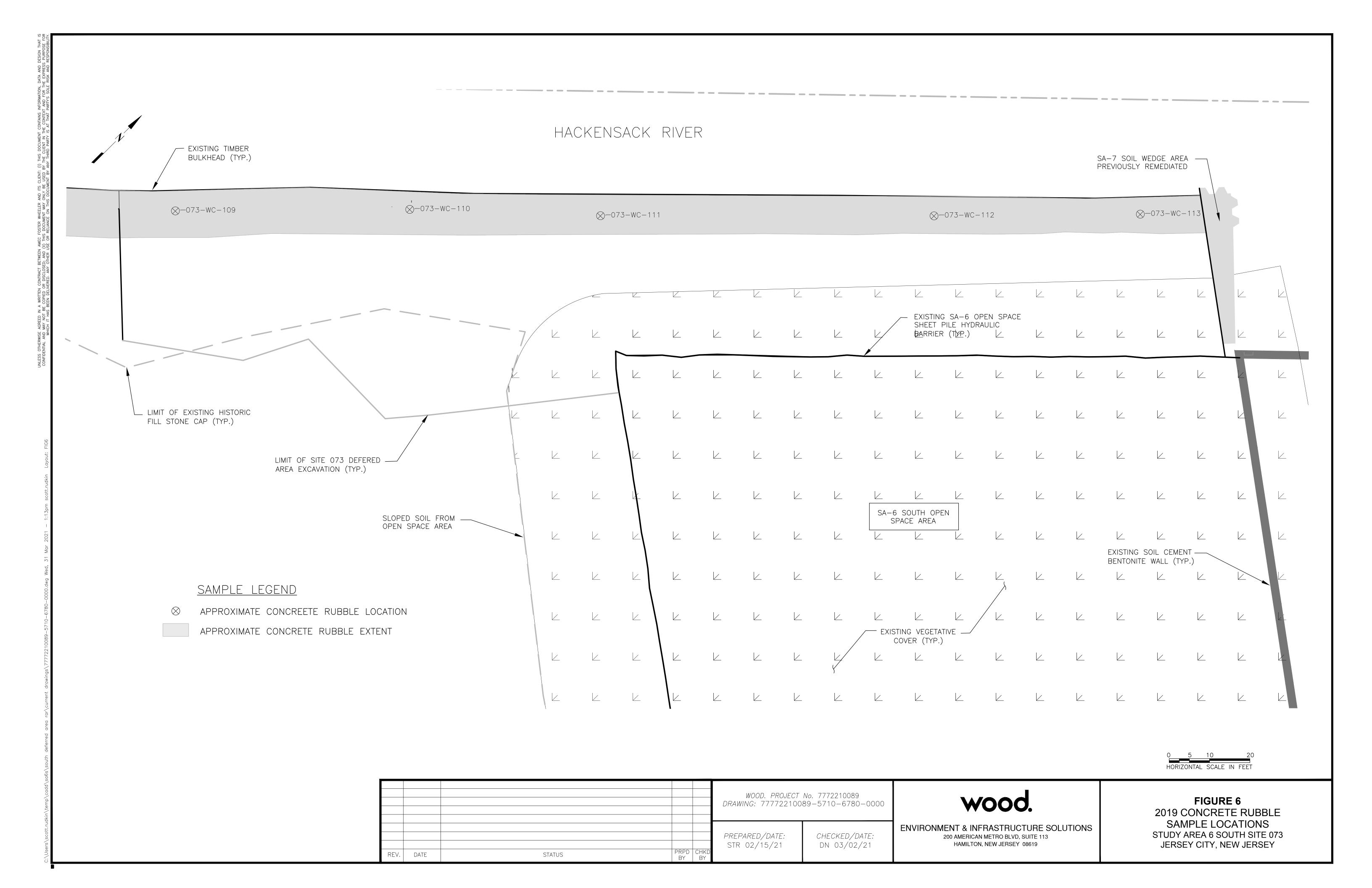

CONC: Concentration reported in micrograms per liter (ug/l)

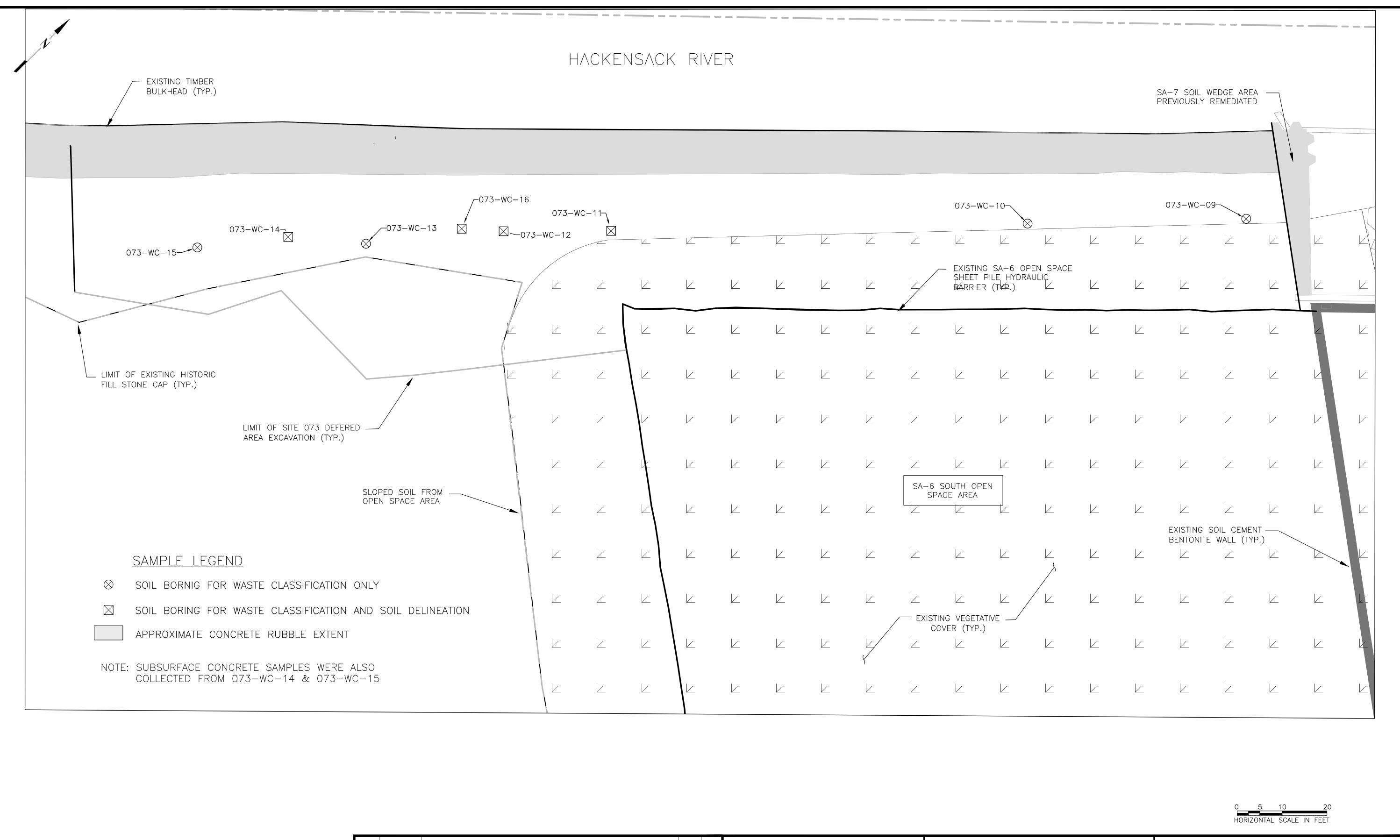

J: Estimated concentration

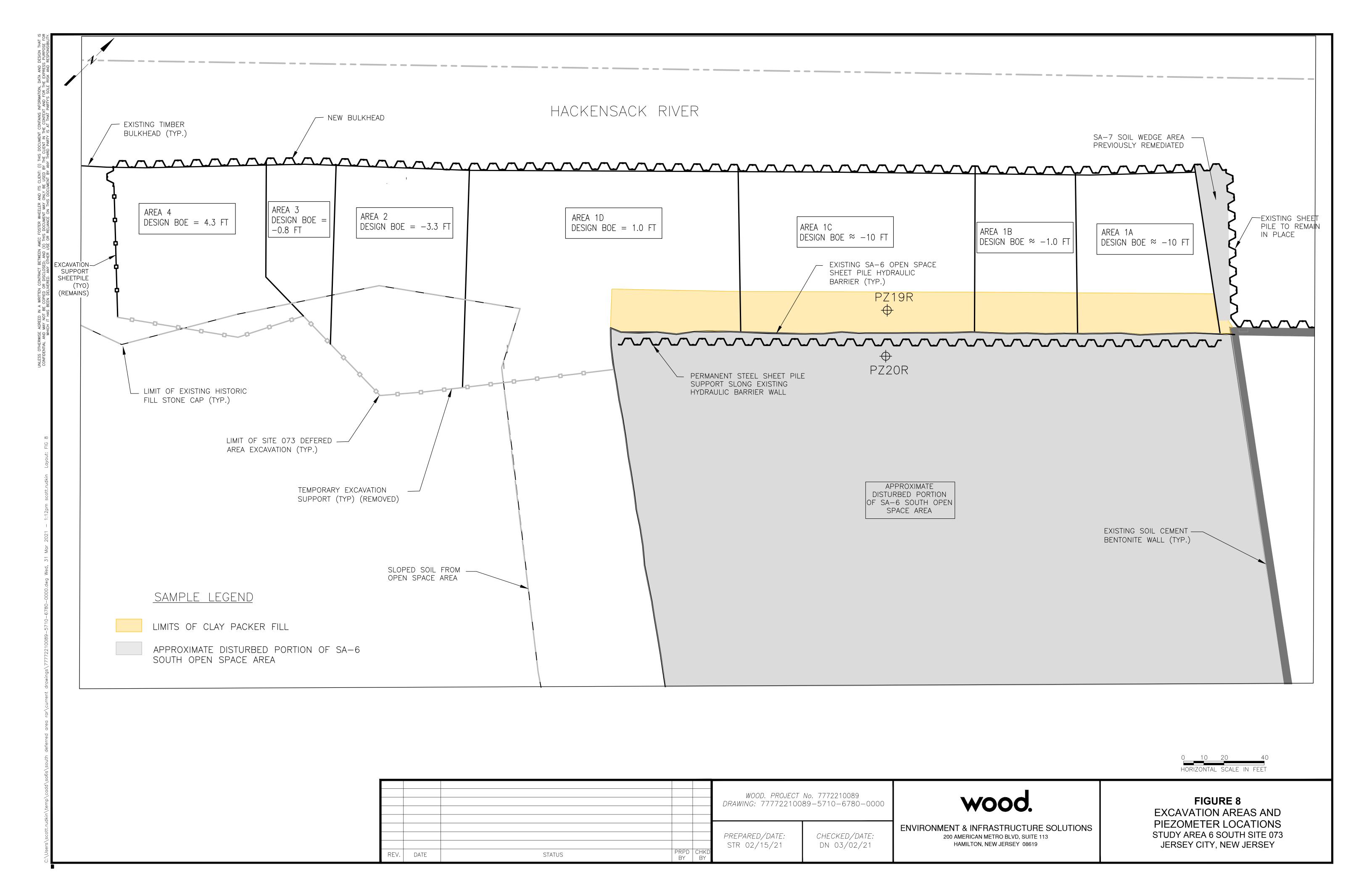

R or N: Rejected or negated by laboratory or data validator


U: Not detected above method detection limit







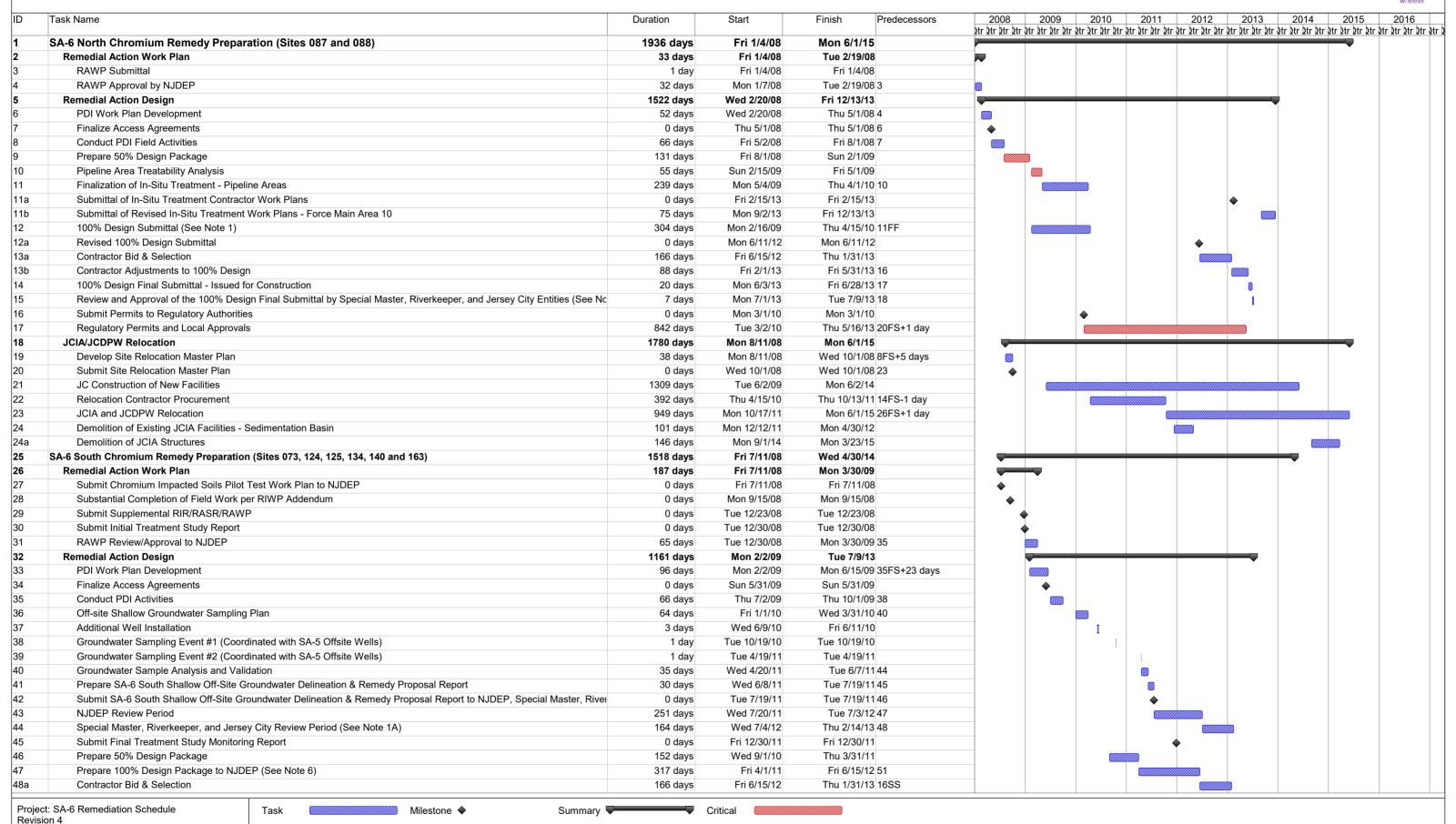



Wood. **ENVIRONMENT & INFRASTRUCTURE SOLUTIONS** 200 AMERICAN METRO BLVD, SUITE 113 HAMILTON, NEW JERSEY 08619

FIGURE 7 WASTE CLASSIFICATION AND DELINEATION SAMPLE LOCATIONS STUDY AREA 6 SOUTH SITE 073 JERSEY CITY, NEW JERSEY

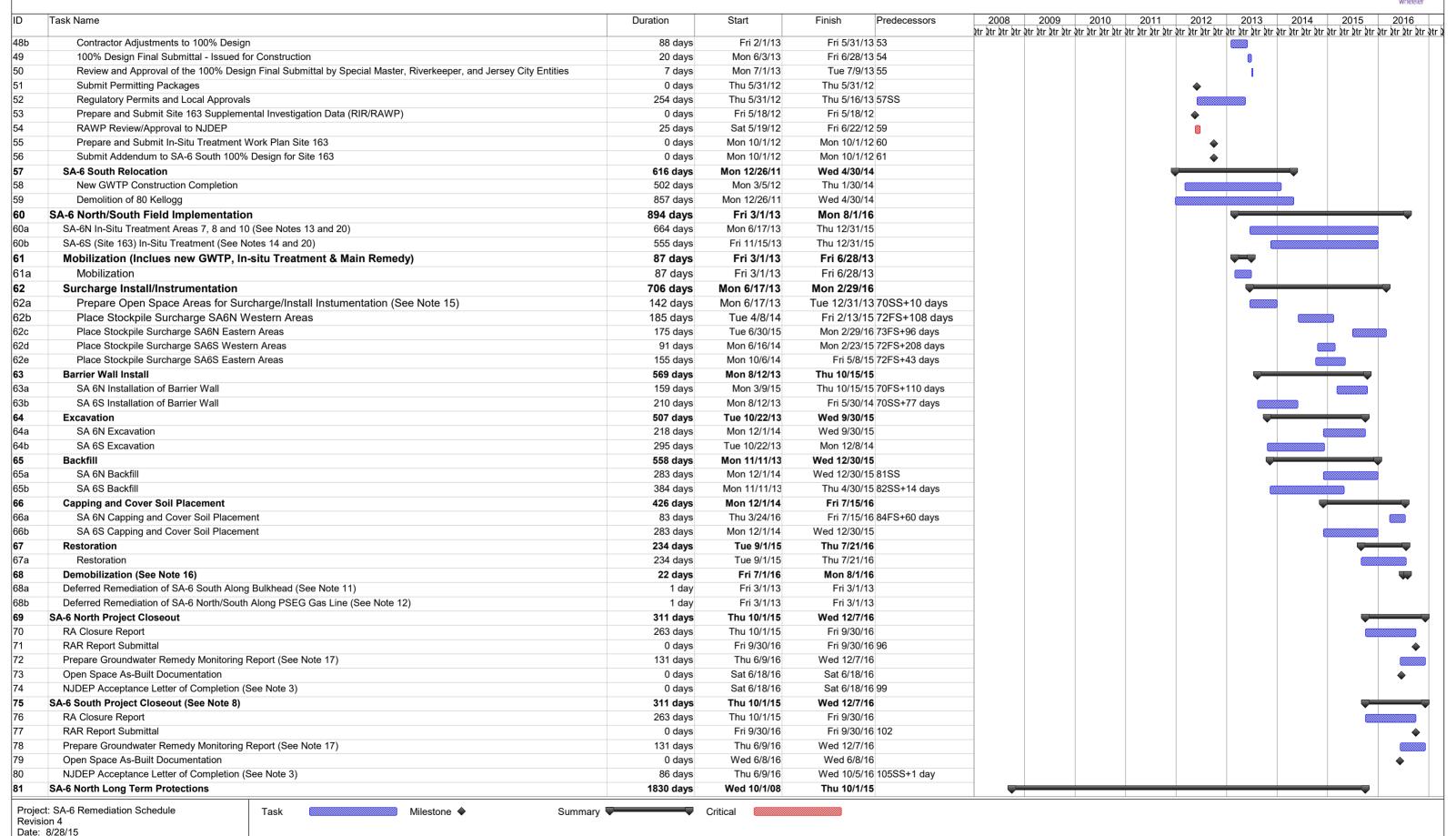
SOURCE MAP REFERENCE: XXXXXXXXXX

WOOD. PROJECT No. 7772210089 DRAWING: 77772210089-5710-6780-0000 PREPARED/DATE: CHECKED/DATE: STR 02/15/21 DN 03/02/21 REV. DATE STATUS



Date: 8/28/15

FIGURE 10 SA-6 North/South Combined Chromium Remediation Schedule



Page 1

FIGURE 10 SA-6 North/South Combined Chromium Remediation Schedule

Page 2

FIGURE 10 SA-6 North/South Combined Chromium Remediation Schedule

Note 1: 100% Design Submittal includes Data Validation Plan and Health and Safety Plan.

Note 1A: The 30-day Special Master review period is provided as a placeholder. This 30-day period is not binding to the Special Master or Honeywell.

Note 2: The future event(s) that will trigger the deadline for the Amended Conservation Restriction, as set forth in Schedule A of the Conservation Restriction recorded on January 9, 2009, include: 1) upon completion of the hydraulic barrier walls the AOC 1 Open Space Area will be re-surveyed (the "As-Built Survey") and a metes and bounds description (the "As-Built Description") will be prepared based on the As-Built Description Honeywell shall request that the Court amend the order entered on April 8, 2009, which, pursuant to paragraph 60(b)(i) of the Consent Decree, incorporates the Conservation Restriction ("the Conservation Restriction Order"), by substituting the As-Built Description for the metes and bounds description set forth in Exhibit A of the Conservation Restriction recorded on January 9, 2009, and thereby creating an amended Conservation Restriction; and 3) once the Conservation Restriction order is amended by the Court. Honeywell shall record the Amended Conservation Restriction in the office of the Hudson County Register (TBD).

Note 3: Deed Notice is to be submitted 90 calendar days following completion of Chromium Remedy. The NJDEP will issue an Acceptance Letter of Completion after the final deed notice is recorded with the county clerk and submitted to the NJDEP for review (TBD).

Note 4: 120 calendar days following construction of adjacent roads and utility corridors within the AOC 1 Open Space Area (TBD).

Note 5: Open Space Development Plans to be submitted any time after approval of Open Space Design Standards (TBD)

Note 6: 100% Design includes:

- * Data Validation Plan
- * Health and Safety Plan
- * Post-Treatment Monitoring Plan
- * Post Remedial Treated Soil Monitoring Plan
- Plan for Investigative Measures for Cap Integrity
- * L-Well Groundwater Monitoring Plan
- * Groundwater Level Control Plan
- * Development AOC Shallow Groundwater Monitoring Plan

Note 7: The future event(s) that will trigger the deadline for the Amended Conservation Restriction, as set forth in Schedule A of the Conservation Restriction recorded on March 25, 2010, include: 1) upon completion of the construction of the hydraulic barrier walls the Open Space AOC will be re-surveyed (the "As-Built Survey") and a metes and bounds description (the "As-Built Description") will be prepared based on the As-Built Description Honeywell shall request that the Court amend the order, entered on March 21, 2011, which, pursuant to paragraph 74(b)(i) of the Conservation Restriction Order"), by substituting the As-Built Description for the metes and bounds description set forth in Exhibit A of the Conservation Restriction recorded on March 25, 2010, and thereby creating an amended Conservation Restriction; and 3) once the Conservation Restriction Order is amended by the Court, Honeywell shall record the Amended Conservation Restriction in the office of the Hudson County Register (TBD).

Note 8: Honeywell reserves the right to combine project closeout activities.

Note 9: 120 calendar days following construction of adjacent roads and utility corridors within the Open Space AOC (TBD).

Note 10: Open Space Development Plans to be submitted any time after approval of Open Space Design Standards (TBD).

Note 11: The deferred remediation along the SA-6 South Bulkhead will be performed commensurate with the schedule for construction of the permanent Bayfront Bulkhead construction project is planned for the calendar year 2019 which results in the deferred remediation phase being implemented within approximately three years of completion of the main site remedy.

Note 12: The deferred remediation along the SA-6 North/South PSEG Gas Line will be performed commensurate with the schedule for construction of the Route 440 Road Widening construction project is planned for calendar year 2019 which results in the deferred remedy phase being implemented within approximately three years of completion of the main site remedy.

Note 13: In-situ treatment was initiated in Areas 7 and 8 at SA-6 North. Additional time is allotted for the revised Area 10 footprint proximate to the 72-inch forcemain and for subsequent injection events if needed

Note 14: In-situ treatment at SA-6 South was completed in Summer 2014. Additional time is allotted in the event that a subsequent injection event is needed.

Note 15: This activity includes all locations except the JCIA Facilities. The surcharge instrumentation will be installed at JCIA after relocation of the employees to the new municipal services complex.

Note 16: The chromium remedy contractor is planning demobilization as indicated. Depending on the weather, there may be some additional site restoration activities in the fall of 2016.

Project: SA-6 Remediation Schedule	Task Milestone ◆	Summary Critical
------------------------------------	------------------	------------------

FIGURE 10 SA-6 North/South Combined Chromium Remediation Schedule

Task Name Duration Start Finish Predecessors 2008 2009 2010 2011 2012 2013 2014 2015 2016

Note 17: Report prepared pursuant to Paragraph 72, (c)(viii) of SA-6 North Consent Decree and Paragraph 86, (c)(xix) of the SA-6 South Consent Decree. both of which state, "A report reviewing measured groundwater levels for the groundwater remedy."

Note 18: The L-well locations outside of the Open Space (Cap Area) will be sampled after one full year of seasonal hydrologic fluctuations following completion of the Chromium Remedy, currently anticipated to be in the latter half of March 2017.

Note 19: A combined LTMP addressing both SA-6 North and South will be prepared and submitted.

Note 20: Confirmation soil sampling at in-situ treatment areas have been / will be completed as follows:

SA-6 North TA-7 & TA-8:

6-month: June 2014 (Completed)

3-year: Approx. June 2016

SA-6 North TA-10-1:

6-month: Approx. March 2016 (weather permitting)

3-year: No later than approx. Sept 2018 (or sooner pending approval)

SA-6 South (Site 163)

6-month: April 2015 (Completed)

3-year: TBD (not needed if Site 163 re-injections not performed)

Project: SA-6 Remediation Schedule Revision 4

Date: 8/28/15

Milestone •

APPENDIX A REPRESENTATIVE PHOTOGRAPHS

Photo 1
Former Timber Bulkhead Prior to Mobilization

Photo 2
Former Timber Bulkhead Prior to Mobilization

Photo 3
Landside Deferred Area Prior to Mobilization

Photo 4 Landside Deferred Area Prior to Mobilization

Photo 5 Office and trailer setup

Photo 6 Constructing gravel access road

Photo 7
Vibration & settlement monitoring of JCMUA 72" force main

Photo 8
Placing boat in river to deploy turbidity monitoring buoy and turbidity curtain

Photo 9 Installing and anchoring turbidity curtain

Photo 10

Mobilization and assembly of crawler crane for sheet pile installation

Photo 11 Unloading sheet pile on SA-6 South

Photo 12 Temporary Construction Water Treatment Plant

Photo 13
Weir tanks with secondary containment on SA-6 South

Photo 14
Roadway crossover protection over dual contained HDPE pipe on SA-7

Photo 15 Installing dewatering sumps in the Deferred Area

Photo 16 Installing depressurization wells

Photo 17 Installing depressurization wells, observation wells, header pipe, and electrical conduits for dewatering system inside the Deferred Area

Photo 18
Clean stockpile area on SA-7 – From left to right – Horizon C, Horizon B,
Structural Fill, Horizon A

Photo 19
Removing Horizon A soil in the Open Space Area

Photo 20
Removing structural fill in the Open Space Area on SA-6 South

Photo 21
Excavating GDL cover soils in the Open Space Area on SA-6 South with long stick excavator

Photo 22 Removing GDL layer

Photo 23
Exposing edge of liner and GDL/orange demarcation layer in the Open
Space Area

Photo 24 Installing reinforced hydraulic barrier wall

Photo 25
Installing brackets from existing hydraulic barrier wall to reinforce hydraulic barrier sheet pile wall

Photo 26
Removing common borrow to elevation +10 msl in the Deferred Area

Photo 27
Loading out impacted non-hazardous material from the Deferred Area

Photo 28
Applying dust suppression during concrete debris removal from existing bulkhead

Photo 29
Removing concrete and debris along bulkhead

Photo 30
Removing reusable concrete from the Deferred Area

Photo 31
Distributing DGA on lower working platform

Photo 32 Constructing crane platform

Photo 33 Installing permanent sheetpile along bulkhead

Photo 34 Installing permanent sheetpile along bulkhead

Photo 35
Installing and readjusting permanent sheetpile along bulkhead

Photo 36 Installing grout columns

Photo 37
Installing single sheet pile at northern end of the Deferred Area leak location

Photo 38
Pumping flowable fill behind new sheet pile

Photo 39 Jet grouting at north end of the Deferred Area

Photo 40 Installing temporary excavation support sheet piles

Photo 41
Coal tar and epoxy repairs on hydraulic barrier wall

Photo 42 Removing concrete from the Deferred Area

Photo 43 Resizing concrete

Photo 44
Processing concrete stockpile

Photo 45
Excavating 20 foot zone of upper platform to elevation +12 msl

Photo 46 Loading out non-hazardous soil

Photo 47 Excavating hazardous soil

Photo 48 Loading out hazardous soil

Photo 49
Excavating Area 1A in the Deferred Area

Photo 50
Bottom of Excavation Area 4 (-4.3 ft)

Photo 51 Bottom of Excavation Area 3 (-0.8 ft)

Photo 52 Bottom of Excavation Area 2 (-3.3 ft)

Photo 53 Excavating Area 1A-1

Photo 54 Bottom of Excavation Area 1A-1 (-10.2 ft)

Photo 55 Bottom of Excavation Area 1A-2 (-10.2 ft)

Photo 56 Bottom of Excavation Area 1C-1 (-10.2 ft)

Photo 57 Bottom of Excavation Area 1C-2 (-10.2 ft)

Photo 58
Facing south, excavator exposing top of meadow mat on the eastern side of Excavation Area 1C

Photo 59
Placing geotextile fabric in Excavation Area 3 before installing bridge lift

Photo 60 Installing bridge lift in Excavation Area 2

Photo 61
Placing 16-ounce geotextile fabric on completed bottom of excavation

Photo 62
Pushing out bridge lift in Excavation Area 1A-2

Photo 63
Abandoning depressurization well, DP-3

Photo 64
Removing temporary excavation support sheet piles

Photo 65
Removing structural fill next to hydraulic barrier wall prior to installing flowable fill

Photo 66
Pumping flowable fill next to hydraulic barrier wall

Photo 67
Placing lean clay next to hydraulic barrier wall

Photo 68 Installing lean clay along hydraulic barrier wall and placing common borrow in 1' lift within the Deferred Area

Photo 69
Placing lightweight fill in Excavation Areas 3 and 4

Photo 70
Compaction testing of structural fill in Excavation Area 3

Photo 71
Placing, compacting, and testing structural fill within the Deferred Area

Photo 72 Backfilling and compacting structural fill within the Deferred Area

Photo 73
Compacting common borrow within the Deferred Area

Photo 74
Compacting structural fill wedge along hydraulic barrier wall

Photo 75
Restoring and reconstructing impacted soils in the Open Space Area

Photo 76 Confirming elevations in the Open Space Area

Photo 77 Verifying points in the Open Space Area

Photo 78 Completing grading of the Open Space Area

Photo 79
Installing 124-PZ-20R in the Open Space Area

Photo 80
Installing liner boot around 124-PZ-20R within the Open Space Area

Photo 81
Covering and protecting subgrade in the Open Space Area

Photo 82
Deploying geotextile for the Open Space Area restoration

Photo 83
Preparing subgrade for liner installation; adding calciment for supplemental moisture control

Photo 84 Stitching gas venting layer (GVL) panels together

Photo 85
Installing GVL in the Open Space Area

Photo 86
Installing Linear Low Density Polyethylene (LLDPE) liner Panel #1

Photo 87
Fusion welding liner Panel #1 to liner Panel #2

Photo 88
Connecting existing GVL to new GVL using zip-ties

Photo 89
Extrusion welding of existing LLDPE liner to new LLDPE liner

Photo 90 Extrusion welding repairs on LLDPE liner

Photo 91
Installing GDL and deploying orange demarcation fabric

Photo 92
Placing GDL cover soils over orange demarcation fabric in the Open Space
Area

Photo 93
Installing GDL cover soils within the Open Space Area

Photo 94
Placing warning tape atop the black root barrier geotextile

Photo 95
Installing and compacting structural fill within the Open Space Area

Photo 96
Placing Horizon B soil within the Open Space Area and verifying grades

Photo 97
Installing Horizon A topsoil within the Open Space Area

Photo 98 Drill seeding the Open Space Area

Photo 99
Installing erosion control blanket within the Open Space Area

Photo 100 Installing Redi-Rock wall

Photo 101
Placing clean ¾" stone and wrapping in geotextile fabric behind Redi-Rock wall

Photo 102 Installing lightweight fill in the Deferred Area

Photo 103
Installing lightweight fill in the Deferred Area

Photo 104
Installing and compacting DGA in the Deferred Area

Photo 105
Placing geotextile fabric over compacted DGA within the Deferred Area

Photo 106
Installing clean ¾" stone within the Deferred Area

Photo 107
From left to right – Deferred Area, Redi-Rock wall, and Open Space Area

Photo 108
Final restoration of the Deferred Area and Open Space Area

Photo 109
Final restoration of the Deferred Area

APPENDIX B ELECTRONIC DATA DELIVERABLE SUBMITTAL CONFIRMATION

From: DEP SRPEDD < SRPEDD@dep.nj.gov > Sent: Tuesday, February 09, 2021 8:36 PM

To: Patel, Dakshesh < <u>dakshesh.patel@woodplc.com</u>>

Subject: G000000927, RPC030001, HCC73, HB264161, (Directory: 20210125) - Passed

CAUTION: External email. Please do not click on links/attachments unless you know the content is genuine and safe.

The EDD submission via email from (<u>dakshesh.patel@woodplc.com</u>) on (2/8/2021 11:50:32 AM) with the subjectline "[EXTERNAL] RE: G000000927, RAP190001"

The following identifiers were in the DTST file:

• Directory: 20210125

• DESC: DEGEN OIL & CHEMICAL COMPANY

• SRPID: G000000927

• Submit Date: 2021/01/25

This submission has been issued an SRP Catalog ID: HB264161

Submission status: Passed.

Please do **not** resubmit.

EDD data deliverable must be submitted only once.

- To fulfill Key Document requirements attach only a copy of this email as an appendix to the document.
 - Do **not** resubmit any approved EDD deliverable as part of a portal submission.

Email ID: OEM_58304 Sub ID:SUB_503648

$\begin{array}{c} \text{APPENDIX C} \\ \\ \text{RECORD DRAWINGS (CD ONLY)} \end{array}$

APPENDIX D BORING LOGS AND WELL DOCUMENTATION

Wood. Honeywell SA-6 Bulkhead

DATE BEGAN: 10-28-2019

DRILLING CO: B&B Drilling

SAMPLING TOOL: 4ft Macrocore

DRILLER: Ed Blewett

PROJECT NO: 3480190654

DATE FINISHED: 10-28-2019

DRILLING METHOD: Direct Push

COMPLETION DEPTH: 14' bgs

NORTH: 685639.2

BORING ID: 073-WC-09

INSPECTOR: Helen Becker-Cerbone

DRILL EQUIP: Geoprobe **GW DEPTH:** 5.0' bgs

EAST: 601528.1

ELEV (FT.)	DEPTH (FT.)	RUN NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
		S1 S2	NA NA	1.8		0.0 - 0.5' FILL: TOPSOIL, with grass and roots 0.5 - 3.5' FILL: Grayish brown fine to coarse SAND,little Silt; dense, dry. Brownish red color at 1.5-1.8 3.5 - 4.0' FILL: Grayish brown fine SAND and SILT, some medium Gravel; medium dense, damp. Brownish red color at 3.5-3.8' 4.0 - 5.8' FILL: Brown fine SAND and SILT, some fine Gravel; dense, moist to wet at 5.0' bgs		Location of boring moved 2' to the south from the original location 073-WC-09-0103 (1.0-3.0) VOC grab (2.5-3.0) at 9:35
	- 7.0 - 8.0 - 9.0 - 10.0	S3	NA	4.0		8.0 - 9.0' FILL: Gray fine angular ASPHALT pieces, some Silt, little fine sand; medium dense, wet 9.0 - 12.0' FILL: Gray fine to medium SAND, trace fine Gravel; dense, wet. Brownish red color at 11.5-11.7'		Very hard drilling (9.0-12.0)

PREPARED BY: <u>CM</u> CHECKED BY: <u>HBC</u>

LOCATION: SA-6 Bulkhead **DATE BEGAN:** 10-28-2019 DRILLING CO: B&B Drilling

SAMPLING TOOL: 4ft Macrocore

DRILLER: Ed Blewett

PROJECT NO: 3480190654 **DATE FINISHED: 10-28-2019 DRILLING METHOD:** Direct Push

COMPLETION DEPTH: 14' bgs

NORTH: 685639.2

BORING ID: 073-WC-09

INSPECTOR: Helen Becker-Cerbone

DRILL EQUIP: Geoprobe GW DEPTH: 5.0' bgs **EAST:** 601528.1

10.0 - 11.0 - 12.0 S4 NA 2.0 12.0 - 13.5' SM: Dark reddish brown fine SAND and SILT; soft, moist - 13.0 - 14.0 - 16.0 - 17.0 - 18.0 - 19.0	ELEV (FT.)	DEPTH (FT.)	RUN NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
		- 11.0 - 12.0 - 13.0 - 14.0 - 15.0 - 16.0 - 17.0 - 18.0 - 19.0	S4	NA	2.0		SAND and SILT; soft, moist 13.5 - 14.0' SM: Brown fine to medium SAND, some Silt; very dense, moist. End of		13.5) VOC grab (10.5-11.0) at 10:15 No recovery 12.0-16.0' bgs. Move boring location 2' south Very hard drilling (13.5-

PREPARED BY: CM CHECKED BY: HBC

LOCATION: SA-6 Bulkhead **DATE BEGAN: 10-28-2019** DRILLING CO: B&B Drilling

SAMPLING TOOL: 4ft Macrocore

DRILLER: Ed Blewett

PROJECT NO: 3480190654 **DATE FINISHED: 10-28-2019 DRILLING METHOD:** Direct Push

NORTH: 685604

BORING ID: 073-WC-10

INSPECTOR: Helen Becker-Cerbone

DRILL EQUIP: Geoprobe GW DEPTH: 8.0' bgs

COMPLETION DEPTH: 20' bgs **EAST:** 601494.4

ELEV (FT.)	DEPTH (FT.)	RUN NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
	0.0	S1	NA	3.4	L ^	0.0 - 0.3' TOPSOIL: Dark brown SILT, little		
	_ 1.0 					fine sand, grass, roots; soft, damp 0.3 - 2.0' FILL: Dark brown fine to coarse SAND, some Silt, little fine gravel;dense, damp		
	— 2.0 –					2.0 - 4.0' FILL: CONCRETE, Black gravel zone (2.3-2.5')	-	
	- 3.0 - - 4.0							
	- - - 5.0	S2	NA	3.5		4.0 - 5.0' FILL: CONCRETE 5.0 - 5.5' FILL: Dark brown fine to coarse SAND, some Silt and fine gravel;dense,		
	- 6.0					damp 5.5 - 9.4' FILL: Dark brown over reddish brown fine to coarse SAND, little Silt and fine gravel; medium dense, moist to wet at 8.0' bgs		
	_ 7.0 -					290		073-WC-10-0610 (6.5-7.5 - 8.5-9.5) VOC grab (7.0-7.5 at 14:00
Z	8.0	S3	NA	4.0				
	— 9.0 –				***	9.4 - 9.7' PT: Black organic material(wood and plant roots), fine to medium Sand, Silt, and fine gravel; dense, wet		
	10.0				0::0:	9.7 - 9.9' ML: Reddish brown SILT; dense, damp		

PREPARED BY: CM CHECKED BY: HBC

LOCATION: SA-6 Bulkhead **DATE BEGAN:** 10-28-2019 DRILLING CO: B&B Drilling

SAMPLING TOOL: 4ft Macrocore

DRILLER: Ed Blewett

PROJECT NO: 3480190654 **DATE FINISHED: 10-28-2019**

DRILLING METHOD: Direct Push COMPLETION DEPTH: 20' bgs

NORTH: 685604

BORING ID: 073-WC-10

INSPECTOR: Helen Becker-Cerbone

DRILL EQUIP: Geoprobe GW DEPTH: 8.0' bgs

EAST: 601494.4

ELEV (FT.)	DEPTH (FT.)	RUN NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
	10.0		<u> </u>					
	_					9.9 - 18.0' SW: Brownish gray fine to coarse		
						SAND; loose, wet		
	— 11.0				0:0: 0:0:0			
	_				0:0: ::0::			
					· · · · · · · · ·			
	— 12.0	S4	NA	4.0				
	-							
					:: 0 :: C			
	— 13.0							
	_				0::0: ::0::0			
					::0::C			
	- 14.0							
					0:0:0			
								073-WC-10-1418 (14.5- 17.5) VOC grab (14.5-15.5)
	— 15.0							at 14:30
	— 16.0	S5	NA	3.0	::o::c			
			''`	0.0				
	<u> </u>				0::0: ::0::C			
	17.0				0::0:			
	_							
	— 18.0				0::0::			
						18.0 - 20.0' ML: Brown SILT, little Clay; soft		
	-					grading to stiff, low plasticity, wet. End of boring at 20.0' bgs.		
	— 19.0					- -		
	-							
	20.0							
	20.0							

PREPARED BY: CM CHECKED BY: HBC

LOCATION: SA-6 Bulkhead

DATE BEGAN: 10-28-2019

DRILLING CO: B&B Drilling

SAMPLING TOOL: 4ft Magracory

SAMPLING TOOL: 4ft Macrocore

DRILLER: Ed Blewett

PROJECT NO: 3480190654

DATE FINISHED: 10-28-2019

DRILLING METHOD: Direct Push

COMPLETION DEPTH: 3' bgs

NORTH: 685537.2

BORING ID: 073-WC-11

INSPECTOR: Helen Becker-Cerbone

DRILL EQUIP: Geoprobe **GW DEPTH:** Not Encountered

EAST: 601429.9

ELEV (FT.)	DEPTH (FT.)	RUN NO.		REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
ELEV (FT.)	DEPTH (FT.)		NA NA	3.0	PROFIL	0.0 - 0.5' TOPSOIL: TOPSOIL	ORGANIC VAPORS (PPM)	Refusal at 3' bgs. Moved rig 2' north of original location. Refusal at 3' bgs. Moved rig 2' south of original location. Refusal at 3' bgs.
	- 5.0 - 6.0 - 7.0							3' bgs Moved rig 1' east. Refusal at 2' bgs Moved to 073-WC-12. Refusal at 3.0' bgs Moved to 073-WC-13. Refusal at 3.0' bgs

PREPARED BY: <u>CM</u> CHECKED BY: <u>HBC</u>

Wood. Honeywell Study Area 6

LOCATION: SA-6S Bulkhead

DATE BEGAN: 12-06-19

DRILLING CO: Summit Drilling

SAMPLING TOOL: 5' Macrocore with 1.5" diameter

DRILLER:

PROJECT NO: 3480190654 **DATE FINISHED:** 12-06-19

DRILLING METHOD: Direct Push and Air Rotary

COMPLETION DEPTH: 20.0 ft bgs

NORTH:

BORING ID: 073-WC-11
INSPECTOR: Mike Senna
DRILL EQUIP: 7822DT

GW DEPTH: 8.0 ft bgs

EAST:

ELEV (FT.)	DEPTH (FT.)	RUN NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
	- 0.0 - 1.0 - 2.0 - 3.0	S1	NA	4.0		0.0 - 3.0' SW: Dark brown fine SAND, some fine gravel, trace silt 3.0 - 4.0' CONCRETE: Crushed CONCRETE	NM	Waste Class horizontal composite 073-WC-11-0203 (2.0-3.0) at 10:50 Mixed on 12-09-19: 073-WC-11 (2.0-3.0) from 12-06-19 073-WC-12A (1.0-2.0) from 12-09-19 073-WC-11A (2.0-3.0) from 12-09-19
	- 4.0 - 5.0 - 6.0			0.0		4.0 - 5.0' No recovery 5.0 - 9.0' CONCRETE: Solid CONCRETE		Air rotary through solid concrete
Z	- 7.0 - - 8.0							Waste Class: 073-WC-114 (concrete) at 10:45
	9.0	S2	NA	1.0		9.0 - 10.0' SP: Dark brown fine to coarse SAND, trace silt; medium dense, wet		Hex Chrome: 073-WC-11-0910 (9.5-10.0) at 11:15

PREPARED BY: BMA
CHECKED BY: QA/QC

WOOD. Honeywell Study Area 6

LOCATION: SA-6S Bulkhead

DATE BEGAN: 12-06-19

DRILLING CO: Summit Drilling

SAMPLING TOOL: 5' Macrocore with 1.5" diameter

DRILLER:

PROJECT NO: 3480190654 **DATE FINISHED:** 12-06-19

DRILLING METHOD: Direct Push and Air Rotary

COMPLETION DEPTH: 20.0 ft bgs **NORTH:**

EAST:

BORING ID: 073-WC-11
INSPECTOR: Mike Senna

DRILL EQUIP: 7822DT
GW DEPTH: 8.0 ft bgs

DRILLER:						NORTH:	EAST:	
ELEV (FT.)	DEPTH (FT.)	RUN NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
	10.0		•	•				
	10.0	S3	NA	5.0		10.0 - 11.5' SP: Dark brown fine to coarse SAND, trace silt; medium dense, wet		
	— 11.0 -							Hex Chrome:
	— 12.0					11.5 - 14.0' SP: Reddish brown fine to coarse SAND, some silt; medium dense, wet		073-WC-11-1112 (11.5-12.0) at 11:20 HOLD
	— 13.0							Hex Chrome: 073-WC-11-1314
	_ 14.0					14.0 - 15.0' SP: Reddish brown fine to		(13.0-13.5) at 11:22 HOLD
	_ — 15.0					medium SAND; medium dense, wet		
	-	S4	NA	5.0		15.0 - 15.5' SP: Slough 15.5 - 20.0' SP: Reddish brown fine to		Hex Chrome: 073-WC-11-1516 (15.0-15.5) at 11:35 HOLD
	— 16.0 -					medium SAND, trace of silt; medium dense, wet End of boring at 20.0 ft bgs		
	— 17.0 –							Hex Chrome: 073-WC-11-1718 (17.0-17.5) at 11:37 HOLD
	— 18.0							
	— 19.0 –							Hex Chrome: 073-WC-11-1819 (18.5-19.0) at 11:40 HOLD
	20.0				::::			

PREPARED BY: BMA
CHECKED BY: QA/QC

WOOd. Honeywell Study Area 6

LOCATION: SA-6S Bulkhead

DATE BEGAN: 12-09-19

DRILLING CO: Summit Drilling

SAMPLING TOOL: 5' Macrocore with 3.0" diameter

DRILLER:

PROJECT NO: 3480190654 **DATE FINISHED:** 12-09-19

DRILLING METHOD: Direct Push and Air Rotary

COMPLETION DEPTH: 11.0 ft bgs

NORTH:

BORING ID: 073-WC-11A
INSPECTOR: Mike Senna
DRILL EQUIP: 7822DT

GW DEPTH: 6.0 ft bgs

EAST:

ELEV (FT.)	DEPTH (FT.)	RUN NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
	0.0	S1	NA	3.0		0.0 - 3.0' SW: Dark brown fine SAND, some	NM	Waste Class horizontal
	-					fine gravel, trace silt		composite
	— 1.0							073-WC-11-0203 (2.0-3.0) at 10:50
	_							Mixed on 12-09-19: 073-WC-11 (2.0-3.0) from 12-06-19
	- 2.0							073-WC-12A
	-							(1.0-2.0) from 12-09-19
	- 3.0				-:: -::			073-WC-11A (2.0-3.0) from 12-09-19
	3.0					3.0 - 6.0' CONCRETE: Solid CONCRETE		(======================================
	-							
	- 4.0							Air rotary through solid concrete
	5.0							
								Waste Class horizontal composite
_								073-WC-11-0708
_	6.0	S2	NA	5.0	::::	6.0 - 7.5' SP: Dark brown fine to coarse	-	(7.0-8.0) at 11:40
	-					SAND, trace silt; medium dense, wet		Mixed on 12-09-19: 073-WC-11A (7.0-8.0)
	 7.0							073-WC-12A (7.0-8.0)
						7.5 - 10.0' SP: Reddish brown fine to coarse SAND, some silt; medium dense, wet		
	- 8.0					. C. a. E., como cia, modium dondo, wot		Waste Class horizontal composite
	— 9.0							073-WC-11-0910 (9.0-10.0) at 11:50
	-							Mixed on 12-09-19: 073-WC-11A (9.0-10.0)
	10.0				::::			073-WC-12A (9.0-10.0)

PREPARED BY: BMA
CHECKED BY: QA/QC

LOCATION: SA-6S Bulkhead **DATE BEGAN:** 12-09-19 **DRILLING CO:** Summit Drilling

DRILLER:

SAMPLING TOOL: 5' Macrocore with 3.0" diameter

PROJECT NO: 3480190654 **DATE FINISHED: 12-09-19**

DRILLING METHOD: Direct Push and Air Rotary

COMPLETION DEPTH: 11.0 ft bgs

NORTH:

BORING ID: 073-WC-11A INSPECTOR: Mike Senna

DRILL EQUIP: 7822DT **GW DEPTH:** 6.0 ft bgs

EAST:

ELEV (FT.)	DEPTH (FT.)	RUN NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
	10.0					10.0 - 11.0' SP: Reddish brown fine to medium SAND; medium dense, wet End of boring at 11.0 ft bgs.		

PREPARED BY: BMA CHECKED BY: QA/QC

WOOD. Honeywell Study Area 6

LOCATION: SA-6S Bulkhead

DATE BEGAN: 12-06-19

DRILLING CO: Summit Drilling

SAMPLING TOOL: 5' Macrocore with 1.5" diameter

DRILLER:

PROJECT NO: 3480190654 **DATE FINISHED:** 12-06-19

COMPLETION DEPTH: 20.0 ft bgs

DRILLING METHOD: Direct Push and Air Rotary

NORTH:

BORING ID: 073-WC-12
INSPECTOR: Mike Senna

DRILL EQUIP: 7822DT **GW DEPTH:** 8.0 ft bgs

EAST:

ELEV (FT.)	DEPTH (FT.)	RUN NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
	0.0							
		S1	NA	0.0		0.0 - 5.0' No recovery	NM	
	 1.0							
	_							
	- 2.0							
	- 3.0							
	_							
	- 4.0							
	_							
	5.0	00	NIA.	4.0				A :
		S2	NA	1.0		5.0 - 9.0' CONCRETE: Solid CONCRETE		Air rotary through solid concrete
	 6.0							
	_							
	 7.0							Waste Class: 073-WC-11
	-							(concrete) at 11:55
Z	8.0							
-	0.0							
	_							
	9.0	S3	NA	1.0		9.0 - 9.5' SP: Reddish brown medium to		
	_					coarse SAND; medium dense, wet 9.5 - 10.0' SP: Dark brown fine to medium		Hex Chrome:
	10.0				:::::	SAND; medium dense, wet		073-WC-12-0910 (9.5-10.0) at 12:10

PREPARED BY: BMA
CHECKED BY: QA/QC

Honeywell Study Area 6

LOCATION: SA-6S Bulkhead **DATE BEGAN: 12-06-19 DRILLING CO:** Summit Drilling

SAMPLING TOOL: 5' Macrocore with 1.5" diameter

DRILLER:

PROJECT NO: 3480190654 **DATE FINISHED: 12-06-19**

DRILLING METHOD: Direct Push and Air Rotary

COMPLETION DEPTH: 20.0 ft bgs

GW DEPTH: 8.0 ft bgs

BORING ID: 073-WC-12

DRILL EQUIP: 7822DT

INSPECTOR: Mike Senna

NORTH: EAST:

ELEV (FT.)	DEPTH (FT.)	RUN NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
	10.0	S4	NA	2.5		10.0 - 12.5' SM: Reddish brown fine to coarse SAND AND SILT; medium dense, wet		
	- - 12.0							Hex Chrome: 073-WC-12-1112 (11.0-11.5) at 12:15 HOLD
	13.0 				F. 7 F.	12.5 - 15.0' No recovery		Hex Chrome: 073-WC-12-1213 (12.0-12.5) at 12:18 HOLD
	— 14.0 - — 15.0	S5	NA	3.0				Hex Chrome:
	_ — 16.0 _					medium SAND; medium dense, wet	_	073-WC-12-1516 (15.0-15.5) at 12:22 HOLD
	— 17.0 –					16.5 - 17.5' SP: Brown fine to medium SAND; medium dense, wet 17.5 - 18.0' ML: Dark brown SILT; medium dense, wet		Hex Chrome: 073-WC-12-1718 (16.5-17.0) at 12:24 HOLD
	— 18.0 - — 19.0					18.0 - 20.0' No recovery. End of boring at 20.0 ft bgs.		Hex Chrome: 073-WC-11-1718 (17.5-18.0) at 12:26 HOLD
	_ 20.0							

PREPARED BY: BMA CHECKED BY: QA/QC

WOOD. Honeywell Study Area 6

LOCATION: SA-6S Bulkhead

DATE BEGAN: 12-09-19

DRILLING CO: Summit Drilling

SAMPLING TOOL: 5' Macrocore with 3.0" diameter

DRILLER:

PROJECT NO: 3480190654 **DATE FINISHED:** 12-09-19

DRILLING METHOD: Direct Push and Air Rotary

COMPLETION DEPTH: 11.0 ft bgs

NORTH:

BORING ID: 073-WC-12A
INSPECTOR: Mike Senna
DRILL EQUIP: 7822DT

GW DEPTH: 6.0 ft bgs

EAST:

ELEV (FT.)	DEPTH (FT.)	RUN NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
	- 0.0 - 1.0 - 2.0 - 3.0 - 4.0	S1	NA	2.0		0.0 - 2.0' SW: Dark brown fine SAND, some fine gravel, trace silt; loose, moist 2.0 - 6.0' CONCRETE: Solid CONCRETE	NM	Waste Class horizontal composite 073-WC-11-0203 (2.0-3.0) at 10:50 Mixed on 12-09-19: 073-WC-11 (2.0-3.0) from 12-06-19 073-WC-12A (1.0-2.0) from 12-09-19 073-WC-11A (2.0-3.0) from 12-09-19
Σ	- 5.0 - 6.0 - 7.0 - 8.0	S2	NA	5.0		6.0 - 6.5' SP: Reddish brown medium to coarse SAND; medium dense, wet 6.5 - 7.5' SP: Dark brown fine to medium SAND; medium dense, wet 7.5 - 11.0' SM: Reddish brown fine to coarse SAND AND SILT; medium dense, wet		Waste Class horizontal composite 073-WC-11-0708 (7.0-8.0) at 11:40 Mixed on 12-09-19: 073-WC-11A (7.0-8.0) 073-WC-12A (7.0-8.0)
	- - 9.0 - - 10.0					End of boring at 11.0 ft bgs.		composite 073-WC-11-0910 (9.0-10.0) at 11:50 Mixed on 12-09-19: 073-WC-11A (9.0-10.0) 073-WC-12A (9.0-10.0)

PREPARED BY: BMA
CHECKED BY: QA/QC

LOCATION: SA-6S Bulkhead

DATE BEGAN: 12-09-19

DRILLING CO: Summit Drilling

SAMPLING TOOL: 5' Macrocore with 3.0" diameter

DRILLER:

PROJECT NO: 3480190654 **DATE FINISHED:** 12-09-19

DRILLING METHOD: Direct Push and Air Rotary

COMPLETION DEPTH: 11.0 ft bgs

NORTH:

BORING ID: 073-WC-12A
INSPECTOR: Mike Senna

DRILL EQUIP: 7822DT

GW DEPTH: 6.0 ft bgs

EAST:

ELEV DEPTH (FT.)	RUN BLOWS NO. PER 0.5'	DESCRIPT	VOLATILE ORGANIC VAPORS (PPM)	
10.0				

PREPARED BY: BMA
CHECKED BY: QA/QC

WOOD. Honeywell Study Area 6

LOCATION: SA-6S Bulkhead

DATE BEGAN: 12-09-19

DRILLING CO: Summit Drilling

SAMPLING TOOL: 5' Macrocore with 3.0" diameter

DRILLER:

PROJECT NO: 3480190654 **DATE FINISHED:** 12-09-19

DRILLING METHOD: Direct Push and Air Rotary

COMPLETION DEPTH: 11.0 ft bgs

NORTH:

BORING ID: 073-WC-13
INSPECTOR: Mike Senna
DRILL EQUIP: 7822DT

GW DEPTH: Not encountered

EAST:

LEV FT.)	DEPTH (FT.)	RUN NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
	0.0							
		S1	NA	2.0		0.0 - 0.5' ASPHALT: ASPHALT	NM	Waste Class horizontal composite
	_ _ 1.0					0.5 - 1.0' FILL: Dark reddish gray FILL material with silt and fine to medium gravel; loose, dry		073-WC-13 (1.0-2.0) at 12:10
	_					1.0 - 1.8' ML: Dark reddish brown SILT, little sand, little fine gravel with concretions; dense, moist		Mixed on 12-09-19: 073-WC-13 (1.0-2.0) at 12:10
	— 2.0 -					1.8 - 2.0' FILL: Yellow FILL material, little sland, some slag; loose, moist		073-WC-16A (1.0-2.0) at 12:10
	_ 3.0					2.0 - 6.0' CONCRETE: Decomposed/degraded CONCRETE		Air rotary through decomposed/degraded concrete
	- 4.0							concrete
	_							
	 5.0							
	6.0	00		5.0			-	
	_	S2	NA NA	5.0		6.0 - 10.0' SM: Reddish brown and brown mottled fine to medium SAND AND CLAYEY SILT; medium dense, moist		
	- 7 .0							Waste Class vertical composite
	- - 8.0							073-WC-13-0611 (6.0-11.0) at 12:40
								Mixed on 12-09-19: 073-WC-13-0607 (6.0-7.0) at 12:40
	9.0							073-WC-13-1011 (10.0-11.0) at 12:40

PREPARED BY: <u>BMA</u> CHECKED BY: <u>QA/QC</u>

LOCATION: SA-6S Bulkhead **DATE BEGAN:** 12-09-19 **DRILLING CO:** Summit Drilling

DRILLER:

DATE FINISHED: 12-09-19

PROJECT NO: 3480190654

INSPECTOR: Mike Senna **DRILLING METHOD:** Direct Push and Air Rotary DRILL EQUIP: 7822DT

BORING ID: 073-WC-13

SAMPLING TOOL: 5' Macrocore with 3.0" diameter

COMPLETION DEPTH: 11.0 ft bgs GW DEPTH: Not encountered

NORTH: EAST:

SPT VOLATILE ORGANIC VAPORS (PPM) PROFILE DEPTH REC RUN **ELEV BLOWS** (FT.) (FT.) NO. PER 0.5' (FT.) **DESCRIPTION REMARKS** 10.0 10.0 - 11.0' SP: Dark brown fine to coarse SAND, some silt; dense, moist - 11.0

PREPARED BY: BMA CHECKED BY: QA/QC

WOOd. Honeywell Study Area 6

LOCATION: SA-6S Bulkhead

DATE BEGAN: 12-06-19

DRILLING CO: Summit Drilling

SAMPLING TOOL: 5' Macrocore with 1.5" diameter

DRILLER:

PROJECT NO: 3480190654 **DATE FINISHED:** 12-06-19

DRILLING METHOD: Direct Push and Air Rotary

COMPLETION DEPTH: 13.0 ft bgs

NORTH:

BORING ID: 073-WC-14
INSPECTOR: Mike Senna

DRILL EQUIP: 7822DT **GW DEPTH:** 8.0 ft bgs

EAST:

ELEV (FT.)	DEPTH (FT.)	RUN NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
	0.0	0.4						
		S1	NA	2.0	0:0:	0.0 - 2.0' SW: Dark brown fine to medium SAND, some fine gravel, trace silt; loose, dry	NM	
					0::0: ::0::0: ::0::0:	Bottom: CONCRETE in tip with green		
	 1.0							
	_							
	_ 2.0				ö::::::	2.0 - 6.0' CONCRETE:		
	-					Decomposed/degraded CONCRETE		
	- 3.0							
	_							
	- 4.0							
	4.0							
	5.0							
	-							
	- 6.0	S2	NA	3.0		6.0 - 8.0' SP: Reddish brown fine to coarse	-	
	_					SAND; medium dense, dry (moist at the bottom)		
	 7.0					zottom,		
_	8.0							
-	0.0					8.0 - 9.0' SP: Dark brown fine to coarse SAND, some silt; medium dense, wet		Hex Chrome: 073-WC-14-0809
						o, tro, some sit, mediani dense, wet		(8.0-8.5) at 13:20 on 12-06-19
	9.0				- <u></u> -	9.0 - 10.0' No recovery		Hex Chrome: 073-WC-14-0809B
	<u> </u>							(8.5-9.0) at 13:22 HOLD on 12-06-19

PREPARED BY: BMA
CHECKED BY: QA/QC

LOCATION: SA-6S Bulkhead

DATE BEGAN: 12-06-19

DRILLING CO: Summit Drilling

SAMPLING TOOL: 5' Macrocore with 1.5" diameter

DRILLER:

PROJECT NO: 3480190654 **DATE FINISHED:** 12-06-19

DRILLING METHOD: Direct Push and Air Rotary

COMPLETION DEPTH: 13.0 ft bgs

NORTH:

BORING ID: 073-WC-14
INSPECTOR: Mike Senna

DRILL EQUIP: 7822DT **GW DEPTH:** 8.0 ft bgs

EAST:

ELEV (FT.)	DEPTH (FT.)	RUN NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
	10.0							
	— 11.0 —	S3	NA	3.0		10.0 - 12.0' SM: Brown fine to medium SAND AND SILT; medium dense, wet		Hex Chrome: 073-WC-14-1011 (10.0-10.5) at 13:40 HOLD on 12-06-19
	- 12.0 - 13.0					12.0 - 13.0' SM: Brown fine SAND AND SILT; loose, wet End of boring at 13.0 ft bgs		

PREPARED BY: BMA
CHECKED BY: QA/QC

LOCATION: SA-6S Bulkhead

DATE BEGAN: 12-09-19

DRILLING CO: Summit Drilling

SAMPLING TOOL: 5' Macrocore with 3.0" diameter

DRILLER:

PROJECT NO: 3480190654

DATE FINISHED: 12-09-19

DRILLING METHOD: Direct Push

COMPLETION DEPTH: 3.0 ft bgs

NORTH:

BORING ID: 073-WC-14A
INSPECTOR: Mike Senna
DRILL EQUIP: 7822DT

GW DEPTH: Not encountered

EAST:

1	EPTH RUN FT.) NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
- - 1 - - 2	3.0 S1	NA	3.0		0.0 - 3.0' SW: Dark brown fine to medium SAND, some fine gravel, trace silt Bottom: CONCRETE in tip with green staining End of boring at 3.0 ft bgs.	NM	Waste Class: 073-WC-14-0103 (1.0-3.0) at 13:00

PREPARED BY: BMA
CHECKED BY: QA/QC

LOCATION: SA-6S Bulkhead **DATE BEGAN:** 12-09-19 **DRILLING CO:** Summit Drilling

DRILLER:

DRILLING METHOD: Direct Push and Air Rotary

INSPECTOR: Mike Senna

SAMPLING TOOL: 5' Macrocore with 3.0" diameter

DRILL EQUIP: 7822DT

BORING ID: 073-WC-15

COMPLETION DEPTH: 6.5 ft bgs

GW DEPTH: Not encountered

NORTH:

PROJECT NO: 3480190654

DATE FINISHED: 12-09-19

EAST:

ELEV (FT.)	DEPTH (FT.)	RUN NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
	_ 0.0 - 1.0 - 2.0 - 3.0 - 4.0	S1	NA	2.5		0.0 - 2.5' FILL: Black HISTORIC FILL, medium to coarse gravel, trace silt, pieces of glass and metal; loose, dry 2.5 - 6.5' CONCRETE: Decomposed/degraded CONCRETE End of boring at 6.5 ft bgs	NM	Hex Chrome: 073-WC-15-0002 (0.0-2.0) at 13:45 Air rotary through decomposed/degraded concrete

PREPARED BY: BMA CHECKED BY: QA/QC

WOOd. Honeywell Study Area 6

LOCATION: SA-6S Bulkhead

DATE BEGAN: 12-06-19

DRILLING CO: Summit Drilling

SAMPLING TOOL: 5' Macrocore with 1.5" diameter

DRILLER:

PROJECT NO: 3480190654 **DATE FINISHED:** 12-06-19

DRILLING METHOD: Direct Push and Air Rotary

COMPLETION DEPTH: 10.0 ft bgs

NORTH:

BORING ID: 073-WC-16
INSPECTOR: Mike Senna
DRILL EQUIP: 7822DT

GW DEPTH: Not encountered

EAST:

ELEV (FT.)	DEPTH (FT.)	RUN NO.	SPT BLOWS PER 0.5'	REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
	0.0	S1	NA	0.0		0.0.201No recovery	NM	
						0.0 - 2.0' No recovery		
	— 1.0							
	1.0							
	_							
	- 2.0					2.0 - 6.0' CONCRETE:		
	-					Decomposed/degraded CONCRETE		
	- 3.0							
	 4.0							
	_							
	 5.0							
						6.0 - 6.5' SW: Brown fine SAND, some fine		
	 6.0	S2	NA	3.0	:: 0 :: c	gravel; dense, moist Yellow nodules (possible coper)		
	-				o::o:	6.5 - 8.0' SP: Brown fine to coarse SAND;		
	 7.0					medium dense, moist		
	_							Hay Charana
	- 8.0							Hex Chrome: 073-WC-16-0809
	- 0.0					8.0 - 9.0' ML: Reddish brown SILT with some fine to medium sand; medium dense, moist		(7.5-8.5) at 12:48
	-					inic to inediani sana, inediani dense, inoist		Hex Chrome: 073-WC-16-0809A
	9.0				LIJ1∐	9.0 - 10.0' No recovery		(8.0-9.0) at 125:50 HOLD
	-					End of boring at 10.0 ft bgs.		
	10.0							

PREPARED BY: BMA
CHECKED BY: QA/QC

Wood. Honeywell Study Area 6

LOCATION: SA-6S Bulkhead

DATE BEGAN: 12-09-19

DRILLING CO: Summit Drilling

SAMPLING TOOL: 5' Macrocore with 3.0" diameter

DRILLER:

PROJECT NO: 3480190654 **DATE FINISHED:** 12-09-19

DRILLING METHOD: Direct Push and Air Rotary

COMPLETION DEPTH: 10.0 ft bgs

NORTH:

BORING ID: 073-WC-16A
INSPECTOR: Mike Senna
DRILL EQUIP: 7822DT

GW DEPTH: Not encountered

EAST:

ELEV DEF (FT.) (F			REC (FT.)	PROFILE	DESCRIPTION	VOLATILE ORGANIC VAPORS (PPM)	REMARKS
- 1. - 2. - 3. - 4. - 5.	S1	NA NA	2.0		0.0 - 2.0' FILL: Dark brown FILL material with fine to medium GRAVEL AND SILT; loose, dry 2.0 - 6.0' CONCRETE: Decomposed/degraded CONCRETE End of boring at 6.0 ft bgs.	NM	Waste Class horizontal composite 073-WC-13A (1.0-2.0) at 12:10 Mixed on 12-09-19: 073-WC-13A (1.0-2.0) at 12:10 073-WC-16A (1.0-2.0) at 12:10

PREPARED BY: BMA
CHECKED BY: QA/QC

	ft LAND SURFACE outside 10" PVC Casing 10-inch drilled holediameter	Project Honeywell SA-6 Deferred Area Well DP-1 County Hudson County Permit No. E202008568 State NJ Land-Surface Elevation and Datum: +8.0 ft NGVD29
Gro	— Well casing, 4-inch inch diameter, Schedule 40 PVC out neat cement Elevation10.5	feet Surveyed X Estimated
	Bottom of PVC 10" casing -10_f	Drilling Fluid Water and betonite slurry t
	ntonite X slurry	Development Technique(s) and Date(s) Surging with compressed air
	Well Screen. 0.020 inch diameter Sch 40 PVC , 10 slot	
	Gravel Pack X Sand Pack Formation Collaspse	Well Purpose Depressurization Well
	3.5 ft* 4 ft*	Remarks
Top Un	easuring Point is p of Well Casing lless Otherwise Noted. Depth Below Land Surface	Prepared by

↑ ft ▼ LAND SURFACE	Project Honeywell SA-6 Deferred Area Well DP-2 County Hudson County	
outside 10" PVC Casing 10-inch drilled holediameter	Permit No. E202008569 State NJ Land-Surface Elevation and Datum: +8.56 ft NGVD29	
Well casing, 4-inch inch diameter, Schedule 40 PVC	feet Surveyed X Estimated Installation Date(s) 8/19/20 thorugh 8/24/20 Drilling Method Combination cased rotary and	d open hole direct mud rotary
Grout neat cement Elevation10.5	Drilling Contractor Drilling Fluid Water and ebtonite slurry	
Bottom of PVC 10" casing -	10_ft	
Bentonite X slurry -11.5 ft* pellets	Development Technique(s) and Date(s) Surging with comoressed air	
-13.5 ft* Well Screen. 0.020 inch diameter Sch 40 PVC , 10 slot		
Gravel Pack X Sand Pack Formation Collaspse	Well Purpose Depressurization Well	
- 23.5 ft* - 24 ft*	Remarks	
Measuring Point is Top of Well Casing Unless Otherwise Noted. * Depth Below Land Surface	Prepared by	

<u></u> ↑ ft	Project Honeywell SA-6 Deferred Area Well DP-3
↓ LAND SURFACE	County Hudson County
outside 10" PVC Casing	Permit No. E202008570 State NJ
10-inch drilled holediameter	Land-Surface Elevation and Datum:+9.0 ft NGVD29
Well casing, 4-inch inch diameter, Schedule 40 PVC	feet Surveyed Surveyed Stimated Surveyed Surveyed Stimated Surveyed S
Grout neat cement Elevation10.0	Drilling Method Drilling Contractor Drilling Fluid Combination cased rotary and open hole direct mud rotary Water and betonite slurry
Bottom of PVC 10" casing =	
Bentonite X slurry -11.5 ft* pellets	Development Technique(s) and Date(s)
-11.5 it peries	Surging with compressed air
-13.5 ft*	
Well Screen. 0.020 inch diameter Sch 40 PVC , 10 slot	
Gravel Pack X Sand Pack	
Formation Collaspse	Well Purpose Depressurization Well
- 23.5 ft* - 24 ft*	Remarks
Measuring Point is Top of Well Casing Unless Otherwise Noted. * Depth Below Land Surface	
-р	Prepared by

↑ ft ↓ LAND SURFACE	Project Honeywell SA County Hudson C		_Well _	DP-4	
10-inchdiameter	Permit No E2020 Land-Surface Elevati		State oft NGVD2	NJ 29	
Well casing, 4-inch inch diameter, Schedule 40 PVC	Installation Date(s) Drilling Method	8/20/20 throug		ated 2020	nd open hole direct mud rotar
Grout neat cement Elevation10.5 Bottom of PVC 10" casi	Drilling Contractor Drilling Fluid	Water and bet	onite s	lurry	
Bottom of FVC 10 casi		. () 15 . ()			
Bentonite X slurry	Development Techni	ique(s) and Date(s)			
-11.5 ft* pellets	Surging with	compressed air			
13.5 ft*					
Gravel Pack					
X Sand Pack					
Formation Collaspse	Well Purpose	Depressurization Well			
- 23.5 ft* - 24 ft*	Remarks				
Measuring Point is Top of Well Casing Unless Otherwise Noted.					
* Depth Below Land Surface	Prepared by				

↑ ft ↓ LAND SURFACE outside 10" PVC Casing	Project Honeywell SA-6 Deferred Area Well OW-1 County Hudson County Permit No. E202008574 State NJ
10-inch drilled holediameter	Land-Surface Elevation and Datum:+8.2 ft NGVD29
Well casing, 2-inch inch diameter, Schedule 40 PVC	feet Surveyed
Grout neat cement Elevation10.0	Drilling Contractor Drilling Fluid Water and betonite slurry
Bottom of PVC 10" casing	
Bentonite X slurry	Development Technique(s) and Date(s)
-11.5 ft* pellets	Surging with compressed air
-13.5 ft* Well Screen. 0.020 inch diameter Sch 40 PVC , 10 slot	
Gravel Pack	
X Sand Pack	
Formation Collaspse	Well Purpose Observation Well
- 23.5 ft* - 24 ft*	Remarks
Measuring Point is Top of Well Casing Unless Otherwise Noted. * Depth Below Land Surface	Prepared by

☐ ft	Project Honeywell SA-6 Deferred Area Well OW-2
↓ LAND SURFACE	County Hudson County
outside 10" PVC Casing	Permit No. E202008575 State NJ
10-inch	Land-Surface Elevation and Datum: +8.2 ftNGVD29
drilled holediameter	Bottom of PVC 10" casing <u>-10 ft</u>
	feet Surveyed
Well casing,	X Estimated
2-inch inch diameter,	Installation Date(s) 8/19/2020 through 8/24/2020
Schedule 40 PVC	Drilling Method Combination cased rotary and open hole direct mud rotary
	billing inetitod
Grout neat cement Elevation10.	7 Drilling Contractor Drilling Fluid Water and betonite slurry
Bottom of PVC 10" cas	ing <u>-10_ft</u>
	Development Technique(s) and Date(s)
Bentonite X slurry	Surging with compressed air
-11.5 ft* pellets	Guignig with compressed an
-13.5 ft*	
Well Screen. 0.020 inch diameter	
<u>Sch 40 PVC</u> , <u>10</u> slot	
Gravel Pack	
X Sand Pack	
Formation Collaspse	Well Purpose Observation Well
	well rulpose Observation well
- 23.5 ft*	Demonto.
- 24 ft*	Remarks
Measuring Point is Top of Well Casing	
Unless Otherwise Noted.	
* Depth Below Land Surface	
	Prepared by

outside 10" PVC Casing 10-inch drilled holediameter	Project Honeywell SA-6 Deferred Area Well OW-3 County Hudson County Permit No. E202008576 State NJ Land-Surface Elevation and Datum: +9.66 ft NGVD29
Well casing, 2-inch inch diameter, Schedule 40 PVC	feet Surveyed X Estimated Installation Date(s) 8/20/20 through 8/25/2020 Drilling Method Combination cased rotary and open hole direct mud rotary
Grout neat cement Elevation10.4	Drilling Contractor Drilling Fluid Water and betonite slurry
Bottom of PVC 10" casing -10	<u> </u>
Bentonite Surry -11.5 ft* pellets	Development Technique(s) and Date(s) Surging with compressed air
Well Screen. 0.020 inch diameter Sch 40 PVC , 10 slot	
Gravel Pack X Sand Pack Formation Collaspse	Well Purpose ObservationWell
- 23.5 ft* - 24 ft*	Remarks
Measuring Point is Top of Well Casing Unless Otherwise Noted. * Depth Below Land Surface	Prepared by

Γ	↑ ft ↓ LAND SURFACE	Project Honeywell SA-6 Deferred Area Well OW-4
		County Hudson County
	outside 10" PVC Casing	Permit No.E202008577 State NJ
	10-inch drilled holediameter	Land-Surface Elevation and Datum: +14.0 ft NGVD29
		feet Surveyed
	Well casing,	X Estimated Installation Date(s) 8/26/20 through 8/26/20
	2-inch inch diameter, Schedule 40 PVC	
		Drilling Method Combination cased rotary and open hole direct mud rotary
	Grout neat cement Elevation +7.5	Drilling Contractor Drilling Fluid Water and betonite slurry
		Training Hulu Vvacor and Societies Starry
	Bentonite X slurry	Development Technique(s) and Date(s)
		Surging with compressed air
	+6.5 ft* pellets	Odiging with compressed all
	+4.5 ft*	
	Well Screen.	
	0.020 inch diameter	
	<u>Sch 40 PVC</u> , <u>10</u> slot	
	Gravel Pack	
	X Sand Pack	
	Formation Collaspse	Well Purpose Observation Well
	- 4.5 ft*	Remarks
L		
	March 8 1 1	
	Measuring Point is Top of Well Casing Unless Otherwise Noted.	
	* Depth Below Land Surface	·
	Depail Delow Land Surface	Prepared by

Well Permit Number **E202008568**

WELL DECOMMISSIONING REPORT

PROPERTY OWNER: HONEYWELL DBA BAYFRONT REDEVELOPMENT LLC								
Company/Org	ganization: H	oneywell DBA	Bayfront Redev	velopment LLC				
Address: 11	Address: 115 Tabor Road Mount Tabor, New Jersey 07950							
WELL LOC	ATION: Ho	neywell Study	Area 6 South					
Address: N.	J State Highwa	ay 440 Property	has been subdi	vided - new lot	#			
County: Hudson Municipality: Jersey City Lot: 8 Block: 21901.01								
Easting (X): 601513 Northing (Y): 685619 Coordinate System: NJ State Plane (NAD83) - USFEET						TE WELL SIONED: November	18, 2020	
WELL USE:	DEWATER	ING						
Other Use(s)	:				Local ID: DP	- 1		
Reason for De	ecommissionir	ng: No longer	in use					
Finished Well	Depth (ft.): _	38.5		W	as a New Well Dri	lled? N		
Formation Ty	pe: Unconso	lidated		No	ew Well Permit Nur	mber:		
WELL DEC		ING INFORM	MATION					
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)		Material		g/Screen # Used s/ch no.)	
Borehole	• •	, ,				,	,	
Casing	0	28.50	4		PVC	SCH 40	(Inner Casing)	
Screen	28.50	38.50	4	PV	C SCH 40	0.0	020 inch	
MATERIAL	S USED							
	Depth to	Depth to	Outer	Inner	Material			
	Top (ft.)	Bottom (ft.)	Diameter (in.)	. ` ` '	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)	
Grout Sand/Gravel	0	38.50	4	0	15	282	25	
	I INEODM	TION		l				
ADDITIONA								
						eial:		
Obstruction T	ype:				Authorization Numl	ber:		
Alternative Decomm. Method? No Authorization Date:								
Method Used								
ATTACHMENTS:								

Well Permit Number **E202008569**

WELL DECOMMISSIONING REPORT

PROPERTY OWNER: HONEYWELL DBA BAYFRONT REDEVELOPMENT LLC									
Company/Org	ganization: <u>H</u>	oneywell DBA	Bayfront Redev	velopment LLC					
Address: 115 Tabor Road Mount Tabor, New Jersey 07950									
WELL LOC	ATION: Ho	neywell Study	Area 6 South						
Address: NJ State Highway 440 Property has been subdivided - new lot #									
County: Hudson Municipality: Jersey City Lot: 8 Block: 21901.01									
Easting (X): 601456 Northing (Y): 685552 Coordinate System: NJ State Plane (NAD83) - USFEET					DATE WELL DECOMMISSIONED: November 18, 2020				
WELL USE:	DEWATER	ING							
Other Use(s)	:				Local ID: DP	9-2			
Reason for De	ecommissionir	ng: No longer	in use						
Finished Well	Depth (ft.): _	38.5		W	as a New Well Dri	lled? N			
Formation Ty	pe: Unconso	lidated		No	ew Well Permit Nur	mber:			
WELL DEC		ING INFORM	MATION						
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)		Material		g/Screen # Used s/ch no.)		
Borehole	1 op (11.)	Bottom (ii.)	(menes)			(10.	S(CH HO.)		
Casing	0	28.50	4		PVC	SCH 40 ((Inner Casing)		
Screen	28.50	38.50	4	PV	C SCH 40	0.0	20 inch		
MATERIAL									
	Depth to	Depth to	Outer Diameter (in.)	Inner Diameter (in)	Material N + C + (II) N + C		W-4(1)		
Grout	Top (ft.)	Bottom (ft.) 38.50	4	0	Bentonite (lbs.)	Neat Cement (lbs.) 282	Water (gal.) 25		
Sand/Gravel	U	30.20		Ü	13	202	20		
ADDITIONA	AL INFORMA	ATION							
Obstructions:	No				Authorization Offic	cial:			
					Authorization Num	ber:			
Alternative Decomm. Method? No Authorization Date:									
Method Used	Method Used								
ATTACHMENTS:									

Daniel C DimlerMORETRENCH AMERICAN CORPJOURNEYMAN100 STICKLE AVE

Well Permit Number **E202008570**

WELL DECOMMISSIONING REPORT

PROPERTY OWNER: HONEYWELL DBA BAYFRONT REDEVELOPMENT LLC										
Company/Org	ganization: <u>H</u>	oneywell DBA	Bayfront Redev	velopment LLC						
Address: 11	Address: 115 Tabor Road Mount Tabor, New Jersey 07950									
WELL LOC	ATION: Ho	neywell Study	Area 6 South							
Address: NJ State Highway 440 Property has been subdivided - new lot #										
County: Hudson Municipality: Jersey City Lot: 8 Block: 21901.01										
Easting (X): 601442 Northing (Y): 685528 Coordinate System: NJ State Plane (NAD83) - USFEET				EET EET	DATE WELL ET DECOMMISSIONED: November 18, 2020					
WELL USE:	DEWATER	ING								
Other Use(s)	:				Local ID: DP	2-3				
Reason for Do	ecommissionir	ng: No longer	in use							
Finished Well	l Depth (ft.): _	38.5		W	as a New Well Dri	lled? N				
Formation Ty	rpe: Unconso	lidated		Ne	ew Well Permit Nur	nber:				
WELL DEC	OMMISSION	ING INFORM	MATION							
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)		Material	1 5	g/Screen # Used s/ch no.)			
Borehole	10p (1t.)	Dottom (it.)	(menes)			(108	/CII IIO.)			
Casing	0	28.50	4		PVC	SCH 40 (Inner Casing)			
Screen	28.50	38.50	4	PV	C SCH 40	0.0	20 inch			
MATERIAL	S USED									
	Depth to	Depth to	Outer	Inner	Material					
Const	Top (ft.)	Bottom (ft.)	Diameter (in.)	` '	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)			
Grout Sand/Gravel	0	38.50	4	0	15	282	25			
	AL INFORMA	ATION	l							
Obstructions:	No			I	Authorization Offic	eial:				
Obstruction T						ber:				
Alternative Decomm. Method? No Authorization Date:										
Method Used										
ATTACHME	D ITTO									

Well Permit Number **E202008571**

WELL DECOMMISSIONING REPORT

PROPERTY OWNER: HONEYWELL DBA BAYFRONT REDEVELOPMENT LLC								
Company/Org	ganization: H	oneywell DBA	Bayfront Redev	velopment LLC				
Address: 11	Address: 115 Tabor Road Mount Tabor, New Jersey 07950							
WELL LOC	ATION: Ho	neywell Study	Area 6 South					
Address: N.	J State Highwa	ay 440 Property	has been subdi	vided - new lot	#			
County: Hudson Municipality: Jersey City Lot: 8 Block: 21901.01								
Easting (X): 601430 Northing (Y): 685506 Coordinate System: NJ State Plane (NAD83) - USFEET						TE WELL SIONED: November	18, 2020	
WELL USE:	DEWATER	ING						
Other Use(s)	:				Local ID: DP	2-4		
Reason for De	ecommissionir	ng: No longer	in use					
Finished Well	Depth (ft.): _	38.5		V	as a New Well Dri	lled? N		
Formation Ty	pe: Unconso	lidated		No	ew Well Permit Nur	mber:		
WELL DEC		ING INFORM	MATION					
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)		Material		g/Screen # Used s/ch no.)	
Borehole	• •	, ,					,	
Casing	0	28.50	4		PVC	SCH 40	(Inner Casing)	
Screen	28.50	38.50	4	PV	C SCH 40	0.0	020 inch	
MATERIAL	S USED							
	Depth to	Depth to	Outer	Inner	Material			
	Top (ft.)	Bottom (ft.)	Diameter (in.)	. ` '	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)	
Grout Sand/Gravel	0	38.50	4	0	15	282	25	
ADDITION A	AL INFORMA	ATION						
					Authorization Offic	cial:		
Alternative Decomm. Method? No Authorization Date: Method Used								
wiemod Osed								
ATTACHME	NTS:							

Well Permit Number **E202008574**

WELL DECOMMISSIONING REPORT

PROPERTY OWNER: HONEYWELL DBA BAYFRONT REDEVELOPMENT LLC									
Company/Org	ganization: <u>H</u>	oneywell DBA	Bayfront Rede	velopment LLC					
Address: 11	Address: 115 Tabor Road Mount Tabor, New Jersey 07950								
WELL LOCATION: Honeywell Study Area 6									
Address: NJ State Route 440 Property has been subdivided - new lot #									
County: Hu	dson	_ Municipality	y: Jersey City		Lot: 8	Block: 21	901.01		
<u> </u>			(Y): <u>685597</u> NAD83) - USFI	DAIE WELL					
WELL USE:	MONITOR	ING							
Other Use(s)	:				Local ID: OV	V-1			
Reason for De	ecommissionir	ng: No longer	in use						
Finished Well	Depth (ft.):	32.5		W	as a New Well Dril	led? N			
Formation Ty	pe: Unconso	lidated		No	ew Well Permit Nur	nber:			
WELL DEC		ING INFORM	MATION						
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)		Material Wgt/Rating/Screen # Used (lbs/ch no.)				
Borehole									
Casing	0	22.50	2		PVC		Inner Casing)		
Screen	22.50	32.50	2	PV	C SCH 40	0.0	20 inch		
MATERIAL	S USED								
	Depth to	Depth to	Outer	Inner		Material			
G .	Top (ft.)	Bottom (ft.)	Diameter (in.)	` '	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)		
Grout Sand/Gravel	0	32.50	2	0	5	94	9		
	AL INFORMA	ATION							
Obstructions:	No				Authorization Offic	ial:			
Obstruction T	ype:				Authorization Numl	per:			
Alternative Decomm. Method? No Authorization Date:									
Method Used									
ATTACHMENTS:									

Well Permit Number **E202008575**

WELL DECOMMISSIONING REPORT

PROPERTY OWNER: HONEYWELL DBA BAYFRONT REDEVELOPMENT LLC									
Company/Org	anization: H	oneywell DBA	Bayfront Rede	velopment LLC					
Address: 115 Tabor Road Mount Tabor, New Jersey 07950									
WELL LOCATION: Honeywell Study Area 6									
Address: NJ State Route 440 Property has been subdivided - new lot #									
County: Hudson Municipality: Jersey City Lot: 8 Block: 21901.01									
Easting (X): 601488 Northing (Y): 685570 Coordinate System: NJ State Plane (NAD83) - USFEET					DATE WELL DECOMMISSIONED: November 18, 2020				
WELL USE:	MONITOR	ING							
Other Use(s):					Local ID: OV	V-2			
Reason for De	ecommissionin	ig: No longer	in use						
Finished Well	Depth (ft.): _	32.5		W	as a New Well Dri	lled? N			
Formation Typ	pe: Unconso	lidated		No	ew Well Permit Nur	mber:			
WELL DEC			MATION						
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)		Material		g/Screen # Used s/ch no.)		
Borehole	10p (1t.)	Dottom (1t.)	(menes)			(103	/CII IIO.)		
Casing	0	22.50	2		PVC	SCH 40 (Inner Casing)		
Screen	22.50	32.50	2	PV	C SCH 40	0.0	20 inch		
MATERIALS	S USED								
	Depth to	Depth to	Outer	Inner	Material N + C		W (1)		
Grout	Top (ft.)	Bottom (ft.) 32.50	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.) 94	Water (gal.)		
Sand/Gravel	0	32.30	2	0	3) 7	,		
ADDITIONA	L INFORMA	ATION							
Obstructions:	No			1	Authorization Offic	eial:			
Obstruction T	ype:				Authorization Numl	ber:			
Obstruction Type: Authorization Number: Authorization Date:									
Method Used									
ATTACHMENTS:									

Well Permit Number **E202008576**

WELL DECOMMISSIONING REPORT

PROPERTY OWNER: HONEYWELL DBA BAYFRONT REDEVELOPMENT LLC									
Company/Org	ganization: <u>H</u>	oneywell DBA	Bayfront Redev	velopment LLC					
Address: 11	5 Tabor Road	Mount Tabor,	New Jersey 079	950					
WELL LOCATION: Honeywell Study Area 6									
Address: NJ State Route 440 Property has been subdivided - new lot #									
County: Hudson Municipality: Jersey City Lot: 8 Block: 21901.01									
Easting (X): 601437 Northing (Y): 685534 Coordinate System: NJ State Plane (NAD83) - USFE				DATE WELL DECOMMISSIONED: November 18, 2020					
WELL USE:	MONITOR	ING							
Other Use(s)	:				Local ID: OV	V-3			
Reason for Do	ecommissionir	ng: No longer	in use						
Finished Well	Depth (ft.): _	32.5		W	as a New Well Dri	lled? N			
Formation Ty	pe: Unconso	lidated		No	ew Well Permit Nur	nber:			
WELL DEC	OMMISSION	ING INFORM	MATION						
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)		Material	1 5	g/Screen # Used s/ch no.)		
Borehole	10p (1t.)	Dottom (it.)	(menes)			(103	7CH HO.)		
Casing	0	22.50	2		PVC	SCH 40 (Inner Casing)		
Screen	22.50	32.50	2	PV	C SCH 40	0.0	20 inch		
MATERIAL	S USED								
	Depth to	Depth to	Outer	Inner					
Grout	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.) 94	Water (gal.)		
Sand/Gravel	U	32.50	2	0	<u> </u>	94	9		
	AL INFORMA	ATION		l					
Obstructions:	No				Authorization Offic	eial:			
Obstruction T						ber:			
Alternative Decomm. Method? No Authorization Date:									
Method Used									
ATTACHME									

Well Permit Number **E202008577**

WELL DECOMMISSIONING REPORT

PROPERTY	PROPERTY OWNER: HONEYWELL DBA BAYFRONT REDEVELOPMENT LLC						
Company/Org	ganization: <u>H</u>	oneywell DBA	Bayfront Redev	velopment LLC			
Address: 11	5 Tabor Road	Mount Tabor,	New Jersey 079	950			
WELL LOC	ATION: Ho	neywell Study	Area 6				
Address: N.	J State Route 4	140 Property ha	s been subdivid	ed - new lot #			
County: Hu	dson	Municipality	y: Jersey City		Lot: 8	Block: 21	901.01
			(Y): <u>685561</u> NAD83) - USFI			TE WELL SIONED: November	19, 2020
WELL USE:	MONITOR	ING					
Other Use(s)	:				Local ID: OV	V-4	
Reason for Decommissioning: No longer in use							
Finished Well Depth (ft.): 19 Was a New Well Drilled? N							
Formation Type: Unconsolidated New Well Permit Number:							
WELL DEC	OMMISSION	ING INFOR	MATION				
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)		Material	,	g/Screen # Used s/ch no.)
Borehole							
Casing	0	9	2		PVC		CH 40
Screen	9	19	2	PV	C SCH 40	0.0	20 inch
MATERIAL	S USED						
	Depth to	Depth to	Outer	Inner		Material	
	Top (ft.)	Bottom (ft.)	Diameter (in.)	` ′	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)
Grout Sand/Gravel	0	19	2	0	5	94	9
ADDITION A	I INFODM	ATION					
						• 1	
Obstructions:						eial:	
					Authorization Num	ber:	
Alternative D	ecomm. Metho	od? No			Authorization D	ate:	
Method Used							
ATTACHME	NTS:						

Daniel C Dimler
JOURNEYMAN
Sealing Driller: LICENSE # 0001241

MORETRENCH AMERICAN CORP
100 STICKLE AVE
Rockaway (Morris), NJ 07866

New Jersey State Department of Environmental Protection Bureau of Water Allocation and Well Permitting

Well Permit Number E202008568

Mail Code 401-04Q PO BOX 420 Trenton, NJ 08625-0420 Tel: 609-984-6831

WELL RECORD

PROPERTY OWNER: HONEYWELL DBA BAYFRONT REDEVELOPMENT LLC							
Company/Org	ganization: H	oneywell dba I	Bayfront Redeve	elopment LLC			
		•	New Jersey 07	*			
				<i>)</i>			
WELL LOC	ATION: Ho	neywell Study	Area 6 South				
Address: N.	J State Highwa	ay 440 Property	has been subdi	vided - new lot	#		
County: Hu	dson	_ Municipality	y: Jersey City		Lot: 8	Block: 21	901.01
Easting (X):	601513	Northing	(Y): 685619		DATE WELL ST	TARTED: August 18,	2020
			NAD83) - USFI			PLETED: August 21,	
	DEWATER	`	,		THE WEEE COM	EBTED. Magast 21,	2020
					Local ID: DP	L1	
					Local ID. DI	-1	
WELL CON	STRUCTION	I					
Total Depth Drilled (ft.): 38.5 Finished Well Depth (ft.): 38.5 Well Surface: 2 ft. Above Grade							
			g/Screen # Used				
	Top (ft.)	Bottom (ft.)	(inches)			(lbs	s/ch no.)
Borehole 0 18.50 14							
Borehole	18.50	38.50	10		DVC	CCH 40 (O	TITED CACDIO
Casing	0	18.50	10		PVC	`	UTER CASING)
Casing	0	-	28.50 4 PVC SCH 40 (INNER CASING)				
Screen	28.50	38.50	4	P	VC SCH 40	0.0	20 inch
	Depth to	Depth to	Outer	Inner		Material	
	Top (ft.)	Bottom (ft.)	Diameter (in.)	` ′		Neat Cement (lbs.)	Water (gal.)
Grout	0	26.50	10	4	40	752	67
Grout Gravel Pack	0 26.50	18.50 38.50	14 10	10	35	658 #0	58
_		e method (Trer	nie Pipe)	·	illing Method: Muc	-	
RECORD O					MPING EQUIPM	<u>ENT</u>	
	igust 21, 2020				talled: <u>Installed</u>	mlar 0001241	
Pump Equipn Well Yield: <u>8</u>	Rann				staller's Name: <u>D Di</u> mp Type: <u>Submersib</u>		
Static Water I	_ gpm [.evel: 12 ft. be	elow land surfa	ce		pth to Pump: 36 ft.		
		ft. below land s			mp Capacity: 20 gp		
					tal Design Head: <u>50</u>	_ '	
<u>ATTACHMI</u>	ENTS				mp Horsepower: <u>.5</u>		
				П		narge Rate: _ gpm tion of Test: _ hours	
CEOL OCIO	VI OC				Dura	tion of Test nours	
GEOLOGIC		nds sand silt n	nivtures				
	0 - 15: Brown SM - Silty sands, sand-silt mixtures 15 - 22: Black PT - Peat, muck, and other highly organic soils						
		sands, sand-si		0115			
	Ž			s - hoth annular	spaces are grouted.		
TEDITION	TO IT OILIVIA	TITOTA WOIL	nuo two casings	, com amual	spaces are grouted.		

Daniel C Dimler,

Driller of Record: JOURNEYMAN LICENSE # 0001241 Company: MORETRENCH AMERICAN CORP

Well Permit Number **E202008569**

WELL RECORD

DDODEDTV	OWNED I	IONEVIVEI I	DD A DAVEDO				
					LOPMENT LLC		
		•	Bayfront Redeve	•			
Address: 11	15 Tabor Road	Morris Plains,	New Jersey 07	950			
WELL LOC	ATION: Ho	neywell Study	Area 6 South				
Address: N.	J State Highwa	ay 440 Property	has been subdi	vided - new lot	#		
County: Hu	dson	_ Municipality	y: Jersey City		_ Lot:_8	Block: 2	1901.01
			(Y): <u>685552</u>		DATE WELL ST	TARTED: August 19.	2020
Coordii	nate System: N	IJ State Plane (NAD83) - USF	EET D	ATE WELL COM	PLETED: August 24,	2020
WELL USE:	: DEWATER	ING					
Other Use(s)	:				Local ID: DF	P-2	
WELL CON	STRUCTION	Ī					
Total Depth Drilled (ft.): 38.5 Finished Well Depth (ft.): 38.5 Well Surface: 2 ft. Above Grade							
Depth to Depth to Diameter Material Wgt/Rating/Screen # Used			g/Screen # Used				
	Top (ft.)	Bottom (ft.)	(inches)	(lbs/ch no.)			os/ch no.)
Borehole	0	18.50	14				
Borehole	18.50	38.50	10		DVC	COII 40 (O	LITED CACINIC)
Casing	0	18.50	10 PVC SCH 40 (OUTER CASING)				
Casing	0	28.50	4 PVC SCH 40 (INNER CASING)				
Screen	28.50	38.50	4	P	VC SCH 40	0.0	020 inch
	Depth to	Depth to	Outer	Inner		Material	
	Top (ft.)	Bottom (ft.)	Diameter (in.)	` ′		Neat Cement (lbs.)	Water (gal.)
Grout Grout	0	26.50 18.50	10 14	10	35	658 658	58 58
Gravel Pack	26.50	38.50	10	4	33	#0 Sand	36
		e method (Trer			illing Method: Mud		
RECORD O			- F-7		MPING EQUIPM		
	igust 24, 2020				talled: Installed	<u>ENT</u>	
Pump Equipn					taller's Name: Danie	el Dimler, 0001241	
Well Yield: _9					mp Type: Submersit		
		elow land surfa			pth to Pump: <u>36</u> ft.		
Pumping Wat	ter Level: 31	ft. below land s	surface		mp Capacity: <u>20</u> gp tal Design Head: <u>50</u>		
ATTACHM	ENTS				mp Horsepower: <u>.5</u>		
						narge Rate: gpm	
					Dura	tion of Test: _ hours	
GEOLOGIC	CLOG						
		nds, sand-silt n					
	15 - 22: Black PT - Peat, muck, and other highly organic soils 22 - 38.5: Brown SM - Silty sands, sand-silt mixtures						
22 - 38.5: Bro	own SM - Silty	sands, sand-si	lt mixtures				
ADDITION	AL INFORMA	ATION: The v	well has two cas	ings.			

Driller of Record: JOURNEYMAN LICENSE # 0001241

Record -- Page 1 of 1

Daniel C Dimler,

Well Permit Number E202008570

WELL RECORD

PROPERTY	PROPERTY OWNER: HONEYWELL DBA BAYFRONT REDEVELOPMENT LLC							
Company/Org	ganization: H	oneywell dba I	Bayfront Redeve	elopment LLC				
Address: 11	5 Tabor Road	Morris Plains,	New Jersey 07	950				
WELL LOC	ATION: Ho	neywell Study	Area 6 South					
Address: N.	J State Highwa	ay 440 Property	has been subdi	vided - new lot	#			
County: Hu	dson	Municipality	y: Jersey City		Lot: 8	Block: 21	901.01	
Easting (X):	601442	Northing	(Y): 685528		DATE WELL ST	ΓARTED: August 20,	2020	
Coordin	nate System: N	J State Plane (NAD83) - USF	EET DA	ATE WELL COM	PLETED: August 25,	2020	
WELL USE:	DEWATER	ING				<u> </u>		
					Local ID: DP	2-3		
	STRUCTION							
Total Depth Drilled (ft.): 38.5 Finished Well Depth (ft.): 38.5 Well Surface: 2 ft. Above Grade								
	Depth to Depth to Diameter Material Wgt/Rating/Screen # Used Top (ft.) Bottom (ft.) (inches) (lbs/ch no.)							
Borehole	0	18.50	14			(10)	5/ C 11 110.)	
Borehole	18.50	38.50	10					
Casing	0	18.50	10					
Casing	0	28.50	4		PVC	SCH 40 (IN	NER CASING)	
Screen	28.50	38.50	4	PV	C SCH 40	0.0	20 inch	
	Depth to	Depth to	Outer	Inner		Material		
	Top (ft.)	Bottom (ft.)	Diameter (in.)		Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)	
Grout	0	26.50	10	4	35	658	58	
Grout	0	18.50	14	10	35	658	58	
Gravel Pack	26.50	38.50	10	4		#0 Sand		
Grouting Met	hod: Pressur	e method (Trer	nie Pipe)	Dri	lling Method: Muc	d Rotary		
RECORD O	F TEST			<u>PU</u>	MPING EQUIPM	<u>ENT</u>		
	igust 25, 2020				talled: <u>Installed</u>			
Pump Equipn					taller's Name: Danie			
Well Yield: 8		elow land surfa	00		np Type: <u>Submersit</u> oth to Pump: <u>36</u> ft.			
		ft. below land s			np Capacity: 20 gr			
i umping was		10. 0010 // 10110 /	, di 1400		al Design Head: 50			
ATTACHM	ENTS				mp Horsepower: <u>.5</u>			
				If p		narge Rate: _ gpm		
					Dura	tion of Test: _ hours		
GEOLOGIC		1 1 11.	• .					
	0 - 15: Brown SM - Silty sands, sand-silt mixtures							
	15 - 22: Black PT - Peat, muck, and other highly organic soils 22 - 38.5: Brown SM - Silty sands, sand-silt mixtures							
		<u> </u>						
ADDITIONA	AL INFURMA	ATTON: The v	wells have two o	easings.				

Driller of Record: JOURNEYMAN LICENSE # 0001241

Record -- Page 1 of 1

Daniel C Dimler,

Company: MORETRENCH AMERICAN CORP

New Jersey State Department of Environmental Protection Bureau of Water Allocation and Well Permitting

Well Permit Number E202008571

Mail Code 401-04Q PO BOX 420 Trenton, NJ 08625-0420 Tel: 609-984-6831

WELL RECORD

DDADEDTV	OWNED. I	JONEVWEI I	DDA DAVEDO	ONT DEDEVE	LOPMENT LLC		
	_		Bayfront Redeve		LOFMENT LLC		
		•	•	*			
Address: 11	5 Tabor Road	Morris Plains,	New Jersey 07	950			
WELL LOC	ATION: Ho	neywell Study	Area 6 South				
Address: N.	J State Highwa	ay 440 Property	y has been subdi	vided - new lot	#		
County: Hu	dson	_ Municipality	y: Jersey City		_ Lot: 8	Block: 21	901.01
Easting (X):	601430	Northing	(Y): 685506		DATE WELL ST	Γ ARTED: August 20,	2020
Coordii	nate System: N	J State Plane (NAD83) - USF	EET D	ATE WELL COM	PLETED: August 25,	2020
WELL USE:	DEWATER	ING					
	•				Local ID: DP	9-4	
WELL CONSTRUCTION True Development Poilled (9.) 29.5 Principled Well Develop(9.) 29.5 Well Surfaces 2.9 Along Conduction							
Total Depth Drilled (ft.): 38.5 Finished Well Depth (ft.): 38.5 Well Surface: 2 ft. Above Grade						<u>-</u>	
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material Wgt/Rating/Screen # Used (lbs/ch no.)			
Borehole	0	18.50	14			(IO	5/ C 11 110.)
Borehole	18.50	38.50	10				
Casing	0	18.50	10		PVC	SCH 40 (O	UTER CASING)
Casing	0	28.50	4		PVC	SCH 40 (IN	NNER CASING)
Screen	28.50	38.50	4	P	VC SCH 40	0.0	020 inch
	Depth to	Depth to	Outer	Inner		Material	
	Top (ft.)	Bottom (ft.)	Diameter (in.)		Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)
Grout	0	26.50	10	4	35	564	58
Grout Gravel Pack	26.50	18.50 38.50	14 10	10	35	564 #0 Sand	58
					III Mada da Mar		
•		e method (Tren	nie Pipe)		illing Method: Mud	-	
RECORD O					MPING EQUIPM	<u>ENT</u>	
Pump Equipn	igust 25, 2020 nent: Air Lift				talled: <u>Installed</u> taller's Name: Danie	el Dimler 0001241	
Well Yield:					mp Type: <u>Submersib</u>		
Static Water l	Level: <u>12</u> ft. be	elow land surfa		De	pth to Pump: <u>36</u> ft.	below land surface	
Pumping Wat	ter Level: 33	ft. below land	surface		mp Capacity: 20 gr		
ATTACHM	ENTC				tal Design Head: <u>50</u> mp Horsepower: <u>.5</u>		
ATTACHWI	<u>LINIS</u>					narge Rate: _ gpm	
				1 1		tion of Test: _ hours	
GEOLOGIC	LOG						
		nds, sand-silt n	nixtures				
			nighly organic s	oils			
22 - 38.5: Bro	own SM - Silty	sands, sand-si	lt mixtures				
ADDITION	AL INFORM	ATION: Well	has two casings	S.			

Daniel C Dimler,

Driller of Record: JOURNEYMAN LICENSE # 0001241 Company: MORETRENCH AMERICAN CORP

Well Permit Number E202008574

MONITORING WELL RECORD

PROPERTY		HONEYWELL REDEVELOPN	DBA BAYFRO		LOMENT LLC HO	NEYWELL DBA BAY	FRONT	
Company/Org	ganization: H	oneywell dba I	Bayfront Redeve	elopment LLC				
Address: 11	5 Tabor Road	Morris Plains,	New Jersey 07	950				
WELL LOC	ATION: Ho	neywell Study	Area 6					
Address: N.	J State Route 4	140 Property ha	s been subdivid	ed - new lot #				
County: Hu	dson	_ Municipality	y: <u>Jersey City</u>		Lot: 8	Block: 21	901.01	
_			(Y): <u>685597</u>		DATE WELL ST	TARTED: August 18,	2020	
Coordin	nate System: N	IJ State Plane (NAD83) - USFI	EET D	ATE WELL COM	PLETED: August 24,	2020	
WELL USE:	MONITOR	ING						
Other Use(s): Local ID: OW-1								
WELL CON	STRUCTION	1						
Total Depth Drilled (ft.): 32.5 Finished Well Depth (ft.): 32.5 Well Surface: Above Grade								
	Depth to Top (ft.)	Depth to Bottom (ft.)	Bottom (ft.) (inches) (lbs/ch no.)					
Borehole	0	18.50	14			`	,	
Borehole	18.50	32.50	10					
Casing	0	18.50	10	10 PVC SCH 40 (OUTER CASING)				
Casing	0	22.50	4	PVC SCH 40 (INNER CASING)				
Screen	22.50	32.50	2	P	VC SCH 40	0.0	20 inch	
	Depth to	Depth to	Outer	Inner		Material		
	Top (ft.)	Bottom (ft.)	Diameter (in.)	· /		Neat Cement (lbs.)	Water (gal.)	
Grout Grout	0	22 18.50	10 14	2 10	40 35	752 658	67 58	
Gravel Pack	22	32.50	10	2	33	#0 Sand		
		e method (Trer			illing Method: Muc			
ADDITIONA Protective Cas Static Water I Water Level M Well Develop Method of De Pump Type:	AL INFORMA sing: Yes Level: 12 ft. to Measure Tool: oment Period: evelopment: Su	ATION pelow land surf Electronic Wa 1 hrs.		Pu To tor Dr Dr	mp Capacity: _ gpm tal Design Head: _ ft illing Fluid: ill Rig: Commacchic ealth and Safety Plan	i. 0 MC15		
ATTACHMI	ENTS:							
GEOLOGIC		nda aand aile	nivtures					
		nds, sand-silt n	nighly organic so	oile				
		sands, sand-si	<u> </u>	0113				
ADDITIONA	AL INFORMA	ATION: Wells	s have two casin	ıgs.				

Company: MORETRENCH AMERICAN CORP

Daniel C Dimler, Driller of Record: JOURNEYMAN LICENSE # 0001241

Well Permit Number E202008575

PROPERTY	IIWNHR.	HONEYWELL REDEVELOPN	DBA BAYFRO		LL RECORD LOMENT LLC HOI	NEYWELL DBA BAY	FRONT
Company/Org	ganization: H	oneywell dba H	Bayfront Redeve	elopment LLC			
Address: 11	5 Tabor Road	Morris Plains,	New Jersey 07	950			
WELL LOC	ATION: Ho	neywell Study	Area 6				
Address: N.	J State Route 4	140 Property ha	as been subdivid	ed - new lot#			
County: Hu	dson	_ Municipality	y: Jersey City		_ Lot: <u>8</u>	Block: 21	901.01
			(Y): <u>685570</u> NAD83) - USFI			FARTED: August 19, PLETED: August 24,	
	MONITOR	`		D	ALE WELL COMI	LETED. August 24,	2020
Other Use(s)					Local ID: OV	V-2	
WELL CON	STRUCTION	Ī					
		32.5	Finished We	ll Depth (ft.):	32.5	Well Surface: Abov	ve Grade
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material Wgt/Rating/Screen # Used (lbs/ch no.)			
Borehole	0	18.50	14				
Borehole	18.50	32.50	10				
Casing	0	18.50	10		PVC	SCH 40 (OU	JTER CASING)
Casing	0	22.50	2		PVC	`	INER CASING)
Screen	22.50	32.50	2	PV	C SCH 40	0.0	20 inch
	Depth to	Depth to	Outer	Inner		Material	
	Top (ft.)	Bottom (ft.)	Diameter (in.)	` '	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)
Grout	0	22	10	2	40	752	67
Grout Gravel Pack	<u>0</u> 22	18.50 32.50	14	10 2	35	658 #0 Sand	58
1		e method (Trer			lling Method: Muc		
ADDITIONAProtective Castatic Water I Water Level Mell Develop Method of De Pump Type: ATTACHMI GEOLOGIC 0 - 15: Brown 15 - 22: Black	AL INFORMA sing: Yes Level: 12 ft. b Measure Tool: ment Period: evelopment: Si ENTS: LOG SM - Silty sa k PT - Peat, mo	pelow land surf Electronic Wa 1 hrs. arging	race ter Level Indica nixtures highly organic so	Pur Tot tor Dri Dri Hea	mp Capacity: _ gpm al Design Head: _ ft Illing Fluid: Il Rig: Comacchio N alth and Safety Plan	<u>4C15</u>	
ADDITIONA	AL INFORMA	ATION: Well	has two casings				

Company: MORETRENCH AMERICAN CORP

Daniel C Dimler, Driller of Record: JOURNEYMAN LICENSE # 0001241

Well Permit Number E202008576

PROPERTY		HONEYWELL REDEVELOPN	DBA BAYFRO		LL RECORD LOMENT LLC HO	NEYWELL DBA BAY	FRONT		
Company/Org			Bayfront Redeve	lopment LLC					
			New Jersey 079	•					
			•	700					
		neywell Study							
Address: N.	J State Route 4	140 Property ha	s been subdivid	ed - new lot #					
County: Hu	dson	_ Municipality	y: <u>Jersey City</u>		_ Lot:_8	Block: 21	901.01		
· ·			(Y): <u>685534</u>			TARTED: August 20,			
		`	NAD83) - USFI	D D	ATE WELL COM	PLETED: August 25,	2020		
	MONITOR	ING							
Other Use(s)	:				Local ID: OV	V-3			
WELL CON	STRUCTION	1							
Total Depth	Drilled (ft.):_	32.5	Finished We	ll Depth (ft.):_	32.5	Well Surface: Abov	ve Grade		
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material Wgt/Rating/Screen # Us (lbs/ch no.)					
Borehole	0	18.50	14						
Borehole	18.50	32.50	10						
Casing	0	18.50	10	PVC SCH 40 (OUTER CASING)					
Casing	0	22.50	2		PVC	`	INER CASING)		
Screen	22.50	32.50	2	P	VC SCH 40	0.0	20 inch		
	Depth to	Depth to	Outer	Inner		Material			
Conset	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)		Neat Cement (lbs.)	Water (gal.)		
Grout Grout	0	22 18.50	10 14	2 10	40 35	452 658	67 58		
Gravel Pack	22	32.50	10	2	33	#0 Sand			
Grouting Met	hod: Pressur	e method (Tren	nie Pipe)	Dr	illing Method: Muc				
Protective Ca Static Water I Water Level ! Well Develop Method of De Pump Type:	Level: 12 ft. b Measure Tool: oment Period: evelopment: Su	pelow land surf Electronic Wa 1 hrs.	ace ter Level Indicat	To t <u>or</u> Dr Dr	mp Capacity: _ gpm tal Design Head: _ fi illing Fluid: ill Rig: <u>Comacchio N</u> alth and Safety Plan	<u>MC15</u>			
<u>ATTACHMI</u>	ENTS:								
GEOLOGIC		. 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	.:						
		nds, sand-silt n		sila.					
		sands, sand-si	nighly organic so	DIIS					
ADDITIONA	AL INFORMA	ATION: Well	has two casings	•			_		

Company: MORETRENCH AMERICAN CORP

Daniel C Dimler, Driller of Record: JOURNEYMAN LICENSE # 0001241

New Jersey State Department of Environmental Protection Bureau of Water Allocation and Well Permitting

Mail Code 401-04Q PO BOX 420 Trenton, NJ 08625-0420 Tel: 609-984-6831

Well Permit Number E202008577

MONITORING WELL RECORD

PROPERTY OWNER: HONEYWELL DBA BAYFRONT REDEVELOMENT LLC HONEYWELL DBA BAYFRONT REDEVELOPMENT LLC								
Company/Org	ganization: H	oneywell dba I	Bayfront Redeve	elopment LLC				
Address: 11	5 Tabor Road	Morris Plains,	New Jersey 07	950				
WELL LOC	ATION: Ho	neywell Study	Area 6					
Address: N.	J State Route 4	40 Property ha	s been subdivid	ed - new lot #				
County: Hue	dson	_ Municipality	y: Jersey City		Lot: 8	Block: 219	01.01	
			(Y): <u>685561</u>		DATE WELL ST	ARTED: August 26, 2	020	
Coordin	nate System: N	J State Plane (NAD83) - USFI	EET DA	ATE WELL COMP	PLETED: August 26, 2	020	
WELL USE: MONITORING								
Other Use(s): Local ID: OW-4								
WELL CON	WELL CONSTRUCTION							
Total Depth	Drilled (ft.):_	19	Finished We	ell Depth (ft.):	19	Well Surface: Above	e Grade	
Depth to Depth to Diameter Material Wgt/Rating/Screen # Used Top (ft.) Bottom (ft.) (inches) (lbs/ch no.)								
Borehole	Borehole 0 19 10							
Casing	0	9	2	PVC SCH 40				
Screen	9	19	2	2 PVC SCH 40 0.020 inch				
	Depth to Top (ft.)	Depth to Bottom (ft.)	Outer Diameter (in.)	Inner Material (in.) Diameter (in) Bentonite (lbs.) Neat Cement (lbs.) Water (gal.)				
Grout	0	7	10	2	15	282	25	
Gravel Pack	7	19	10	2		#0 Sand		
Grouting Met	hod: Pressur	e method (Trer	nie Pipe)	Dri	Iling Method: Mud	Rotary		
Protective Ca Static Water I Water Level M Well Develop	Level: <u>17</u> ft. b	pelow land surf Electronic Wa .5 hrs.	ace ter Level Indica	Tot tor Dri Dri	mp Capacity: _ gpm tal Design Head: _ ft Illing Fluid: Il Rig: <u>Comacchio M</u> alth and Safety Plan	<u>1C15</u>		
ATTACHMI	ENTS:							
GEOLOGIC 0 - 19: Brown		nds, sand-silt n	nixtures					
	AL INFORMA		HACCIOS					
ADDITIONA	AL INFURNIA	ATION:						

Company: MORETRENCH AMERICAN CORP

Daniel C Dimler, Driller of Record: <u>JOURNEYMAN</u> LICENSE # 0001241

New Jersey Department of Environmental ProtectionSite Remediation Program

Monitoring Well Certification Form B - Location Certification

Date Stamp
(For Department use only)

			(i or Department use only)
SECTION A. SITE NAME AND LOCATION			
Site Name: Study Area SA-6 South Chromium Remed	У		
List all AKAs: Degen Oil (Site 073)			
Street Address: 427 Route 440			
Municipality: Jersey City		_ (Township, Boroug	gh or City)
County: Hudson County		_ Zip Code: 0730	05
Program Interest (PI) Number(s): G00000927		Case Tracking I	Number(s):
SECTION B. WELL OWNER AND LOCATION			
1. Name of Well Owner Bayfront Redevelopment, LLC			
2. Well Location (Street Address) 200 Kellogg Street	t		
Well Location (Municipal Block and Lot) Block	k# 21901.0	01	Lot # 8
SECTION C. WELL LOCATION SPECIFICS			
Well Permit Number (This number must be permaner)	ntly affixed t	o the well casing): E	202011784
2. Site Well Number (As shown on application or plans):	: 124-PZ-1	19R	
3. Geographic Coordinate NAD 83 to nearest 1/100 of a	second:		
Latitude: North	1	Longitude: West	
4. New Jersey State Plane Coordinates NAD 83 datum,		feet units, to nearest	foot:
North		East	
5. Elevation of Top of Inner Casing (cap off) at reference	e mark (ne		
Elevation Top of Outer casing:			
Check one: NAVD 88 NGVD 29 Or			
6. Source of elevation datum (benchmark, number/desc	ription and	elevation/datum). If a	an on-site datum is used, identify
here, assume datum of 100', and give approximated a	actual eleva	tion (referencing NA\	/D 88).
7. Significant observations and notes:			
· ·			
SECTION D. LAND SURVEYOR'S CERTIFICATION			SEAL
I certify under penalty of law that I have personally examined	d and am far	niliar with the	
information submitted in this document and all attachments a those individuals immediately responsible for obtaining the ir			
submitted information is true, accurate and complete. I am a			
penalties for submitting false information including the possit	oility of fine	and imprisonment.	
Professional Land Surveyor's Signature:			Date
Surveyor's Name: Jeffrey D. Bunce			nse Number: GS41045
Firm Name: Colliers Engineering & Design		Certificate of Aut	horization #: 24GA27986500
Mailing Address 400 Valley Road Road Suite 304			
City/Town: Mt. Arlington	State	New Jersey	Zip Code: 07856
Phone Number 973-810-0090	Ext.:	F	-ax: 973-398-3199

New Jersey Department of Environmental ProtectionSite Remediation Program

Monitoring Well Certification Form B - Location Certification

Date Stamp
(For Department use only)

			(i or Department use only)
SECTION A. SITE NAME AND LOCATION			
Site Name: Study Area SA-6 South Chromium Remed	У		
List all AKAs: Degen Oil (Site 073)			
Street Address: 427 Route 440			
Municipality: Jersey City		(Township, Boroug	gh or City)
County: Hudson County		Zip Code: 0730	05
Program Interest (PI) Number(s): G00000927		Case Tracking	Number(s):
SECTION B. WELL OWNER AND LOCATION			
Name of Well Owner Bayfront Redevelopment, LLC			
2. Well Location (Street Address) 200 Kellogg Street	t		
3. Well Location (Municipal Block and Lot) Block	k# 21901	.01	Lot # 5
SECTION C. WELL LOCATION SPECIFICS			
1. Well Permit Number (This number must be permaner	ntly affixed	to the well casing): E	202011785
2. Site Well Number (As shown on application or plans):	124-PZ-	20R	
3. Geographic Coordinate NAD 83 to nearest 1/100 of a	second:		
Latitude: North		Longitude: West	
4. New Jersey State Plane Coordinates NAD 83 datum,		/ feet units, to nearest	foot:
North		East	
5. Elevation of Top of Inner Casing (cap off) at reference	e mark (ne	earest 0.01'):	
Elevation Top of Outer casing:			
Check one: ☐ NAVD 88 ☐ NGVD 29 ☐ Or	n Site Datu	m	
6. Source of elevation datum (benchmark, number/desc			
here, assume datum of 100', and give approximated a	actual elev	ation (referencing NA\	VD 88).
7. Significant observations and notes:			
-			
SECTION D. LAND SURVEYOR'S CERTIFICATION			SEAL
I certify under penalty of law that I have personally examined	d and am fa	miliar with the	<u> </u>
information submitted in this document and all attachments a those individuals immediately responsible for obtaining the ir			
submitted information is true, accurate and complete. I am a			
penalties for submitting false information including the possit	oility of fine	and imprisonment.	
Professional Land Surveyor's Signature:			Date
Surveyor's Name: Jeffrey D. Bunce			nse Number: GS41045
Firm Name: Colliers Engineering & Design		Certificate of Aut	horization #: 24GA27986500
Mailing Address 400 Valley Road Road Suite 304			
City/Town: Mt. Arlington	State	New Jersey	Zip Code: 07856
Phone Number 973-810-0090	Ext.:	F	=ax: 973-398-3199

APPENDIX E

DEWATERING LOGS

	STUDY A	REA 6 CONST	RUCTION WAT	ER DISCHAR	GE DATA (TO P	/VSC)
DATE	Hours of Operation	Discharge Flow Meter Start (Gal¹)	Discharge Flow Meter Finish (Gal)	Discharged Volume (Gal)	Daily Discharge Volume (Gal)	Discharged Volume (Gal) Total
09/01/20	5:00:00	230	24,228	23,998		
09/01/20	10:10:00	23,998	59,482	35,484	59,482	59,482
09/02/20	3:00:00	59,482	61,483	2,001		
09/02/20	1:45:00	61,483	63,516	2,033		
09/02/20	2:10:00	63,516	81,000	17,484		
09/02/20	1:43:00	81,000	88,894	7,894		
09/02/20	3:43:00	88,894	97,842	8,948	38,360	97,842
09/03/20	0:55:00	97,842	100,200	2,358	·	
09/03/20	3:30:00	100,200	112,766	12,566	14,924	112,766
09/04/20	4:04:00	112,766	124,353	11,587		
09/04/20	2:38:00	124,353	135,565	11,212	22,799	135,565
09/08/20	1:30:00	135,565	156,229	20,664	20,664	156,229
09/09/20	1:30:00	156,229	184,405	28,176		
09/09/20	5:00:00	184,405	194,380	9,975		
09/09/20	10:45:00	194,380	221,198	26,818	64,969	221,198
09/10/20	3:00:00	221,198	225,782	4,584		
09/10/20	3:30:00	225,782	253,046	27,264	31,848	253,046
09/11/20	2:00:00	253,046	267,895	14,849		
09/11/20	10:55:00	267,895	294,944	27,049	41,898	294,944
09/12/20	7:00:00	294,944	307,320	12,376		
09/12/20	11:00:00	307,320	336,903	29,583	41,959	336,903
09/13/20	8:30:00	336,903	349,251	12348		
09/13/20	9:30:00	349,251	373,318	24067	36,415	373,318
09/14/20	8:00:00	373,318	388,293	14,975		
09/14/20	11:45:00	388,293	419,483	31,190	46,165	419,483
09/15/20	9:00:00	419,483	423,462	3,979		

	STUDY A	REA 6 CONST	RUCTION WAT	ER DISCHAR	GE DATA (TO P	PVSC)
DATE	Hours of Operation	Discharge Flow Meter Start (Gal¹)	Discharge Flow Meter Finish (Gal)	Discharged Volume (Gal)	Daily Discharge Volume (Gal)	Discharged Volume (Gal) Total
09/15/20	5:15:00	423,462	454,247	30,785	34,764	454,247
09/16/20	9:41:00	454,247	472,004	17,757		
09/16/20	9:11:00	472,004	498,915	26,911	44,668	498,915
09/17/20	10:00:00	498,915	560,095	61,180	61,180	560,095
09/18/20	2:00:00	560,095	575,111	15,016	15,016	575,111
09/21/20	8:15:00	575,111	597,722	22,611	22,611	597,722
09/22/20	8:00:00	597,722	619,278	21,556	21,556	619,278
09/23/20	8:00:00	619,278	642,412	23,134	23,134	642,412
09/24/20	8:00:00	642,412	649,265	6,853	6,853	649,265
09/25/20	5:30:00	649,265	657,091	7,826	7,826	657,091
09/28/20	8:30:00	657,091	667,037	9,946	9,946	667,037
09/29/20	8:30:00	667,037	689,685	22,648	22,648	689,685
10/01/20	8:30:00	689,685	701,782	12,097	12,097	701,782
10/02/20	8:30:00	701,782	717,696	15,914	15,914	717,696
10/09/20	8:30:00	717,696	726,992	9,296	9,296	726,992
10/10/20	8:30:00	726,992	730,152	3,160	3,160	730,152
10/11/20	8:30:00	730,152	737,499	7,347	7,347	737,499
10/12/20	10:00:00	737,499	748,373	10,874		
10/12/20	2:00:00	748,373	796,044	47,671	58,545	796,044
10/13/20	9:00:00	796,044	817,142	21,098		
10/13/20	3:00:00	817,142	849,626	32,484	53,582	849,626
10/14/20	11:00:00	849,626	906,876	57,250	57,250	906,876
10/15/20	8:00:00	906,876	918,958	12,082		
10/15/20	8:00:00	918,958	936,494	17,536	29,618	936,494
10/16/20	17:00:00	936,494	966,335	29,841	29,841	966,335
10/17/20	17:00:00	966,335	994,191	27,856	27,856	994,191

DATE	Hours of Operation	Discharge Flow Meter Start (Gal¹)	Discharge Flow Meter Finish (Gal)	Discharged Volume (Gal)	Daily Discharge Volume (Gal)	Discharged Volume (Gal) Total
10/18/20	17:00:00	994,191	1,020,084	25,893	25,893	1,020,084
10/19/20	17:00:00	1,020,084	1,035,271	15,187	15,187	1,035,271
10/20/20	17:00:00	1,035,271	1,061,507	26,236	26,236	1,061,507
10/21/20	17:00:00	1,061,507	1,084,020	22,513	22,513	1,084,020
10/22/20	17:00:00	1,084,020	1,101,142	17,122	17,122	1,101,142
10/23/20	17:00:00	1,101,142	1,111,677	10,535	10,535	1,111,677
10/26/20	17:00:00	1,111,677	1,136,206	24,529	24,529	1,136,206
10/27/20	17:00:00	1,136,206	1,158,813	22,607	22,607	1,158,813
10/28/20	17:00:00	1,158,813	1,181,895	23,082	23,082	1,181,895
10/29/20	17:00:00	1,181,895	1,195,950	14,055	14,055	1,195,950
11/03/20	17:00:00	1,195,950	1,250,310	54,360	54,360	1,250,310
11/04/20	17:00:00	1,250,310	1,276,197	25,887	25,887	1,276,197
11/05/20	17:00:00	1,276,197	1,297,010	20,813	20,813	1,297,010
11/06/20	17:00:00	1,297,010	1,320,270	23,260	23,260	1,320,270
11/09/20	8:00:00	1,320,270	1,345,932	25,662	25,662	1,345,932
11/10/20	8:00:00	1,345,932	1,360,695	14,763	14,763	1,360,695
11/11/20	8:00:00	1,360,695	1,381,710	21,015	21,015	1,381,710
11/12/20	8:00:00	1,381,710	1,390,939	9,229	9,229	1,390,939
11/13/20	8:00:00	1,390,939	1,403,712	12,773	12,773	1,403,712
11/16/20	8:00:00	1,403,712	1,442,262	38,550	38,550	1,442,262
11/17/20	8:00:00	1,442,262	1,475,568	33,306	33,306	1,475,568
11/18/20	8:00:00	1,475,568	1,500,136	24,568	24,568	1,500,136
11/19/20	8:00:00	1,500,136	1,510,399	10,263	10,263	1,510,399
11/20/20	8:00:00	1,510,399	1,527,333	16,934	16,934	1,527,333
11/23/20	8:00:00	1,527,333	1,543,603	16,270	16,270	1,543,603
11/24/20	8:00:00	1,543,603	1,563,426	19,823	19,823	1,563,426

	STUDY A	REA 6 CONST	RUCTION WAT	ER DISCHAR	GE DATA (TO P	PVSC)
DATE	Hours of Operation	Discharge Flow Meter Start (Gal¹)	Discharge Flow Meter Finish (Gal)	Discharged Volume (Gal)	Daily Discharge Volume (Gal)	Discharged Volume (Gal) Total
11/25/20	8:00:00	1,563,426	1,569,596	6,170	6,170	1,569,596
11/30/20	8:00:00	1,569,596	1,577,761	8,165	8,165	1,577,761
12/01/20	8:00:00	1,577,761	1,585,621	7,860	7,860	1,585,621
12/02/20	8:00:00	1,585,621	1,602,591	16,970	16,970	1,602,591
12/03/20	8:00:00	1,602,591	1,612,187	9,596	9,596	1,612,187
12/07/20	8:00:00	1,612,187	1,625,869	13,682	13,682	1,625,869
12/09/20	8:00:00	1,625,869	1,636,321	10,452	10,452	1,636,321
12/10/20	8:00:00	1,636,321	1,648,765	12,444	12,444	1,648,765
12/11/20	8:00:00	1,648,765	1,651,097	2,332	2,332	1,651,097
12/12/20	8:00:00	1,651,097	1,652,490	1,393	1,393	1,652,490
12/14/20	8:00:00	1,652,490	1,653,078	588	588	1,653,078
12/16/20	8:00:00	1,653,078	1,654,264	1,186	1,186	1,654,264

¹Gal = gallon

APPENDIX F

DISPOSAL MANIFESTS (CD ONLY)

APPENDIX G BACKFILL DOCUMENTATION

S & S ENVIRONMENTAL SCIENCES, INC.

Environmental Engineering, Testing and Consultation

98 Sand Park Road, Cedar Grove, NJ 07009 Tel (973) 857-7188 Fax (973) 239-8380

> Kamil Sor, Ph.D. Orhun Sor, P.E. Atilla Sencar, P.E.

This report is the confidential property of the Client, and information contained may not be published or reproduced without our written permission.

Client:	Tilcon New York, Inc.										
Project:	Mount Hope,	Mount Hope, NJ (NJDEP-SRS)									
Subject:	Laboratory Ar	Laboratory Analysis of Aggregate Sample (Quarry Fines)-NJ									
Job No.:	07E34	Report Number:	20-E-64	Date:	5/21/2020						

We present herewith the laboratory test results of an aggregate sample delivered to our laboratory (identified as Quarry Fines) on April 28, 2020. The sample was collected by a representative of Tilcon NY, on the same day.

As requested, the aggregate sample was analyzed for the U.S. EPA Target Compound List (TCL)+30/Target Analyte List (TAL) parameters, Extractable Petroleum Hydrocarbons (EPH), pH, and Hexavalent Chromium. The analyses were performed by Integrated Analytical Laboratories, LLC (IAL) (NJDEP Lab ID No. 14751). The copies of the IAL/S&S sample chain-of-custody forms, the preliminary IAL laboratory summary report and NJDEP-SRS comparison tables are attached.

Review of the laboratory data and comparison of the sample test results to the NJDEP Residential Direct Contact Soil Remediation Standards (RDCSRS) indicated that the aggregate sample **meet** the **NJDEP-RDCSRS**.

If there are any questions or if we can be of further assistance in this matter, please contact us.

Very truly yours,

S & S ENVIRONMENTAL SCIENCES, INC.

Kamil Sor, Ph.D.

President

KS/ag

Attachments:

(1) Sample Chain-of-Custody Forms, Laboratory Summary Reports, and NJDEP-SRS Comparison Tables

cc: (1) Client

Steve O'Reilly

email: soreilly@tilconny.com

S&S ENVIRONMENTAL SCIENCES, INC.

Environmental Engineering, Testing and Consultation

98 Sand Park Rad, Cedar Grove, NJ 07009 Tel (973) 857-7188 Fax (973) 239-8380

NJDEP Lab Certification No. 07073

SAMPLE CHAIN OF CUSTODY

CLIENT:	TIL	7 1			DATE:	11 1	11/12
ADDRESS:	1 1 4	000			SSES JO	PNO 4-	4-20
CONTACT:	 				TEL. #:	B NO.	L
PROJECT:	ha t it					FIAD ID #:	1 2 2 1 0
PROJECT:	1 101 11	upc, NI			PROJEC	ΓLAB ID#:	120.049
SAMPLE	SAMPLING	SAMPLING	SAMPLE	NO. OF	48	IALYSES REG	NICCTED
NUMBER	DATE	TIME	TYPE	BOTTLES	100	10.7	
20-049	4.28.50	900	Comb		NY-N	17 Clein	610
							
							**
Comments:	VATIVE						
Cooled at 4°C?	AIIVE		pH Meter				
			No.:	Reading	T°C	Time	Analyst
HO3			-M				
			рН				
12804		Į.	pH Dup.				
NaOH							
Na ₂ S ₂ O ₃							
Other							
Sampled By:	5.0 =						
RELINOUS	HED BY:	χ.	RECEIVE	D BY:		DATE A	ND TIME:
h		()	111				
J. 4		2	111/			4.28.2.	0 11:15
/			\sim				
		-			3		
		-			_		

Integrated Analytical Labs 273 Franklin Road Randolph, NJ 07869

Chain of Custody Record

Contact Us: 973-361-4252 Fax: 973-989-5288

Web: www.lalonline.com

Customer Informati	on		Reportin	ng Informa	tion		Rus! Cha			Deliv	erables			EDD s		Concer	trations	Expected
Company: S		REPORT TO:	200			į dys.	24 hr - 1		NJ,	CT, PA	135.0	VΥ		NJ SR	P	Low	Med	High
Address:		Address:					48 hr - 172 hr - 1		□ Res	ults Only		Category	1_	NYSDEC 6	EQuIS	Kı	nown Haz	
			2	0			96 hr - 5 day -	35%	Red		^		☐ lab	approved cu	stom EDD	☐ YE	s	□ NO
Telephone #: 973-237	-6001	Attn:	20				6-9 day			datory/ Full*	☐ ASP	Category		NO EDD R	EQ'D	Describe	2;	
Fax #:		FAX#									nie (TAT	7)		*	Regul	atory Re	quireme	nt
Project Manager: P. \		INVOICE TO:	25 T			2	Standard	1 (10 bus	siness da	ys) Verba	ıl			New J	lersey		New Yor	
EMAIL Address;		Address:					Rush/date		ed)** >					☐ GW	as	□ AWQ	S (TOGS T	Table 1)
Project Name: Mant	11 200						_		d 3 wee	k	Oth	er - call fo	or price	E IGW		☐ GWE	L (TOGS T	(able 5)
Project Location (State):	7	Attn:					Petr	oleum F	Hydrocai	bons - S	election	is REQU	RED	SRS		Part 3	75-6.8(a) -	Unrestricted
Bottle Order #:		PO#	2	2-0	49		□ NJ	EPH-DRO) - Catogo	ry 1 TAT	for PHC, if	alue i		☐ Ecol	ogical	I 🚡	75-6.8(b) - I	
"Report to"/"Invoice To" same a	as above	Quote #					100	Ser Min	- Categor	Potnic	□ CT	ALC: THE RESERVE	11.4	_ pw	-	CP-51	Table 2 of	Hection
Sampled by: S, O		1 - 10	San	nple Matrix	A	1 8	A Comment		ctionated -	200	DRC	D-8015		☐ SPLI	P	requir	ed) or States /	Criteria
COMPLETED BY IAL:		DW - Drinking V		OI - Oil S - Soil			7	ANA	LYTICAL	PARAM	TERS (pl	ease note	if contin	gent)	,	Penn	sylvania A	ct 2
	ment Rental	GW - Groundwa	ater	SED - Sedim			158	i:		1							CSA 22a-1	
SAMPLE INFORMA	33333	L IQ - Liquid (sp		SOL - Solid (SL - Sludge	(specify)			I		+ 9						☐ TSCA		
		M - Multiphasic Sampl	ina	W - Wipe	T		3.75 2.05	0	HJ	1.						OTHER R	gulatory R	equirements -
Client ID	Depth (ft only)	Date	Time	Metrix	containers	IAL #	15.6	14		7							ole Specific	
20-049	or exposeding	. 28.20	9.40	Sol	5	34	レ	-	-	-	100	87.52	1 65	110000	Si yai	Bullet	ne opecin	- 110183.
		C 20	7				DATE OF THE STATE	57.5	1 15.29	-	Section 1	1000000	0.000		0.00	100 11 100		
	* - 15-4 (8	A. 4.0		100	F118	W12-1	7. 1	745 Q.	100	2.585		Jan 1	23403	40° 13°	500	200		
						05				3 - 20			53					- 10 -2
		F3 F3 T3	N EQUITA		AN S	9	EV I			100	3 7	THE T	0.10		100 Co.	7 7 7		7-00
		44		2/0 / / 20		10.50	201		Darion	20000000	MESS VESS	19.7	30, 30	100000	1,11,1269			
	1 To 1 To 1 To 1		in the	F 17 3	194413	134	100		147E2	65756	10 H	1330	(Y ₁)					
												- C-210	3345-3					
Samples previously analyzed by IAL?	Preservative Code:	Container	58 13	Pres	servative (u	se code)	18/11	747	1.55	532	V		2		15000	FOR LAB	USE ON	LY
YES / NO		Code:			ner Type (u									-		Γ	-	207
Please print legibly and fill out	1 = None 2 = HCl	A = Amber Glass B = Plastic		nstructions/	QC Requir	ements	Comme	nts:	Α.		LIV	- <i>p</i> c	T /	Aco.	[al	SDG #:	24	298
completely. Samples cannot be processed and the turnaround time	3 = HNO3	C = Vial		7~0	<u> </u>	15 S	Va	764	~ tt	L.S	, ,	- 10	J (. 160 "	110		<u> </u>) 10
(TAT) will not start until any	4 = MeOH 5 = NaOH	D = Glass E = EnCore	1		_											Cooler	Temp: _	6.c
ambiguities have been resolved.	6 ≃ H2SO4	T = Terracore	Rei	linguished by (Signature ar	d Compa	ny)	Date		Time	125	Received i	y (Signatu	re and Com	pany)		Date)	Time
TAT starts the following day if	7 = Other		1.1	//				4/23	120 14	1).		5)-	/	en		Ul	18/20	1415
samples rec'd at lab ≥ 5PM. BY EXECUTING THIS COC,	Carrier (check o					_		11 -	10 11	179		40				110	014	17.5
THE CLIENT HAS READ AND	☐ IAL Cou										-							
AGREES TO BE BOUND	☐ Client Co	ourier																
BY IAL'S TERMS & CONDITIONS	☐ FedEx/U	PS***																
(found on rear of pink copy).	***Tracking #:	MITTO CONCEPTO									-			-				
IAL Rev 1/2019		W 7. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.																
LAB COPIES - WHITE & YELLOW; CLIENT CO	PY - PINK			Certification ID	s: TNI (TNIO	1284); CT	(PH-0699); N	IJ (14751);	NY (11402); PA (68-00	773).					PAGE:1	of .	
																I AGE,	4	

SAMPLE RECEIPT VERIFICATION

CASE NO: E 20 028	98 CLIENT: 5±5
COOLER TEMPERATURE: 2°	
COC: COMPLETE / INCOME	Comments PLETE
✓ = YES/NA	VOA received: Encore IGW - Methanol
→ = NO	(check one) Terra Core No Preservative
✓ Bottles Intact✓ no-Missing Bottles	
✓ no-Extra Bottles	
✓ Sufficient Sample Volun✓ no-headspace/bubbles i	
✓ Labels intact/correct	
✓ pH Check (exclude VOs✓ Correct bottles/preserva	
Sufficient Holding/Prep Multiphasic Sample	Time ¹
Sample to be Subcontra	
✓ Chain of Custody is Cl	ear
	times will be analyzed by this laboratory past the holding time. This includes but is not limited to dual Chlorine, Total Residual Chlorine, Dissolved Oxygen, Sulfite.
ADDITIONAL COMMENTS:	adai onionio, rotal regidadi onionio, pissorea oxygon, dante.
SAMPLE(S) VERIFIED BY:	INITIAL AP DATE 428/20
CORRECTIVE ACTION REQ	JIRED: YES SEE BELOW) NO Y
If COC is NOT clear, <u>STOP</u> unti	you get client to authorize/clarify work.
CLIENT NOTIFIED:	YES Date/ Time: NO NO
PROJECT CONTACT: SUBCONTRACTED LAB:	
DATE SHIPPED:	
ADDITIONAL COMMENTS:	
X	
VERIFIED/TAKEN BY:	NITIAL KJ DATE 4/29/20

777 New Durham Rd., Edison, N	NJ	0881'
-------------------------------	----	-------

Rand Copt N3 07849 Report to Thomas Malanga Address	CLIENT & I	PROJECT			ING & BILI		New I	Durhar ——	n Rd.,	Edisor	n, NJ ()8817					21	185	55)
Randolph, N. 1978/9 Report to: Thomas Malangs Address Thomas Malangs Thomas Malang	Name: Integrate	ed Analytical Laboratorie	s LLC	Contact:	Thomas Malar	nga	j				Turr	around	Time					Report	Format	
Randulph, NJ 67869 Rejort to Thomas Malange Address Address Address Polychone 9: 973-361-425 Polychone 9: 973-361-4				Fax #:				Verbal	/Fax								Reduce	ed / Level	Ш	
The	Address:	273 Franklin Road		EMail to:	tmalanga@ialonl	ine.com		24 hr*	48 hr*	72 hr*	1 wk*	2 wk	Other:	6 B	usiness l	Days				
Prior to sample arrival, Lab notification is required. Prior to sample arrival, Lab notification is requ		Randolph, NJ 07869		Report to:	Thomas Malas	nga		Hard C	Сору								Spe	cial Re	quireme	nts
Project Location (State) N J				Address:				72 hr*	1 wk*	2 wk*	3 wk		Other:							
Project Name E 20-02898 Revise to: Thomas Malanga	Telephone #:	973-361-4252						*Prior	r to sam	ple arriv	al, Lab	notificati	ion is req	uired.						
Project Manager Project Ma	Fax#:	973-989-5288																	011.3	
## April Apr	Project Name:	E20-02898		Invoice to:	Thomas Malar	iga 🐷		A	NALYT	ICAL PA	RAME	TERS / P	RESERI	VATIVE	S					
Project Manager: Reference IDs: PO# Sample 10 Sample 10 Sample 10 fin feet) Pozar Time A50-208555 Chan of Custom A50-208555 Chan of Custom Pozar Free Free Free Free Free Free Free Fr	Project Location	(State): NJ		Address:																
Sample In Sample Depth (in Feet) Sampling Marrix & of of One	Project Manager	:																		
Sample ID Sample Depth (in Feed Dept	Reference ID#:	F	O#				ZB)													-
Sample Depth (in Feet) Date Time Warris Containers	SAMPLE IN	FORMATION					yanide (901													
CUSTODY LOG Signature/Company Date Time Signature/Company Date Time Signature/Company Received by: Received b	Sample 10	Sample Depth (in Feet)			Matrix	100	otal C													
Please print legibly and fill out completely. Samples cannot be processed and the turnaround time will not start until any ambiguities have been cooler TEMP. COOLER TEMP. CONCENTATION REQUIRED CUSTODY LOG Signature/Company Signature/Company Signature/Company Date Time Signature/Company Signature/Company Signature/Company Signature/Company Signature/Company Signature/Company Signature/Company Signature/Company Signature/Company Received by: Received by: Received by: PAGE: OF	ФE20-02898-00	1			Soil	Containers		+												
Please print legibly and fill out completely. Samples cannot be processed and the turnaround time will not start until any ambiguities have been cooler TEMP. Concentrations Expected LOW MED FIIGH Describe. EMAIL CONFIRMATION REQUIRED Signature/Company Date Time Signature/Company Signature/Company Beginshed by: Received by: Lab Case # PAGE: OF	S)																			
Please print legibly and fill out completely. Samples cannot be processed and the turnaround time will not start until any ambiguities have been cooler TEMP. Concentrations Expected Known Hazard yes no Low MED HIGH Describe: EMAIL CONFIRMATION REQUIRED Signature/Company Date Time Signature/Company Date Time Signature/Company Received by: Liab Case # PAGE: OF	of 3					1		-												
Please print legibly and fill out completely. Samples cannot be processed and the turnaround time will not start until any ambiguities have been resolved. EMAIL CONFIRMATION REQUIRED Signature/Company Date Time Signature/Company Signature/Company Signature/Company Received by: Received by: Received by: Received by: Received by: PAGE: OF	7							-												
Please print legibly and fill out completely. Samples cannot be processed and the turnaround time will not start until any ambiguities have been resolved. EMAIL CONFIRMATION REQUIRED Signature/Company Date Time Signature/Company Signature/Company Acceived by: Received by: Received by: Received by: PAGE: OF			 4	60-208555 C	hain															
EMAIL CONFIRMATION REQUIRED CUSTODY LOG Signature/Company Date Time Signature/Company Received by:					. Custody	/	•"													
EMAIL CONFIRMATION REQUIRED CUSTODY LOG Signature/Company Date Time Signature/Company Received by:						1														
EMAIL CONFIRMATION REQUIRED CUSTODY LOG Signature/Company Date Time Signature/Company Received by:																				
Signature/Company Date Time Signature/Company Signature/Company Signature/Company Received by: Lab Case # Received by: PAGE: OF	Please print legibly resolved.		-						biguities h	ave been	COOLE					Describe:	Кпомп	Hazard: y	es no	
Received by: Office State of S	CUSTODY L		CONF	IRMA	TION	REQU	IRE	D			Note:									
Received by:	05/	Signature/Company		Date	Time		Sign	ature/Com	pany			,								
Received by: Received by: PAGE: OF	Remunished by:	Omy		3/7/20	1136	+	11	ng	En	W55	الما مراي									
CNOW MARKET	Relinquished by:					-					-	1	.ab Case #		1	PACE:	_	7,50	F	
		1-001)						-0.1		- C			8070			I AGE:				

Client: S & S Environmental Project: MOUNT HOPE Lab Case No.: E20-02898

Lab ID:		02898-001
Client ID:		20-049
Matrix:		Soil
Sampled Date		4/28/20
PARAMETER(Units)	Conc	Q MDL
Volatiles (Units)		(mg/Kg)
Dichlorodifluoromethane	ND	0.000419
Chloromethane	ND	0.000419
Vinyl chloride	ND ND	0.00045
Bromomethane	ND ND	0.000438
Chloroethane	ND ND	0.000514
Trichlorofluoromethane	ND ND	0.000314
Acrolein	ND ND	0.00524
1,1-Dichloroethene	ND	0.000441
Acetone	ND	0.00276
Carbon disulfide	ND	0.000273
Methylene chloride	ND	0.0021
Acrylonitrile	ND	0.00464
tert-Butyl alcohol (TBA)	ND	0.0011
trans-1,2-Dichloroethene	ND	0.000432
Methyl tert-butyl ether (MTBE)	ND	0.000321
1,1-Dichloroethane	ND	0.000394
cis-1,2-Dichloroethene	ND	0.000374
2-Butanone (MEK)	ND	0.00103
Bromochloromethane	ND	0.000314
Chloroform	ND	0.000608
1,1,1-Trichloroethane	ND	0.000306
Carbon tetrachloride	ND	0.000298
1,2-Dichloroethane (EDC)	ND	0.000409
Benzene	ND	0.000234
Trichloroethene	ND	0.000315
1,2-Dichloropropane	ND	0.000253
1,4-Dioxane	ND	0.039
Bromodichloromethane	ND	0.000216
cis-1,3-Dichloropropene	ND	0.000232
4-Methyl-2-pentanone (MIBK)	ND	0.000793
Toluene	ND	0.000247
trans-1,3-Dichloropropene	ND	0.00028
1,1,2-Trichloroethane	ND	0.000332
Tetrachloroethene	ND	0.000404
2-Hexanone	ND	0.00166
Dibromochloromethane	ND	0.000297
1,2-Dibromoethane (EDB)	ND	0.000214
Chlorobenzene	ND	0.000246
Ethylbenzene	ND	0.000298
Total Xylenes	ND	0.00116
Styrene	ND	0.00036
Bromoform	ND	0.000375
Isopropylbenzene	ND	0.000367
1,1,2,2-Tetrachloroethane	ND	0.000473
n-Propylbenzene	ND	0.0003

ND = Analyzed for but Not Detected at the MDL

Continued on next page.

Client: S & S Environmental Project: MOUNT HOPE Lab Case No.: E20-02898

Lab ID: Client ID:		02898-001 20-049
Matrix:		Soil
Sampled Date		4/28/20
PARAMETER(Units)	Conc	Q MDL
Volatiles (Units)		(mg/Kg)
1,3,5-Trimethylbenzene	ND	0.000488
tert-Butylbenzene	ND	0.000345
1,2,4-Trimethylbenzene	ND	0.000558
sec-Butylbenzene	ND	0.000359
1,3-Dichlorobenzene	ND	0.000319
4-Isopropyltoluene	ND	0.000415
1,4-Dichlorobenzene	ND	0.000319
n-Butylbenzene	ND	0.000446
1,2-Dichlorobenzene	ND	0.0003
1,2-Dibromo-3-chloropropane	ND	0.000596
1,2,4-Trichlorobenzene	ND	0.000423
1,2,3-Trichlorobenzene	ND	0.000427
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.000477
Methyl acetate	ND	0.000332
Cyclohexane	ND	0.000491
Methylcyclohexane	ND	0.000314
1,3-Dichloropropene (cis- and trans-)	ND	0.00028
		0.00020
TOTAL TIC's:	ND	
Semivolatiles (Units)		(mg/Kg)
N-Nitrosodimethylamine	ND	0.028
Benzaldehyde	ND	0.027
Phenol	ND	0.032
Aniline	ND	0.021
Bis(2-chloroethyl) ether	ND	0.026
2-Chlorophenol	ND	0.026
Benzyl alcohol	ND	0.032
2-Methylphenol	ND	0.020
2,2'-Oxybis(1-Chloropropane)	ND	0.032
4-Methylphenol **	ND	0.023
N-Nitrosodi-n-propylamine	ND	0.023
Acetophenone	ND	0.028
Hexachloroethane	ND	0.027
Nitrobenzene	ND	0.022
Isophorone	ND	0.024
	ND	0.030
2-Nitrophenol	112	0.000
2-Nitrophenol 2,4-Dimethylphenol	ND	0.020
•		0.020 0.027
2,4-Dimethylphenol	ND	
2,4-Dimethylphenol Bis(2-chloroethoxy) methane Benzoic acid	ND ND	0.027
2,4-Dimethylphenol Bis(2-chloroethoxy) methane Benzoic acid 2,4-Dichlorophenol	ND ND ND ND	0.027 0.028 0.026
2,4-Dimethylphenol Bis(2-chloroethoxy) methane Benzoic acid 2,4-Dichlorophenol Naphthalene	ND ND ND ND	0.027 0.028 0.026 0.026
2,4-Dimethylphenol Bis(2-chloroethoxy) methane Benzoic acid 2,4-Dichlorophenol	ND ND ND ND	0.027 0.028 0.026

Caprolactam
ND = Analyzed for but Not Detected at the MDL

Continued on next page.

Client: S & S Environmental Project: MOUNT HOPE Lab Case No.: E20-02898

Lat	Case No.: E20			
	Lab ID:		02898-00 1	
	Client ID:		20-049	
	Matrix:		Soil	
	Sampled Date		4/28/20	
PARAMETER(Units)		Conc	Q	MDL
Semivolatiles (Units)			(mg/Kg)	
4-Chloro-3-methylphenol		ND		0.023
2-Methylnaphthalene		ND		0.021
Hexachlorocyclopentadiene		ND		0.028
2,4,6-Trichlorophenol		ND		0.026
2,4,5-Trichlorophenol		ND		0.028
1,1'-Biphenyl		ND		0.028
2-Chloronaphthalene		ND		0.025
2-Nitroaniline		ND		0.025
Dimethyl phthalate		ND		0.024
2,6-Dinitrotoluene		ND		0.032
Acenaphthylene		ND		0.026
3-Nitroaniline		ND		0.025
Acenaphthene		ND		0.027
2,4-Dinitrophenol		ND		0.031
4-Nitrophenol		ND		0.030
2,4-Dinitrotoluene		ND		0.029
Dibenzofuran		ND		0.025
Diethyl phthalate		ND		0.020
Fluorene		ND		0.028
4-Chlorophenyl phenyl ether		ND		0.027
4-Nitroaniline		ND		0.021
1,2,4,5-Tetrachlorobenzene		ND		0.023
2,3,4,6-Tetrachlorophenol		ND		0.028
4,6-Dinitro-2-methylphenol		ND		0.032
N-Nitrosodiphenylamine		ND		0.031
1,2-Diphenylhydrazine		ND		0.032
4-Bromophenyl phenyl ether		ND		0.023
Hexachlorobenzene		ND		0.023
Atrazine		ND		0.025
Pentachlorophenol		ND		0.022
Phenanthrene		ND		0.031
Anthracene		ND		0.032
Carbazole		ND		0.029
Di-n-butyl phthalate		ND		0.028
Fluoranthene		ND		0.028
Benzidine		ND		0.032
Pyrene		ND		0.023
Butyl benzyl phthalate		ND		0.030
3,3'-Dichlorobenzidine		ND		0.031
· ·		ND ND		
Benzo[a]anthracene				0.020
Chrysene Pic(2 othylboyyl) phtholoto		ND ND		0.031
Bis(2-ethylhexyl) phthalate		ND ND		0.030
Di-n-octyl phthalate		ND		0.031
Benzo[b]fluoranthene		ND		0.032
Benzo[k]fluoranthene		ND		0.028

ND = Analyzed for but Not Detected at the MDL

Continued on next page.

Client: S & S Environmental Project: MOUNT HOPE Lab Case No.: E20-02898

Lab Case No.: E2		02898-001				
Client ID						
Matrix		4/28/20				
Sampled Dat PARAMETER(Units)	Conc	Q MDL				
Semivolatiles (Units)		(mg/Kg)				
· · ·	ND					
Benzo[a]pyrene Indeno[1,2,3-cd]pyrene	ND	0.029				
	ND	0.032				
Dibenz[a,h]anthracene	ND	0.030 0.032				
Benzo[g,h,i]perylene	ND					
Dinitrotoluene (2,4- and 2,6-)	ND	0.032				
TOTAL TIC's:	ND					
PCB's (Units)		(mg/Kg)				
Aroclor-1016	ND	0.00131				
Aroclor-1221	ND	0.00131				
Aroclor-1232	ND	0.00131				
Aroclor-1242	ND	0.00131				
Aroclor-1248	ND	0.00131				
Aroclor-1254	ND	0.00131				
Aroclor-1260	ND	0.00131				
Aroclor-1262	ND	0.00131				
Aroclor-1268	ND	0.00131				
PCBs	ND	0.00131				
Pesticides (Units)		(mg/Kg)				
alpha-BHC	ND	0.000327				
beta-BHC	ND	0.000327				
gamma-BHC (Lindane)	ND	0.000327				
delta-BHC	ND	0.000327				
Heptachlor	ND	0.000327				
Aldrin	ND	0.000327				
Heptachlor epoxide	ND	0.000327				
Endosulfan I	ND	0.000327				
4,4'-DDE	ND	0.000327				
Dieldrin	ND	0.000327				
Endrin	ND	0.000327				
Endosulfan II	ND	0.000327				
4,4'-DDD	ND	0.000327				
Endrin aldehyde	ND	0.000327				
Endosulfan sulfate	ND	0.000327				
4,4'-DDT	ND	0.000327				
Endrin ketone	ND	0.000327				
Methoxychlor	ND	0.000327				
alpha-Chlordane	ND	0.000327				
•	ND	0.000327				
gamma-Chlordane	ND ND	0.000327 0.00392				
•	ND ND ND	0.000327 0.00392 0.000327				

Chlordane (alpha and gamma)

ND = Analyzed for but Not Detected at the MDL

Client: S & S Environmental Project: MOUNT HOPE Lab Case No.: E20-02898

Lab Case No.: E20-02898 Lab ID: 02898-001									
	Client ID:	U.	49						
	Matrix:		1 <i>7</i>						
	Sampled Date		20						
PARAMETER(Units)	Sampled Date	Conc	Q Q	MDL					
Herbicides (Units)			(mg/k	(g)					
Dalapon		ND		0.0066					
Dicamba		ND		0.0066					
2,4-D		ND		0.0066					
2,4,5-TP (Silvex)		ND		0.0066					
2,4,5-T		ND		0.0066					
2,4-DB		ND		0.0066					
Dinoseb		ND		0.0066					
NJ-EPH-C40 (Units)			(mg/K	(g)					
C9-C40		ND		19.5					
Alcohols (Units)		(mg/Kg)							
Methanol		ND		1.91					
Metals (Units)			(mg/K	(g)					
Aluminum		2040		2.08					
Antimony		0.360	J	0.208					
Arsenic		1.14		0.156					
Barium		8.52		0.260					
Beryllium		0.674		0.156					
Cadmium		ND		0.313					
Calcium		3740		15.6					
Chromium		3.72		0.260					
Cobalt		3.70		0.156					
Copper		9.66		0.365					
Iron		9670		15.6					
Lead		2.02		0.260					
Magnesium		2260		15.6					
Manganese		65.7		0.365					
Mercury		ND		0.010					
Nickel		4.31		0.365					
Potassium	1	1240		20.8					
Selenium	9	4.01		1.56					
Silver		ND		0.313					
Sodium		161		20.8					
Thallium		0.455	J	0.260					
Vanadium		7.69		0.260					
Zinc		10.6		1.04					

ND = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL for target compounds. For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations.

Client: S & S Environmental Project: MOUNT HOPE Lab Case No.: E20-02898

Lab ID: Client ID: Matrix:	02898-001 20-049 Soil				
Sampled Date PARAMETER(Units)	Conc	4/28/: Q	MDL		
General Analytical (Units)					
Hexavalent Chromium(mg/Kg) pH/Corrosivity(SU) Trivalent (III) Chromium(mg/Kg)	ND 8.47 3.72		0.379 NA 0.379		
Subcontracted Data (Units)	(mg/Kg)				
	*		*		

ND = Analyzed for but Not Detected at the MDL

^{*}Subcontracted Results for Total Cyanide (9012B) by Test America -Edison are available in the Subcontracted Report section

Eurofins TestAmerica, Edison

TestAmerica Laboratories, Inc.

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-208555-1

Job Description: E20-02898

For:

Integrated Analytical Laboratories LLC

PO BOX 8026

Parsippany, New Jersey 07054

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP		E20-028	398-001
Lab Sample ID	Residential	Non-Residential	IGW Screening		460-20	08555-1
Sampling Date	Sept_2017	Sept_2017	Nov_2013	04/28	/2020 0	9:00:00
Matrix						Soil
				Result	Q	MDL
SOIL BY 901ZB			NI IN SE	10 10 10 10		G a
Cyanide, Total (mg/kg)	47	680	20	0.12 U	F1	0.12

F1: MS and/or MSD recovery exceeds control limits.

Lab Contact: Jill Miller Senior Project Manager (484)685-0871

U : Indicates the analyte was analyzed for but not detected.

Sample #:		NJDEP SOIL REMEDIATION					1
Field ID:	Field ID:		STANDARDS				ì
Lab ID:		Residential	Non-Res	Default IGW		02898-001	1
Date Sampled:		SRS	SRS	Screening		04/28/2020	
Depth(ft):				Level			
	CAS	(mg/Kg)	(mg/Kg)	(mg/Kg)			1
Volatiles (mg/Kg)					Conc	Q RL	MDL
Dichlorodifluoromethane	75-71-8	490	230000	39	ND	0.00108	0.000419
Chloromethane	74-87-3	4	12	NS	ND	0.00108	0.00046
Vinyl chloride	75-01-4	0.7	2	0.005	ND	0.00108	0.000458
Bromomethane	74-83-9	25	59	0.04	ND	0.00108	0.000646
Chloroethane	75-00-3	220	1100	NS	ND	0.00108	0.000514
Trichlorofluoromethane	75-69-4	23000	340000	34	ND	0.00108	0.000434
Acrolein	107-02-8	0.5	1	0.5	ND	0.022	0.00524
1,1-Dichloroethene	75-35-4	11	150	0.008	ND	0.00108	0.000441
Acetone	67-64-1	70000	NS	19	ND	0.011	0.00276
Carbon disulfide	75-15-0	7800	110000	6	ND	0.00108	0.000273
Methylene chloride	75-09-2	46	230	0.01	ND	0.00216	0.0021
Acrylonitrile	107-13-1	0.9	3	0.5	ND	0.022	0.00464
tert-Butyl alcohol (TBA)	75-65-0	1400	11000	0.3	ND	0.00432	0.0011
trans-1,2-Dichloroethene	156-60-5	300	720	0.6	ND	0.00108	0.000432
Methyl tert-butyl ether (MTBE)	1634-04-4	110	320	0.2	ND	0.00108	0.000321
1,1-Dichloroethane	75-34-3	8	24	0.2	ND	0.00108	0.000394
cis-1,2-Dichloroethene	156-59-2	230	560	0.3	ND	0.00108	0.000374
2-Butanone (MEK)	78-93-3	3100	44000	0.9	ND	0.00432	0.00103
Bromochloromethane	74-97-5	NS	NS	NS	ND	0.00108	0.000314
Chloroform	67-66-3	0.6	2	0.4	ND	0.00108	0.000608
1,1,1-Trichloroethane	71-55-6	160000	NS	0.3	ND	0.00108	0.000306
Carbon tetrachloride	56-23-5	2	4	0.005	ND	0.00108	0.000298
1,2-Dichloroethane (EDC)	107-06-2	0.9	3	0.005	ND	0.00108	0.000409
Benzene	71-43-2	2	5	0.005	ND	0.00108	0.000234
Trichloroethene	79-01-6	3	10	0.01	ND	0.00108	0.000315
1,2-Dichloropropane	78-87-5	2	5	0.005	ND	0.00108	0.000253
1,4-Dioxane	123-91-1	NS	NS	NS	ND	0.216	0.039
Bromodichloromethane	75-27-4	1	3	0.005	ND	0.00108	0.000216 I
cis-1,3-Dichloropropene	10061-01-5	NS	NS	NS	ND	0.00108	0.000232
4-Methyl-2-pentanone (MIBK)	108-10-1	NS	NS	NS	ND	0.00216	0.000793
Toluene	108-88-3	6300	91000	7	ND	0.00108	0.000247
rans-1,3-Dichloropropene	10061-02-6	NS	NS	NS	ND	0.00108	0.00028
1,1,2-Trichloroethane	79-00-5	2	6	0.02	ND	0.00108	0.000332
Tetrachloroethene	127-18-4	43	1500	0.005	ND	0.00108	0.000404
2-Hexanone	591-78-6	NS	NS	NS	ND	0.00216	0.00166
Dibromochloromethane	124-48-1	3	8	0.005	ND	0.00108	0.000297
1,2-Dibromoethane (EDB)	106-93-4	0.008	0.04	0.005	ND	0.00108	0.000214
Chlorobenzene	108-90-7	510	7400	0.6	ND	0.00108	0.000246

Ethylbenzene	100-41-4	7800	110000	13	ND	0.00108	0.000298
Total Xylenes	1330-20-7	12000	170000	19	ND	0.00216	0.00116 I
Styrene	100-42-5	90	260	3	ND	0.00108	0.00036
Bromoform	75-25-2	81	280	0.03	ND	0.00108	0.000375
Isopropylbenzene	98-82-8	NS	NS	NS	ND	0.00108	0.000367
1,1,2,2-Tetrachloroethane	79-34-5	1	3	0.007	ND	0.00108	0.000473
n-Propylbenzene	103-65-1	NS	NS	NS	ND	0.00108	0.0003
1,3,5-Trimethylbenzene	108-67-8	NS	NS	NS	ND	0.00108	0.000488 i
tert-Butylbenzene	98-06-6	NS	NS	NS	ND	0.00108	0.000345
1,2,4-Trimethylbenzene	95-63-6	NS	NS	NS	ND	0.00108	0.000558
sec-Butylbenzene	135-98-8	NS	NS	NS	ND	0.00108	0.000359
1,3-Dichlorobenzene	541-73-1	5300	59000	19	ND	0.00108	0.000319
4-Isopropyltoluene	99-87-6	NS	NS	NS	ND	0.00108	0.000415
1,4-Dichlorobenzene	106-46-7	5	13	2	ND	0.00108	0.000319
n-Butylbenzene	104-51-8	NS	NS	NS	ND	0.00108	0.000446
1,2-Dichlorobenzene	95-50-1	5300	59000	17	ND	0.00108	0.0003
1,2-Dibromo-3-chloropropane	96-12-8	0.08	0.2	0.005	ND	0.00108	0.000596
1,2,4-Trichlorobenzene	120-82-1	73	820	0.7	ND	0.00108	0.000423
1,2,3-Trichlorobenzene	87-61-6	NS	NS	NS	ND	0.00108	0.000427
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NS	NS	NS	ND	0.00108	0.000477
Methyl acetate	79-20-9	78000	NS	22	ND	0.00216	0.000332
Cyclohexane	110-82-7	NS	NS	NS	ND	0.00108	0.000491
Methylcyclohexane	108-87-2	NS	NS	NS	ND	0.00108	0.000314
1,3-Dichloropropene (cis- and trans-)	542-75-6	2	7	0.005	ND	0.00108	0.00028
TOTAL TIC's:		NS	NS	NS	ND		NA i

Semivolatiles (mg/Kg)					Conc	Q	RL	MDL i
N-Nitrosodimethylamine	62-75-9	0.7	0.7	0.7	ND		0.033	0.028
Benzaldehyde	100-52-7	6100	68000	NS	ND		0.033	0.027
Phenol	108-95-2	18000	210000	8	ND		0.033	0.032
Aniline	62-53-3	NS	NS	NS	ND		0.033	0.021
Bis(2-chloroethyl) ether	111-44-4	0.4	2	0.2	ND		0.033	0.026
2-Chlorophenol	95-57-8	310	2200	0.8	ND		0.033	0.026
Benzyl alcohol	100-51-6	NS	NS	NS	ND		0.033	0.032
2-Methylphenol	95-48-7	310	3400	NS	ND		0.033	0.020
2,2'-Oxybis(1-Chloropropane)	108-60-1	23	67	5	ND		0.033	0.032
4-Methylphenol **	106-44-5	31	340	NS	ND		0.033	0.023
N-Nitrosodi-n-propylamine	621-64-7	0.2	0.3	0.2	ND		0.033	0.023
Acetophenone	98-86-2	2	5	3	ND		0.033	0.028
Hexachloroethane	67-72-1	12	48	0.2	ND		0.033	0.027
Nitrobenzene	98-95-3	5	14	0.2	ND		0.033	0.022
Isophorone	78-59-1	510	2000	0.2	ND		0.033	0.024
2-Nitrophenol	88-75-5	NS	NS	NS	ND		0.033	0.030
2,4-Dimethylphenol	105-67-9	1200	14000	1	ND		0.033	0.020
Bis(2-chloroethoxy) methane	111-91-1	NS	NS	NS	ND		0.033	0.027
Benzoic acid	65-85-0	NS	NS	NS	ND		0.328	0.028
2,4-Dichlorophenol	120-83-2	180	2100	0.2	ND		0.033	0.026
Naphthalene	91-20-3	6	17	25	ND	_	0.033	0.026
4-Chloroaniline	106-47-8	NS	NS	NS	ND		0.033	0.023
Hexachlorobutadiene	87-68-3	6	25	0.9	ND		0.033	0.021
Caprolactam	105-60-2	31000	340000	12	ND		0.033	0.025
4-Chloro-3-methylphenol	59-50-7	NS	NS	NS	ND		0.033	0.023
2-Methylnaphthalene	91-57-6	230	2400	8	ND		0.033	0.021
Hexachlorocyclopentadiene	77-47-4	45	110	320	ND	-	0.033	0.028
2,4,6-Trichlorophenol	88-06-2	19	74	0.2	ND		0.033	0.026
2,4,5-Trichlorophenol	95-95-4	6100	68000	68	ND		0.033	0.028
1,1'-Biphenyl	92-52-4	61	240	140	ND		0.033	0.028
2-Chloronaphthalene	91-58-7	NS	NS	NS	ND		0.033	0.025
2-Nitroaniline	88-74-4	39	23000	NS	ND		0.033	0.025
Dimethyl phthalate	131-11-3	NS	NS	NS	ND		0.033	0.024
2,6-Dinitrotoluene	606-20-2	0.7	3	NS	ND		0.033	0.032
Acenaphthylene	208-96-8	NS	300000	NS	ND	+	0.033	0.026
3-Nitroaniline	99-09-2	NS	NS	NS	ND		0.033	0.025
Acenaphthene	83-32-9	3400	37000	110	ND		0.033	0.027
2,4-Dinitrophenol	51-28-5	120	1400	0.3	ND	-	0.033	0.027
4-Nitrophenol	100-02-7	NS	NS	NS	ND	1	0.033	0.030
2.4-Dinitrotoluene	121-14-2	0.7	3	NS	ND ND	+	0.033	0.029
Dibenzofuran	132-64-9	NS	NS	NS	ND ND		0.033	0.029
Diethyl phthalate	84-66-2	49000	550000	88	ND ND	-	0.033	0.025 L
Fluorene	86-73-7	2300	24000	170	ND		0.033	0.020
4-Chlorophenyl phenyl ether	7005-72-3	NS	NS	NS NS	ND ND		0.033	0.028
4-Nitroaniline	100-01-6	NS	NS	NS NS	ND ND	-	0.033	0.027

1,2,4,5-Tetrachlorobenzene	95-94-3	NS	NS	NS	ND	0.033	0,023
2,3,4,6-Tetrachlorophenol	58-90-2	NS	NS	NS	ND	0.033	0.028 1
4,6-Dinitro-2-methylphenol	534-52-1	6	68	0.3	ND	0.033	0.032
N-Nitrosodiphenylamine	86-30-6	99	390	0.4	ND	0.033	0.031
1,2-Diphenylhydrazine	122-66-7	0.7	2	0.7	ND	0.033	0.032
4-Bromophenyl phenyl ether	101-55-3	NS	NS	NS	ND	0.033	0.023
Hexachlorobenzene	118-74-1	0.3	1	0.2	ND	0.033	0.023
Atrazine	1912-24-9	210	2400	0.2	ND	0.033	0.025
Pentachlorophenol	87-86-5	0.9	3	0.3	ND	0.033	0.022
Phenanthrene	85-01-8	NS	300000	NS	ND	0.033	0.031
Anthracene	120-12-7	17000	30000	2400	ND	0.033	0.032
Carbazole	86-74-8	24	96	NS	ND	0.033	0.029
Di-n-butyl phthalate	84-74-2	6100	68000	760	ND	0.033	0.028 I
Fluoranthene	206-44-0	2300	24000	1300	ND	0.033	0.032
Benzidine	92-87-5	0.7	0.7	0.7	ND	0.033	0.025
Pyrene	129-00-0	1700	18000	840	ND	0.033	0.030
Butyl benzyl phthalate	85-68-7	1200	14000	230	ND	0.033	0.031
3,3'-Dichlorobenzidine	91-94-1	1	4	0.2	ND	0.033	0.029
Benzo[a]anthracene	56-55-3	5	17	0.8	ND	0.033	0.020
Chrysene	218-01-9	450	1700	80	ND	0.033	0.031
Bis(2-ethylhexyl) phthalate	117-81-7	35	140	1200	ND	0.033	0.030
Di-n-octyl phthalate	117-84-0	2400	27000	3300	ND	0.033	0.031
Benzo[b]fluoranthene	205-99-2	5	17	2	ND	0.033	0.032
Benzo[k]fluoranthene	207-08-9	45	170	25	ND	0.033	0.028
Benzo[a]pyrene	50-32-8	0.5	2	0.2	ND	0.033	0.029
Indeno[1,2,3-cd]pyrene	193-39-5	5	17	7	ND	0.033	0.032
Dibenz[a,h]anthracene	53-70-3	0.5	2	0.8	ND	0.033	0.030
Benzo[g,h,i]perylene	191-24-2	380000	30000	NS	ND	0.033	0.032
Dinitrotoluene (2,4- and 2,6-)	25321-14-6	0.7	3	0.2	ND	0.033	0.032
TOTAL TIC's:		NS	NS	NS	ND		NA :

S S Environmental Project Name: MOUNT HOPE IAL SDG No:E20-02898

PCB's (mg/Kg)					Conc	Q RL	MDL
Aroclor-1016	12674-11-2	NS	NS	NS	ND	0.00327	0.00131
Aroclor-1221	11104-28-2	NS	NS	NS	ND	0.00327	0.00131
Aroclor-1232	11141-16-5	NS	NS	NS	ND	0.00327	0.00131
Aroclor-1242	53469-21-9	NS	NS	NS	ND	0.00327	0.00131 I
Aroclor-1248	12672-29-6	NS	NS	NS	ND	0.00327	0.00131
Aroclor-1254	11097-69-1	NS	NS	NS	ND	0.00327	0.00131
Aroclor-1260	11096-82-5	NS	NS	NS	ND	0.00327	0.00131
Aroclor-1262	37324-23-5	NS	NS	NS	ND	0.00327	0.00131
Aroclor-1268	11100-14-4	NS	NS	NS	ND	0.00327	0.00131
PCBs	1336-36-3	0.2	1	0.2	ND	0.00327	0.00131

Pesticides (mg/Kg)					Conc	Q	RL	MDL
alpha-BHC	319-84-6	0.1	0.5	0.002	ND		0.000654	0.000327
beta-BHC	319-85-7	0.4	2	0.002	ND		0.000654	0.000327
gamma-BHC (Lindane)	58-89-9	0.4	2	0.002	ND		0.000654	0.000327
delta-BHC	319-86-8	NS	NS	NS	ND		0.000654	0.000327
Heptachlor	76-44-8	0.1	0.7	0.5	ND		0.000654	0.000327
Aldrin	309-00-2	0.04	0.2	0.2	ND		0.000654	0.000327
Heptachlor epoxide	1024-57-3	0.07	0.3	0.01	ND		0.000654	0.000327
Endosulfan I	959-98-8	NS	NS	NS	ND		0.000654	0.000327
4,4'-DDE	72-55-9	2	9	18	ND		0.000654	0.000327
Dieldrin	60-57-1	0.04	0.2	0.003	ND		0.000654	0.000327
Endrin	72-20-8	23	340	1	ND		0.000654	0.000327
Endosulfan II	33213-65-9	NS	NS	NS	ND		0.000654	0.000327
4,4'-DDD	72-54-8	3	13	4	ND		0.000654	0.000327
Endrin aldehyde	7421-93-4	NS	NS	NS	ND		0.000654	0.000327
Endosulfan sulfate	1031-07-8	470	6800	2	ND		0.000654	0.000327
4,4'-DDT	50-29-3	2	8	11	ND		0.000654	0.000327
Endrin ketone	53494-70-5	NS	NS	NS	ND		0.000654	0.000327
Methoxychlor	72-43-5	390	5700	160	ND		0.000654	0.000327
alpha-Chlordane	5103-71-9	NS	NS	NS	ND		0.000654	0.000327
gamma-Chlordane	5103-74-2	NS	NS	NS	ND		0.000654	0.000327
Toxaphene	8001-35-2	0.6	3	0.3	ND		0.00818	0.00392
Endosulfan (I and II)	115-29-7	470	6800	4	ND	\top	0.000654	0.000327
Chlordane (alpha and gamma)	57-74-9	0.2	1	0.05	ND		0.000654	0.000327

S S Environmental Project Name: MOUNT HOPE IAL SDG No:E20-02898

NJ-EPH-C40 (mg/Kg)					Conc	Q	RL	MDL	
C9-C40	IALC9C40	NS	NS	NS	ND		48.7	19.5	

Metals (mg/Kg)					Conc	Q	RL	MDL ;
Aluminum	7429-90-5	78000	NS	6000	2040		5,21	2.08
Antimony	7440-36-0	31	450	6	0,360	J	0.521	0.208
Arsenic	7440-38-2	19	19	19	1.14		0.521	0.156
Barium	7440-39-3	16000	59000	2100	8.52		0.521	0.260
Beryllium	7440-41-7	16	140	0.7	0.674		0.521	0.156
Cadmium	7440-43-9	78	78	2	ND		0.521	0.313
Calcium	7440-70-2	NS	NS	NS	3740		52.1	15.6
Chromium	7440-47-3	NS	NS	NS	3.72		0.521	0.260
Cobalt	7440-48-4	1600	590	90	3.70		0.521	0.156
Copper	7440-50-8	3100	45000	11000	9.66		0.521	0.365
Iron	7439-89-6	NS	NS	NS	9670		52.1	15.6
Lead	7439-92-1	400	800	90	2.02		0.521	0.260
Magnesium	7439-95-4	NS	NS	NS	2260		52.1	15.6
Manganese	7439-96-5	11000	5900	65	65.7	1	0.521	0.365
Mercury	7439-97-6	23	65	0.1	ND	3	0.025	0.010
Nickel	7440-02-0	1600	23000	48	4.31		0.521	0.365
Potassium	7440-09-7'	NS	NS	NS	1240		52.1	20.8
Selenium	7782-49-2	390	5700	11	4.01		3.65	1.56
Silver	7440-22-4	390	5700	1	ND		0.521	0.313
Sodium	7440-23-5	NS	NS	NS	161		52.1	20.8
Thallium	7440-28-0	withdrawn	withdrawn	3	0.455	J	0.521	0.260
Vanadium	7440-62-2	78	1100	NS	7.69		0.521	0.260
Zinc	7440-66-6	23000	110000	930	10.6		5.21	1.04

S S Environmental Project Name: MOUNT HOPE IAL SDG No:E20-02898

General Analytical					Conc	Q	RL	MDL i	
Hexavalent Chromium-mg/Kg	18540-29-9	240	20	NS	ND		1.00	0.379	
pH/Corrosivity-SU	SRP 6	NS	NS	NS	8.47		NA	NA :	
Trivalent (III) Chromium-mg/Kg	16065-83-1	120000	NS	NS	3.72		1.00	0.379	

S S Environmental Project Name: MOUNT HOPE IAL SDG No:E20-02898

Subcontracted Data					Conc	Q	RL	MDL
		NS	NS	NS	?		?	NA Î
NJDEP Soil Remediation Standards:	Remediation Standards N.J	.A.C. 7:26D, May 20	12; Amended Sept 20	17				ļ į
BOLD Conc	Indicates a concentr	ation that exceeds a	oplicable criteria.					
BOLD RL	Indicates RL that ex	ceeds applicable crite	eria,					
BOLD MDL	Indicates MDL that e	exceeds applicable cr	riteria.					
NS = No Standard Available								
~ = Sample not analyzed for								
ND = Analyzed for but Not Detected	at the MDL			-				
J = Concentration detected at a value	e below the RL and above th	e MDL for target con	npounds. For non-tare	et compounds (i.e	. TICs), qualif	ier indica	ates estima	ted concentrations.
? = Results not available				The state of the s	7,7,7			
Subcontracted Results for Total Cya	nide (9012B) by Test Americ	a -Edison are availab	ole in the Subcontracte	ed Report section				

S & S ENVIRONMENTAL SCIENCES, INC.

Environmental Engineering, Testing and Consultation

98 Sand Park Road, Cedar Grove, NJ 07009 Tel (973) 857-7188 Fax (973) 239-8380

> Kamil Sor, Ph.D. Orhun Sor, P.E. Atilla Sencar, P.E.

This report is the confidential property of the Client, and information contained may not be published or reproduced without our written permission.

Client:	Tilcon New Y	ork, Inc.			
Project:	Pompton Lak	es, NJ (NJDEP-SRS	5)		
Subject:	Laboratory Ar	nalysis of Aggregate	Sample (Quar	ry Fines)	
Job No.:	06E41	Report Number:	20-E-62	Date:	5/21/2020

We present herewith the laboratory test results of an aggregate sample (identified as Quarry Fines) delivered to our laboratory on April 28, 2020. The sample was collected by a representative of Tilcon NY, on the same day.

As requested, the aggregate sample was analyzed for the U.S. EPA Target Compound List (TCL)+30/Target Analyte List (TAL) parameters, Extractable Petroleum Hydrocarbons (EPH), pH, and Hexavalent Chromium. The analyses were performed by Integrated Analytical Laboratories, LLC (IAL) (NJDEP Lab ID No. 14751). The copies of the IAL/S&S sample chain-of-custody forms, the preliminary IAL laboratory summary report and NJDEP-SRS comparison tables are attached.

Review of the laboratory data and comparison of the sample test results to the NJDEP Residential Direct Contact Soil Remediation Standards (RDCSRS) indicated that the aggregate sample **meet** the **NJDEP-RDCSRS**.

If there are any questions or if we can be of further assistance in this matter, please contact us.

Very truly yours

S & S ENVIRONMENTAL SCIENCES, INC.

Kamil Sor, Ph.D.

President

KS/ag

Attachments:

(1) Sample Chain-of-Custody Forms, Laboratory Summary Reports, and NJDEP-SRS Comparison Tables

cc: (1) Client

Steve O'Reilly

email: soreilly@tilconny.com

S&S ENVIRONMENTAL SCIENCES, INC.

Environmental Engineering, Testing and Consultation

98 Sand Park Rad, Cedar Grove, NJ 07009 Tel (973) 857-7188 Fax (973) 239-6380

NJDEP Lab Certification No. 07073

CON

CLIENT:

SAMPLE CHAIN OF CUSTODY

DATE:

ADDRESS:					22F2 10B	NO.	
CONTACT:					TEL #:		
PROJECT:	Pompt	on Lale	W. NT		PROJECT	LAB ID #:	20.048
SAMPLE NUMBER	SAMPLING DATE	SAMPLING TIME	SAMPLE	NO. OF	AN	ALYSES RE	QUESTED
20.048	4-28-20	10:05	brah		N. LN	T Cle-	1126 0
			<u> </u>	ļ	ļ		
	!			 			
Comments:				L	L		
PRESER	VATIVE				,		
Cooled at 4°C?	d		pH Meter No.:	Reading	T°C	Time	Analyst
I CI							
INO ₃			рН				
1 ₂ 80 ₄			pH Dup.				
la ₂ S ₂ O ₃							
Other							
Sampled By:	S. O.						
RELINQUIS	SHED BY:		RECEIVE	ED BY:		DATE	AND TIME:
Le			11100		1	.70.7 -	h :
- De	<u> </u>		1 11		4	C 8 40	11:10
		,		************	7_		

Integrated Analytical Labs 273 Franklin Road Randolph, NJ 07869

Chain of Custody Record

Contact Us: 973-361-4252 Fax: 973-989-5288 Web: www.ialonline.com

Concentrations Expected CP-51 Table 2 or 5 Telection OTHER Regulatory Requirements specify in comments: Part 375-6.8(a) - Unrestricted High Part 375-6.8(b) - Restricted **9**□ ☐ CT RCSA 22æ-133k1-k3 Sample Specific Notes: GWEL (TOGS Table 5) Other States / Criteria ☐ AWQS (TOGS Table 1) ☐ Pennsylvania Act 2 Known Hazard: Regulatory Requirement FOR LAB USE ONLY **New York** ō Med Cooler Temp: □ TSCA PCBs □ YES Describe: SDG #: PAGE: Low lab approved custom EDD NO EDD REQ'D NYSDEC EQUIS ☐ Ecological ニチャラン New Jersey □ GWQS NJ SRP SPLP SRS MSH Ma □ **EDDs** ANAL YTICAL PARAMETERS (please note if contingent Other - call for price Petroleum Hydrocarbons - Selection is REQUIRED りえーアン ASP Category ☐ ASP Cetegory ☐ DRO-8815 CT ETPH TAT for PHC, if other than 2 weeks: × Furn-Around Time (TAT) Deliverables Certification IDs: TNI (TNI01284); CT (PH-0689); NJ (14751); NY (11402); PA (68-00773) Standard (10 business days) Verbal Regulationy/ Full* (Level IV) ☐ NJ EPH-Fractionated - Cat 2 NJ, CT, PA Reduced (Level IIIII) NJ EPH-DRO - Category 1 NU EPH-C40 - Catggory 2 (Level I) Para meters Hard Copy: Std 3 week Rush/date needed (only if pre-approved)** 96 hr - 35%.... 72 hr - 50%.... 48 hr - 75%.... 6-9 day - 10% 24 hr - 100%. 5 day - 25%. Special Instructions/QC Requirements & Comments: フクト 1741 Preservative (use code) Container Type (use code) AL# 585 containers SED - Sediment SOL - Solid (specify) SL - Sludge Reporting Information るいの ANC Sample Matrix Matrix - Wipe 3 S - Soil <u>o- 0</u> 0 3:8 Time LIQ - Liquid (specify) GW - Groundwater SW - Surface Water DW - Drinking Wate WW - Waste Water Sampling A = Amber Glass B = Plastic C = Vial 22.4 REPORT TO: MVOICE TO: E = EnCore T = Terracore Container Code: Date D = Glass Address: Address Quote # FAX# *0d ☐ FedEx/UPS*** Attn: Attn: ☐ Client Courier Carrier (check one): ☐ IAL Courier Preservative Code: Depth (ft only) racking F. 5 = NaOH 6 = H2SO4 Equipment Rental 2 = HCl 3 = HNO3 4 = MeOH 000 LAB COPIES - WHITE & YELLOW; CLIENT COPY - PINK Report to "I'Invoice To" same as above SAMPLE INFORMATION Customer Information Pomopon ١ Samples previously analyzed by IAL? processed and the turnaround time BY IAL'S TERMS & CONDITIONS completely. Samples cannot be ambiguities have been resolved. Please print legibly and fill out TAT starts the following day if 973-239 THE CLIENT HAS READ AND (TAT) will not start until any (found on rear of pink copy) BY EXECUTING THIS COC, AGREES TO BE BOUND samples rec'd at lab > 5PM. 0 COMPLETED BY IAL: Project Location (State): Field Sampling ろの Project Manager: Project Name: Bottle Order #: EMAIL Address Telephone #: Sampled by: Client ID 20 Company: Address

SAMPLE RECEIPT VERIFICATION

CASE NO: E 20 02897	CLIENT: 5+5
COOLER TEMPERATURE: 2° - 6°C	
COC: COMPLETE / INCOMPLET	Comments E
KEY	1259 _
✓ = YES/NA → = NO	VOA received: Encore IGW - Methanol (check one) Terra Core No Preservative
✓ Bottles Intact	
✓ no-Missing Bottles	
no-Extra Bottles	Water to the second sec
✓ Sufficient Sample Volume✓ no-headspace/bubbles in VO	s
✓ Labels intact/correct	
 ✓ pH Check (exclude VOs)¹ ✓ Correct bottles/preservative 	gym. ,
Sufficient Holding/Prep Time Multiphasic Sample	
Sample to be Subcontracted	
Chain of Custody is Clear	e heart and the second of the
	will be analyzed by this laboratory past the holding time. This includes but is not limited to
the following tests: pH, Temperature, Free Residual C ADDITIONAL COMMENTS:	chlorine, Total Residual Chlorine, Dissolved Oxygen, Sulfite.
SAMPLE(S) VERIFIED BY: INIT	DATE ULA 120
CORRECTIVE ACTION REQUIRE	
If COC is NOT clear, <u>STOP</u> until you	get client to authorize/clarify work.
CLIENT NOTIFIED: YE	S Date/ Time: NO NO
PROJECT CONTACT: SUBCONTRACTED LAB:	
DATE SHIPPED:	Way and the same of the same o
ADDITIONAL COMMENTS:	-april
VERIFIED/TAKEN BY: INITI	AL mf DATE 4/29/20

REV 10/2019

777 New Durham Rd., Edison, NJ 08817

708,228

CLIENT & PROJECT	REPOR	REPORTING & BILLING	JN/											r 007	3	5	
Name: Integrated Analytical Laboratories LLC	Contact:	Thomas Malanga	az.					Turnar	Turnaround Time	me				Rep	Report Format	lat	
	Fax #:				Verbal/Fax	×I			I)				R	Reduced / Level III	evel III		
Address: 273 Franklin Road	EMail to:	<u>Imalanga@ialonline</u>	e.com		24 hr*	48 hr* 7.	72 hr* 1	1 wk*	2 wk	Other:	6 Busin	6 Business Days					
Randolph, NJ 07869	Report to:	Thomas Malanga	70	P=1	Hard Copy	×								Special	Special Requirements	ments	
	Address:				72 hr*	1 wk* 2	2 wk* 3	3 wk		Other:							
Telephone #: 973-361-4252					*Prior to sample arrival, Lab notification is required.	sample	arrival,	Lab not	ification	is requ	ired.						
Fax #: 973-989-5288				ł										Preservative	NaOl4: 3	CINE	
Project Name: E20-02897	Invoice to:	Thomas Malanga	8		AN	ANALYTICAL PARAMETERS / PRESERVATIVES	L PARA	METE	RS / PR	SSERVA	TIVES			4 = H ₂ SO ₄ ; 5= MeOH; 6 = Other	i= MeOH; 6	- Other	
Project Location (State): NJ	Address:			123	123	123 1456 4	123 1	123 1456 4	123	123	123 456 4	23 1	23 12	23 123 56 456	3 123 6 456	3 123	m 9
Project Manager:																	
Reference ID#: PO#				5B)	_												
SAMPLE INFORMATION				(90) apine													
	Samuline		10 19	() [E									_	_			
Sample Depth (in Feet) Date	Time	Matrix	Containers	no.L									_				
© E20-02897-001 4/28/20	0 10:05	Soil	-	Run													
35 0																	
37																	
				-											-		T
				-													
				-													
	460-208556	460-208556 Chain of Custody															
Please print legibly and fill out completely. Samples cannot be processed and the turnaround time will not start until any ambiguities have been resolved.	not be processed	and the turnaround	time will not	start unti	l any ambig	nities have	_	COOLER TEMP	ЭМР	Сопсепіта	Concentrations Expected	pa		Known Hazard:	d: yes no		
IN OUT AND THE PART OF THE PAR	VETDIM	D NOIT A	TIO 3	DEL					J _o	LOW	MED HIGH	H Describe	ibe:				
EMAILCO	YF INIVI	AIIONK	EVUINED	KEL			Note	iei									1

CUSTODY LOG

Signature/Company	Date	Time	Signature/Company			
Rinquished by The	02/1/5	1136	Received by Cliff of Frachy 578 12 1136	2871 75		
On in the control of			Received by:	Lab Case #		
Relinquished by:			Received by:		PAGE:	OF
10001001000			TI O'S.			REV Feb 201

Client: S & S Environmental Project: POMPTON LAKES Lab Case No.: E20-02897

	Lab ID:		02897-001
	Client ID:		20-048
	Matrix:		Soil
	Sampled Date		4/28/20
PARAMETER(Units)		Conc	Q MDL
Volatiles (Units)			(mg/Kg)
Dichlorodifluoromethane		ND	0.000369
Chloromethane		ND	0.000405
Vinyl chloride		ND	0.000403
Bromomethane		ND	0.000568
Chloroethane		ND	0.000452
Trichlorofluoromethane		ND	0.000382
Acrolein		ND	0.00461
1,1-Dichloroethene		ND	0.000388
Acetone		ND	0.00242
Carbon disulfide		0.00198	0.00024
Methylene chloride		ND	0.00184
Acrylonitrile		ND	0.00408
tert-Butyl alcohol (TBA)		ND	0.000968
trans-1,2-Dichloroethene		ND	0.00038
Methyl tert-butyl ether (MTBE)		ND	0.000282
1,1-Dichloroethane		ND	0.000347
cis-1,2-Dichloroethene		ND	0.000329
2-Butanone (MEK)		ND	0.000903
Bromochloromethane		ND	0.000276
Chloroform		ND	0.000535
1,1,1-Trichloroethane		ND	0.000269
Carbon tetrachloride		ND	0.000262
1,2-Dichloroethane (EDC)		ND	0.00036
Benzene		ND	0.000206
Trichloroethene		ND	0.000277
1,2-Dichloropropane		ND	0.000222
1,4-Dioxane		ND	0.035
Bromodichloromethane		ND	0.00019
cis-1,3-Dichloropropene		ND	0.000204
4-Methyl-2-pentanone (MIBK)		ND	0.000697
Toluene		ND	0.000218
trans-1,3-Dichloropropene		ND	0.000246
1,1,2-Trichloroethane		ND	0.000292
Tetrachloroethene		ND	0.000355
2-Hexanone		ND	0.00146
Dibromochloromethane		ND	0.000261
1,2-Dibromoethane (EDB)		ND	0.000188
Chlorobenzene		ND	0.000133
Ethylbenzene Ethylbenzene		ND	0.000217
Total Xylenes		ND ND	0.000202
Styrene		ND ND	0.00102
Bromoform		ND	0.000310
Isopropylbenzene		ND ND	0.00033
1,1,2,2-Tetrachloroethane		ND ND	0.000323
n- Propy lbenzene		ND ND	0.000418

ND = Analyzed for but Not Detected at the MDL Continued on next page.

Client: S & S Environmental Project: POMPTON LAKES Lab Case No.: E20-02897

Lab II	D:	02897-001
Client II	D:	20-048
Matri	x:	Soil
Sampled Da	te	4/28/20
PARAMETER(Units)	Conc	Q MDL
Volatiles (Units)		(mg/Kg)
1,3,5-Trimethylbenzene	ND	0.000429
tert-Butylbenzene	ND	0.000303
1,2,4-Trimethylbenzene	ND	0.000491
sec-Butylbenzene	ND	0.000315
1,3-Dichlorobenzene	ND	0.00028
4-Isopropyltoluene	ND	0.000365
1,4-Dichlorobenzene	ND	0.00028
n-Butylbenzene	ND	0.000392
1,2-Dichlorobenzene	ND	0.000264
1,2-Dibromo-3-chloropropane	ND	0.000524
1,2,4-Trichlorobenzene	ND	0.000372
1,2,3-Trichlorobenzene	ND	0.000375
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.00042
Methyl acetate	ND	0.000292
Cyclohexane	ND	0.000432
Methylcyclohexane	ND	0.000276
1,3-Dichloropropene (cis- and trans-)	ND	0.000246
TOTAL TIC's:	ND	
Semivolatiles (Units)	1,12	(mg/Kg)
N-Nitrosodimethylamine	ND	0.028
Benzaldehyde	ND	0.026
Phenol	ND	0.032
Aniline	ND	0.021
Bis(2-chloroethyl) ether	ND	0.026
2-Chlorophenol	ND ND	0.026
Benzyl alcohol	ND	0.031
2-Methylphenol	ND	0.019
2,2'-Oxybis(1-Chloropropane)	ND	0.031
4-Methylphenol **	ND	0.023
N-Nitrosodi-n-propylamine	ND ND	0.023
Acetophenone		
Hexachloroethane	ND	0.027
	ND	0.026
Nitrobenzene	ND	0.021
Isophorone	ND	0.024
2-Nitrophenol	ND	0.030
2,4-Dimethylphenol	ND	0.019
Bis(2-chloroethoxy) methane	ND	0.026
Benzoic acid	ND	0.027
2,4-Dichlorophenol	ND	0.026
Naphthalene	ND	0.026
4-Chloroaniline	ND	0.023
Hexachlorobutadiene	ND	0.021
Caprolactam	ND	0.025

ND = Analyzed for but Not Detected at the MDL

Continued on next page.

Client: S & S Environmental **Project: POMPTON LAKES** Lab Case No.: E20-02897

-	Lab ID:		02897-00	1
	Client ID:		20-048	
	Matrix:		Soil	
S	ampled Date		4/28/20	
PARAMETER(Units)	Ì	Conc	Q	MDL
Semivolatiles (Units)			(mg/Kg)	
4-Chloro-3-methylphenol		ND		0.022
2-Methylnaphthalene		ND		0.021
Hexachlorocyclopentadiene		ND		0.028
2,4,6-Trichlorophenol		ND		0.026
2,4,5-Trichlorophenol		ND		0.028
1,1'-Biphenyl		ND		0.027
2-Chloronaphthalene		ND		0.025
2-Nitroaniline		ND		0.025
Dimethyl phthalate		ND		0.024
2,6-Dinitrotoluene		ND		0.031
Acenaphthylene		ND		0.026
3-Nitroaniline		ND		0.024
Acenaphthene		ND		0.027
2,4-Dinitrophenol		ND		0.031
4-Nitrophenol		ND		0.030
2,4-Dinitrotoluene		ND		0.029
Dibenzofuran		ND		0.024
Diethyl phthalate		ND		0.019
Fluorene		ND		0.028
4-Chlorophenyl phenyl ether		ND		0.027
4-Nitroaniline		ND		0.020
1,2,4,5-Tetrachlorobenzene		ND		0.023
2,3,4,6-Tetrachlorophenol		ND		0.028
4,6-Dinitro-2-methylphenol		ND		0.031
N-Nitrosodiphenylamine		ND		0.031
1,2-Diphenylhydrazine		ND		0.032
4-Bromophenyl phenyl ether		ND		0.023
Hexachlorobenzene		ND		0.023
Atrazine		ND		0.025
Pentachlorophenol		ND		0.022
Phenanthrene		ND		0.031
Anthracene		ND		0.032
Carbazole		ND		0.029
Di-n-butyl phthalate		ND		0.027
Fluoranthene	1	ND		0.031
Benzidine		ND		0.025
Pyrene		ND		0.029
Butyl benzyl phthalate		ND		0.030
3,3'-Dichlorobenzidine		ND		0.029
Benzo[a]anthracene		ND		0.019
Chrysene	1	ND		0.019
Bis(2-ethylhexyl) phthalate		ND		0.029
Di-n-octyl phthalate		ND		0.029
Benzo[b]fluoranthene		ND		0.030
Benzo[k]fluoranthene		ND		0.031

ND = Analyzed for but Not Detected at the MDL Continued on next page.

Client: S & S Environmental Project: POMPTON LAKES Lab Case No.: E20-02897

	Lab ID:	0007	02907 001
			02897-001
	Client ID:		20-048
	Matrix:		Soil
PARAMETER(Units)	Sampled Date	Conc	4/28/20 Q MDL
		Conc	Q MDL
Semivolatiles (Units)			(mg/Kg)
Benzo[a]pyrene		ND	0.028
Indeno[1,2,3-cd]pyrene		ND	0.031
Dibenz[a,h]anthracene		ND	0.030
Benzo[g,h,i]perylene		ND	0.031
Dinitrotoluene (2,4- and 2,6-)		ND	0.031
TOTAL TIC's:		ND	
PCB's (Units)			(mg/Kg)
Aroclor-1016		ND	0.00132
Aroclor-1221		ND	0.00132
Aroclor-1232		ND	0.00132
Aroclor-1242		ND	0.00132
Aroclor-1248		ND	0.00132
Aroclor-1254		ND	0.00132
Aroclor-1260		ND	0.00132
Aroclor-1262		ND	0.00132
Aroclor-1268		ND	0.00132
PCBs		ND	0.00132
Pesticides (Units)			(mg/Kg)
alpha-BHC		ND	0.000329
beta-BHC		ND	0.000329
gamma-BHC (Lindane)		ND	0.000329
delta-BHC		ND	0.000329
Heptachlor		ND	0.000329
Aldrin		ND	0.000329
Heptachlor epoxide		ND	0.000329
Endosulfan I		ND	0.000329
4,4'-DDE		ND	0.000329
Dieldrin		ND	0.000329
Endrin		ND	0.000329
Endosulfan II		ND	0.000329
4,4'-DDD		ND	0.000329
Endrin aldehyde		ND	0.000329
Endosulfan sulfate		ND	0.000329
4,4'-DDT		ND	0.000329
Endrin ketone		ND	0.000329
Methoxychlor		ND	0.000329
alpha-Chlordane		ND	0.000329
gamma-Chlordane		ND	0.000329
Toxaphene	1	ND	0.00395
•		ND	0.000329
Endosulfan (I and II)		1117	U.UUU.129

ND = Analyzed for but Not Detected at the MDL

Client: S & S Environmental Project: POMPTON LAKES Lab Case No.: E20-02897

Lab Case No.: E20-028		1007	001
Lab ID:		2897-	
Client ID:		20-04	
Matrix:		Soil	
Sampled Date PARAMETER(Units)	Conc	4/28/2	ZU MDL
		Q	
Herbicides (Units)		mg/K	g)
Dalapon	ND		0.00658
Dicamba	ND		0.00658
2,4-D	ND		0.00658
2,4,5-TP (Silvex)	ND		0.00658
2,4,5-T	ND		0.00658
2,4-DB	ND		0.00658
Dinoseb	ND		0.00658
NJ-EPH-C40 (Units)	(mg/K	g)
C9-C40	21.1	J	19.9
Alcohols (Units)	(mg/K	g)
Methanol	ND		1.97
Metals (Units)	(mg/K	g)
Aluminum	4640		2.17
Antimony	ND		0.217
Arsenic	0.687		0.163
Barium	41.1		0.272
Beryllium	0.316	J	0.163
Cadmium	ND		0.326
Calcium	3920		16.3
Chromium	16.3		0.272
Cobalt	8.86		0.163
Copper	50.4		0.380
Iron	13500		16.3
Lead	3.21		0.272
Magnesium	4030		16.3
Manganese	94.9		0.380
Mercury	ND		0.013
Nickel	23.0		0.380
Potassium	3050		21.7
Selenium	3.37	J	1.63
Silver	ND		0.326
Sodium	116		21.7
Thallium	ND		0.272
Vanadium	23.6		0.272
Zinc	19.4		1.09

ND = Analyzed for but Not Detected at the MDL

J= Concentration detected at a value below the RL and above the MDL for target compounds. For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations.

Client: S & S Environmental Project: POMPTON LAKES Lab Case No.: E20-02897

Lab ID: Client ID: Matrix: Sampled Date		2897-0 20-04 Soil 4/28/2	8
PARAMETER(Units)	Conc	Q	MDL
General Analytical (Units)			
Hexavalent Chromium(mg/Kg)	ND		0.380
pH/Corrosivity(SU)	8.38		NA
Trivalent (III) Chromium(mg/Kg)	16.3		0.380
Subcontracted Data (Units)	(mg/Kg	3)
	*		*

ND = Analyzed for but Not Detected at the MDL

^{*}Subcontracted Results for Total Cyanide (9012B) by Test America - Edison are available in the Subcontracted Report section

TestAmerica Laboratories, Inc.

carofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-208556-1 Job Description: E20-02897 For:

Integrated Analytical Laboratories LLC PO BOX 8026 Parsippany, New Jersey 07054

Client ID	NJ SRS7 26D Tbl1A	NJ SRS7 26D Tbl1B	NJDEP	E20-02897-001
Lab Sample ID	Residential	Non-Residential	IGW Screening	460-208556-1
Sampling Date	Sept_2017	Sept_2017	Nov 2013	04/28/2020 10:05:0
Matrix				
				100
				Result Q
SOIL BY 9012B	AC 20 M			
Cyanide, Total (mg/kg)	47	089	20	0.12 U

U : Indicates the analyte was analyzed for but not detected.

Lab Contact: Jill Miller

Senior Project Manager (484)685-0871

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

Sample #:	4	QCN	NJDEP SOIL REMEDIATION	NOIL		20-048	-
Field ID:	ä		STANDARDS				
Lab ID:	::	Residential	Non-Res	Default IGW		02897-001	
Date Sampled:	-	SRS	SRS	Screening		04/28/2020	
Depth(ft):				Level			
	CAS	(mg/kg)	(mg/Kg)	(mg/Kg)			
Volatiles (mg/Kg)					Conc	Q RL	MDL
Dichlorodifluoromethane	75-71-8	490	230000	39	Q.	0.00095	0.000369
Chloromethane	74-87-3	4	12	NS	Q	0.00095	0.000405
Vinyl chloride	75-01-4	0.7	2	0.005	Q	0.00095	0.000403
Bromomethane	74-83-9	25	59	0.04	Q	0.00095	0.000568
Chloroethane	75-00-3	220	1100	NS	Q	0.00095	0.000452
Trichlorofluoromethane	75-69-4	23000	340000	34	Q	0.00095	0.000382
Acrolein	107-02-8	0.5	-	0.5	Q	0.019	0.00461
1,1-Dichloroethene	75-35-4	11	150	0.008	Q	0.00095	0.000388
Acetone	67-64-1	70000	SN	19	Q	0.0095	0.00242
Carbon disulfide	75-15-0	7800	110000	9	0.00198	0.00095	0.00024
Methylene chloride	75-09-2	46	230	0.01	Q	0.0019	0.00184
Acrylonitrile	107-13-1	6.0	3	0.5	Q	0.019	0.00408
tert-Butyl alcohol (TBA)	75-65-0	1400	11000	0.3	Q	0.0038	0.000968
trans-1,2-Dichloroethene	156-60-5	300	720	9.0	Q	0.00095	0.00038
Methyl tert-butyl ether (MTBE)	1634-04-4	110	320	0.2	Ð	0.00095	0.000282
1,1-Dichloroethane	75-34-3	∞	24	0.2	Q	0.00095	0.000347
cis-1,2-Dichloroethene	156-59-2	230	260	0.3	QN	0.00095	0.000329
2-Butanone (MEK)	78-93-3	3100	44000	6.0	QN	0.0038	0.000903
Bromochloromethane	74-97-5	SN	NS	NS	Q	0,00095	0.000276
Chloroform	67-66-3	9.0	2	0.4	Q	0.00095	0.000535
1,1,1-Trichloroethane	71-55-6	160000	SN	0.3	Q	0.00095	0.000269
Carbon tetrachloride	56-23-5	2	4	0.005	Q	0.00095	0.000262
1,2-Dichloroethane (EDC)	107-06-2	6.0	က	0.005	9	0.00095	0.00036
Benzene	71-43-2	2	ιΩ	0.005	QN	0.00095	0.000206
Trichloroethene	79-01-6	က	10	0.01	QN	0.00095	0.000277]
1,2-Dichloropropane	78-87-5	2	S	0.005	Q	0.00095	0.000222
1,4-Dioxane	123-91-1	SN	SN	NS	Q	0.190	0.035
Bromodichloromethane	75-27-4		m	0.005	Q	0.00095	0.00019
cis-1,3-Dichloropropene	10061-01-5	SN	SN	NS	Q	0.00095	0.000204
4-Methyl-2-pentanone (MIBK)	108-10-1	SN	SN	SN	Q	0.0019	0.000697
Toluene	108-88-3	6300	91000	7	Q	0.00095	0.000218
trans-1,3-Dichloropropene	10061-02-6	SN	NS	NS	QN	0.00095	0.000246
1,1,2-Trichtoroethane	2-00-62	2	9	0.02	Q	0.00095	0.000292
Tetrachloroethene	127-18-4	43	1500	0.005	Q	0.00095	0.000355
2-Hexanone	591-78-6	SN	SN	NS	Q	0.0019	0.00146
Dibromochloromethane	124-48-1	က	∞	0.005	Q	0.00095	0.000261
1,2-Dibromoethane (EDB)	106-93-4	0.008	0.04	0.005	QV	0.00095	0.000188
Chlorohenzene	108-90-7	510	7400	9.0	2	0.00095	0.000217

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

Ethylbenzene	100-41-4	7800	110000	13	2	0.00095	0.000262
Total Xylenes	1330-20-7	12000	170000	19	9	0.0019	0.00102
Styrene	100-42-5	06	260	т	Q	0.00095	0.000316
Bromoform	75-25-2	81	280	0.03	Q	0.00095	0.00033
Isopropylbenzene	98-82-8	NS	NS	NS	9	0.00095	0.000323
1,1,2,2-Tetrachloroethane	79-34-5	1	က	0.007	9	0.00095	0.000416
n-Propylbenzene	103-65-1	NS	NS	NS	9	0.00095	0.000264
1,3,5-Trimethylbenzene	108-67-8	NS	NS	NS	2	0.00095	0.000429
tert-Butylbenzene	9-90-86	SN	NS	NS	2	0.00095	0.000303
1,2,4-Trimethylbenzene	95-63-6	SN	NS	NS	2	0.00095	0.000491
sec-Butylbenzene	135-98-8	NS	SN	NS	Q	0.00095	0.000315
1,3-Dichlorobenzene	541-73-1	5300	29000	19	2	0.00095	0.00028
4-Isopropyltoluene	9-84-66	NS	NS	NS	Q	0.00095	0.000365
1,4-Dichlorobenzene	106-46-7	22	13	2	Q	0.00095	0.00028
n-Butylbenzene	104-51-8	SN	NS	SN	2	0.00095	0.000392
1,2-Dichlorobenzene	95-50-1	5300	29000	17	Q	0.00095	0.000264
1,2-Dibromo-3-chloropropane	96-12-8	0.08	0.2	0.005	2	0.00095	0.000524
1,2,4-Trichlorobenzene	120-82-1	73	820	0.7	2	0.00095	0.000372
1,2,3-Trichlorobenzene	87-61-6	SN	NS	NS	2	0.00095	0.000375
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NS	NS	NS	9	0.00095	0.00042
Methyl acetate	79-20-9	78000	NS	22	2	0.0019	0.000292
Cyclohexane	110-82-7	NS	NS	NS	2	0.00095	0.000432
Methylcyclohexane	108-87-2	NS	NS	NS	Q	0.00095	0.000276
1,3-Dichloropropene (cis- and trans-)	542-75-6	2	7	0.005	2	0.00095	0.000246
TOTAL TIC's:		NS	NS	NS	Q		Y AN

S S Environmental Project Name: POMPTON LAKES IAL SDG No.E20-02897

Semivolatiles (mg/Kg)					Conc	o g	MDL	
N-Nitrosodimethylamine	65-72-9	0.7	0.7	0.7	2		H	
Benzaldehyde	100-52-7	6100	00089	NS	2	0.032	ŀ	
Phenol	108-95-2	18000	210000	00	9	0.032		
Aniline	62-53-3	NS	SN	SN	9	0.032	0.021	
Bis(2-chloroethyl) ether	111-44-4	0.4	2	0.2	Q	0.032		
2-Chlorophenol	95-57-8	310	2200	8.0	Q	0.032	0.026	
Benzyl alcohol	100-51-6	NS	SN	SN	Q	0.032	0.031	
2-Methylphenol	95-48-7	310	3400	NS	Q	0.032	0.019	
2,2'-Oxybis(1-Chloropropane)	108-60-1	23	29	2	Q	0.032	0.031	
4-Methylphenol **	106-44-5	31	340	SN	2	0.032	0.023	
N-Nitrosodi-n-propylamine	621-64-7	0.2	0.3	0.2	2	0.032	0.023	
Acetophenone	98-86-2	2	2	က	2	0.032	0.027	
Hexachloroethane	67-72-1	12	48	0.2	2	0.032	0.026	
Nitrobenzene	98-95-3	5	14	0.2	Q	0.032	0.021	
Isophorone	78-59-1	510	2000	0.2	Q	0.032	0.024	
2-Nitrophenol	88-75-5	NS	SN	NS	2	0.032	0.030	
2,4-Dimethylphenol	105-67-9	1200	14000	-	Q	0.032	0.019	
Bis(2-chloroethoxy) methane	111-91-1	NS	SN	SN	Q	0.032	0.026	
Benzoic acid	65-85-0	NS	SN	SN	Q	0.322	0.027	
2,4-Dichlorophenol	120-83-2	180	2100	0.2	Q	0.032	0.026	
Naphthalene	91-20-3	9	17	25	Q	0.032	0.026	
4-Chloroaniline	106-47-8	NS	SN	NS	Q	0.032	0.023	
Hexachlorobutadiene	87-68-3	9	25	6.0	Q	0.032	0.021	
Caprolactam	105-60-2	31000	340000	12	Q	0.032	0.025	
4-Chloro-3-methylphenol	29-20-7	NS	SN	NS	Q	0.032	0.022	
2-Methylnaphthalene	91-57-6	230	2400	ω	Q	0.032		
Hexachlorocyclopentadiene	77-47-4	45	110	320	Q	0.032		
2,4,6-Trichlorophenol	88-06-2	19	74	0.2	Q	0.032	0.026	
2,4,5-Trichlorophenol	95-95-4	6100	68000	89	Q	0.032	0.028	
1,1'-Biphenyl	92-52-4	61	240	140	Q	0.032	0.027	
2-Chloronaphthalene	91-58-7	NS	SN	SN	Q	0.032	0.025	
2-Nitroaniline	88-74-4	39	23000	SN	QN	0.032	0.025	
Dimethyl phthalate	131-11-3	NS	NS	SN	Q	0.032	0.024	
2,6-Dinitrotoluene	606-20-2	0.7	က	SN	Q	0.032		
Acenaphthylene	208-96-8	NS	300000	NS	Q	0.032	0.026	
3-Nitroaniline	99-09-2	NS	SN	NS	Q	0.032	0.024	
Acenaphthene	83-32-9	3400	37000	110	QN	0.032	0.027	
2,4-Dinitrophenol	51-28-5	120	1400	0.3	Q	0.032	0.031	
4-Nitrophenol	100-02-7	NS	SN	SN	QN	0.032	0.030	
2,4-Dinitrotoluene	121-14-2	0.7	က	SN	Q	0.032	0.029	
Dibenzofuran	132-64-9	NS	NS	SN	Q	0.032	0.024	
Diethyl phthalate	84-66-2	49000	550000	88	Q	0.032	0.019	
Fluorene	86-73-7	2300	24000	170	Q	0.032	0.028	
4-Chlorophenyl phenyl ether	7005-72-3	NS	SN	NS	2	0.032		
4-Nitroaniline	100-01-6	SN	NS	NS	Q	0.032	0.020	

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

1,2,4,5-Tetrachlorobenzene	95-94-3	SN	NS	SN	QV	0.032	0.023
2,3,4,6-Tetrachlorophenol	58-90-2	SN	NS	SN	Q	0.032	0.028
4,6-Dinitro-2-methylphenol	534-52-1	9	89	0.3	Q	0.032	0.031
N-Nitrosodiphenylamine	86-30-6	66	390	0.4	9	0.032	0.031
1,2-Diphenylhydrazine	122-66-7	0.7	2	0.7	2	0.032	0.032
4-Bromophenyl phenyl ether	101-55-3	SN	NS	SN	9	0.032	0.023
Hexachlorobenzene	118-74-1	0.3	1	0.2	2	0.032	0.023
Atrazine	1912-24-9	210	2400	0.2	2	0.032	0.025
Pentachlorophenol	87-86-5	6.0	က	0.3	Ð	0.032	0.022
Phenanthrene	85-01-8	SN	300000	SN	2	0.032	0.031
Anthracene	120-12-7	17000	30000	2400	2	0.032	0.032
Carbazole	86-74-8	24	96	SN	2	0.032	0.029
Di-n-butyl phthalate	84-74-2	6100	68000	760	2	0.032	0.027
Fluoranthene	206-44-0	2300	24000	1300	2	0.032	0.031
Benzidine	92-87-5	0.7	0.7	0.7	2	0.032	0.025
Pyrene	129-00-0	1700	18000	840	2	0.032	0.029
Butyl benzyl phthalate	85-68-7	1200	14000	230	2	0.032	0:030
3,3'-Dichlorobenzidine	91-94-1	1	4	0.2	2	0.032	0.029
Benzo[a]anthracene	56-55-3	rs.	17	0.8	2	0.032	0.019
Chrysene	218-01-9	450	1700	80	2	0.032	0:030
Bis(2-ethylhexyl) phthalate	117-81-7	35	140	1200	2	0.032	0.029
Di-n-octyl phthalate	117-84-0	2400	27000	3300	Q	0.032	0:030
Benzo[b]fluoranthene	205-99-2	co.	17	2	2	0.032	0.031
Benzo[k]fluoranthene	207-08-9	45	170	25	2	0.032	0.027
Benzo[a]pyrene	50-32-8	0.5	2	0.2	2	0.032	0.028
Indeno[1,2,3-cd]pyrene	193-39-5	ß	17	7	Q	0.032	0.031
Dibenz[a,h]anthracene	53-70-3	0.5	2	8.0	Q	0.032	0:030
Benzo[g,h,i]perylene	191-24-2	380000	30000	SN	QV	0.032	0.031
Dinitrotoluene (2,4- and 2,6-)	25321-14-6	0.7	3	0.2	Q	0.032	0.031
TOTAL TIC's:		NS	NS	NS	Q		 V

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

PCB's (mg/Kg)					Conc	ø	占	MDL
Aroclor-1016	12674-11-2	NS	SN	SN	Q	0	0.00329	0.00132
Aroclor-1221	11104-28-2	SN	NS	NS	2	0	0.00329	0.00132
Aroclor-1232	11141-16-5	NS	NS	SN	Q	٥	0.00329	0.00132
Aroclor-1242	53469-21-9	NS	NS	NS	Q	0	0.00329	0.00132
Aroclor-1248	12672-29-6	NS	NS	SN	Q	0	0.00329	0.00132
Aroclor-1254	11097-69-1	NS	NS	NS	Q	0	0.00329	0.00132
Aroclor-1260	11096-82-5	NS	SN	SN	Q	0	0.00329	0.00132
Aroclor-1262	37324-23-5	NS	NS	NS	Q	0	0.00329	0.00132
Aroclor-1268	11100-14-4	NS	NS	SN	Q	0	0.00329	0.00132
PCBs	1336-36-3	0.2	1	0.2	Q	0	00329	0.00132

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

Pesticides (mg/Kg)					Conc	Q RL		MDL	
alpha-BHC	319-84-6	0.1	0.5	0.002	QN	0.000658	-	0.000329	
beta-BHC	319-85-7	0.4	2	0.002	Q	0.000658		0.000329	
gamma-BHC (Lindane)	58-89-9	0.4	2	0.002	Q	0,000658	H	0.000329	
delta-BHC	319-86-8	SN	NS	SN	9	0.000658	H	0.000329	
Heptachlor	76-44-8	0.1	0.7	0.5	Q	0.000658	H	0.000329	
Aldrin	309-00-2	0.04	0.2	0.2	Q	0.000658		0.000329	
Heptachlor epoxide	1024-57-3	0.07	0.3	0.01	Q	0.000658	H	0.000329	
Endosulfan I	959-98-8	NS	NS	NS	Q	0.000658	H	0.000329	
4,4'-DDE	72-55-9	2	6	18	Q	0.000658	H	0.000329	
Dieldrin	60-57-1	0.04	0.2	0.003	Q	0.000658	H	0.000329	
Endrin	72-20-8	23	340	-	Q	0.000658	H	0.000329	
Endosulfan II	33213-65-9	NS	NS	NS	Q	0.000658	H	0.000329	
4,4'-DDD	72-54-8	m	13	4	Q	0.000658	H	0.000329	
Endrin aldehyde	7421-93-4	SN	SN	SN	Q	0.000658	H	0.000329	
Endosulfan sulfate	1031-07-8	470	0089	2	Q	0.000658	H	0.000329	
4,4'-DDT	50-29-3	2	80	1	Q	0.000658		0,000329	
Endrin ketone	53494-70-5	NS	SN	SN	Q	0.000658		0.000329	
Methoxychlor	72-43-5	390	5700	160	Q	0.000658	Н	0.000329	
alpha-Chlordane	5103-71-9	SN	SN	SN	Q	0.000658	H	0.000329	
gamma-Chlordane	5103-74-2	SN	SN	SN	2	0.000658	H	0.000329	
Toxaphene	8001-35-2	9.0	က	0.3	Q	0.00823		0.00395	
Endosulfan (I and II)	115-29-7	470	0089	4	Q	0.000658		0.000329	
Chlordane (alpha and gamma)	57-74-9	0.2		0.05	Q	0.000658	H	0.000329	

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

NJ-EPH-C40 (mg/Kg)					Conc	ø	RL	MDL
9-C40	IAI C9C40	ď.	ď.	ď	21.1	-	70.0	

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

Metals (mg/Kg)					Conc	Q RL	MDL	
Aluminum	7429-90-5	78000	NS	0009	4640	5.43	2.17	
Antimony	7440-36-0	31	450	9	Q	0.543	0.217	
Arsenic	7440-38-2	19	19	19	0.687	0.543	0.163	
Barium	7440-39-3	16000	29000	2100	41.1	0.543	0.272	
Beryllium	7440-41-7	16	140	0.7	0.316	J 0.543	0.163	
Cadmium	7440-43-9	78	78	2	Q	0.543	0.326	
Calcium	7440-70-2	SN	NS	NS	3920	54.3	16.3	
Chromium	7440-47-3	SN	NS	NS	16.3	0.543	0.272	
Cobalt	7440-48-4	1600	590	06	8.86	0.543	0.163	
Copper	7440-50-8	3100	45000	11000	50.4	0.543	0.380	
Iron	7439-89-6	SN	NS	NS	13500	54.3	16.3	
Lead	7439-92-1	400	800	06	3.21	0.543	0.272	
Magnesium	7439-95-4	NS	NS	NS	4030	54.3	16.3	
Мапдалеѕе	7439-96-5	11000	2900	65	94.9	0.543	0.380	
Mercury	7439-97-6	23	65	0.1	QV	0.031	0.013	
Nickel	7440-02-0	1600	23000	48	23.0	0.543	0.380	
Potassium	7440-09-7'	SN	NS	NS	3050	54.3	21.7	
Selenium	7782-49-2	390	2700	-		J 3.80	1.63	
Silver	7440-22-4	390	2200	-	2	0.543	0.326	
Sodium	7440-23-5	SN	SN	NS	116	54.3	21.7	
Thallium	7440-28-0	withdrawn	withdrawn	m	Q	0.543	0.272	
Vanadium	7440-62-2	78	1100	NS	23.6	0.543	0.272	
Zinc	7440-66-6	23000	110000	930	19.4	5.43	1.09	

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

General Analytical					2002	c	ā	I I	
					200	7	إِ	1	
Hexavalent Chromium-mg/Kg	18540-29-9	240	20	SN	2		00.	0.380	
pH/Corrosivity-SU	SRP 6	NS	NS	NS	8.38		¥	 &	
Trivalent (III) Chromium-mg/Kg	16065-83-1	120000	NS	SN	16.3		00.	0.380	

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

Subcontracted Data					Conc	a	牊	MDL
		SN	SN	SN	ċ		<i>د.</i>	 V
NJDEP Soil Remediation Standards: Remediation Standards N.J.A.C. 7:26D, May 2012; Amended Sept 2017	nediation Standards N	J.A.C. 7:26D, May 20	112; Amended Sept 20	17				}
BOLD Conc	Indicates a concentr	tration that exceeds applicable criteria	pplicable criteria.					
BOLD RL	Indicates RL that e	Indicates RL that exceeds applicable criteria.	eria.					<u> </u>
BOLD MDL	Indicates MDL that	exceeds applicable criteria.	riteria.					
NS = No Standard Available								
~ = Sample not analyzed for								
ND = Analyzed for but Not Detected at the MDL	e MDL							-
J = Concentration detected at a value below the RL and above the MDL for target compounds. For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations.	ow the RL and above	the MDL for target con	npounds. For non-targ	let compounds (i.e	. TICs), qualifie	er indicate	s estimat	ed concentrations.
? = Results not available								-
Subcontracted Results for Total Cyanide (9012B) by Test America -Edison are available in the Subcontracted Report section	(9012B) by Test Amer	ica -Edison are availal	ble in the Subcontracte	ed Report section				_

State of New Jersey Department of Labor and Workforce Development

Certificate No. 004630 Expiration Date 3/31/2020

MINE REGISTRATION CERTIFICATE

ISSUED TO:

TILCON NY INC-MT. HOPE QUARRY

625 MT. HOPE ROAD

LOCATION:

continued from the second of t

WHARTON, NJ

BLK NO(S): SEE BELOW

LOT NO(S): SEE BELOW

COUNTY: MORRIS

Issued pursuant to the provisions of N.J.S.A. 34:6-98.1 et. seq. Failure to comply with the provisions of the Act, and the Rules promulgated thereunder, shall be good cause for the revocation of this Certificate.

Robert Asaro-Angelo

Commissioner

THIS CERTIFICATE MUST BE POSTED AT ALL TIMES

BLK NO(S)	LOT NO(S)
20001	5.01, 5.02, 7
70001	2
20101	6

State of New Jersey Department of Labor and Workforce Development

Certificate No. 004717 Expiration Date 3/31/2021

MINE REGISTRATION CERTIFICATE

ISSUED TO:

LOCATION:

TILCON NY INC-POMPTON LAKE QUARRY

FOOT OF BROAD ST

BLK NO(S): 5105, 5105

POMPTON LAKES, NJ

LOT NO(S): 84, 14.2

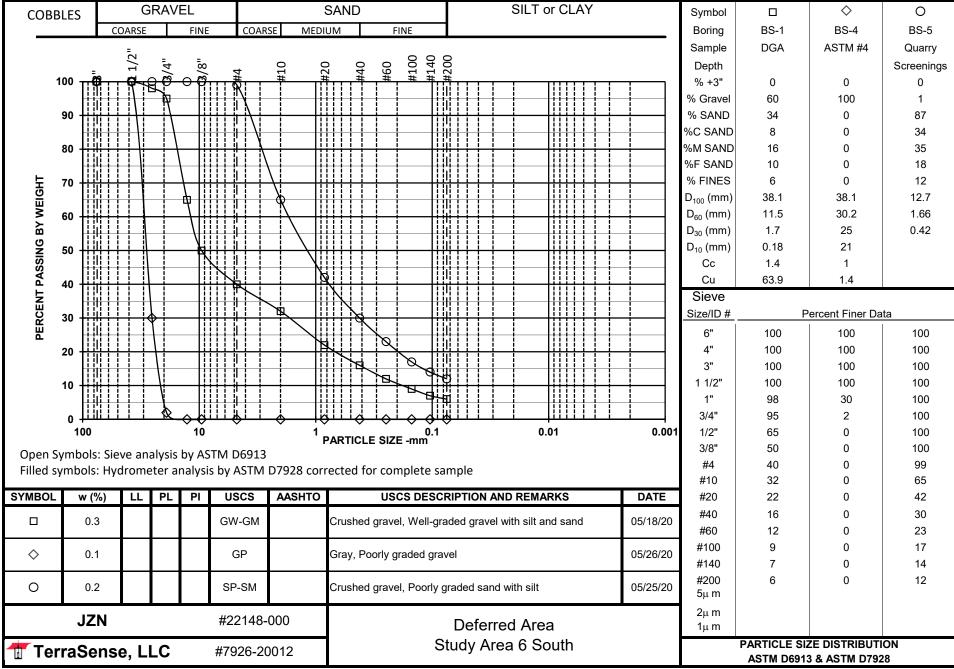
COUNTY: PASSAIC

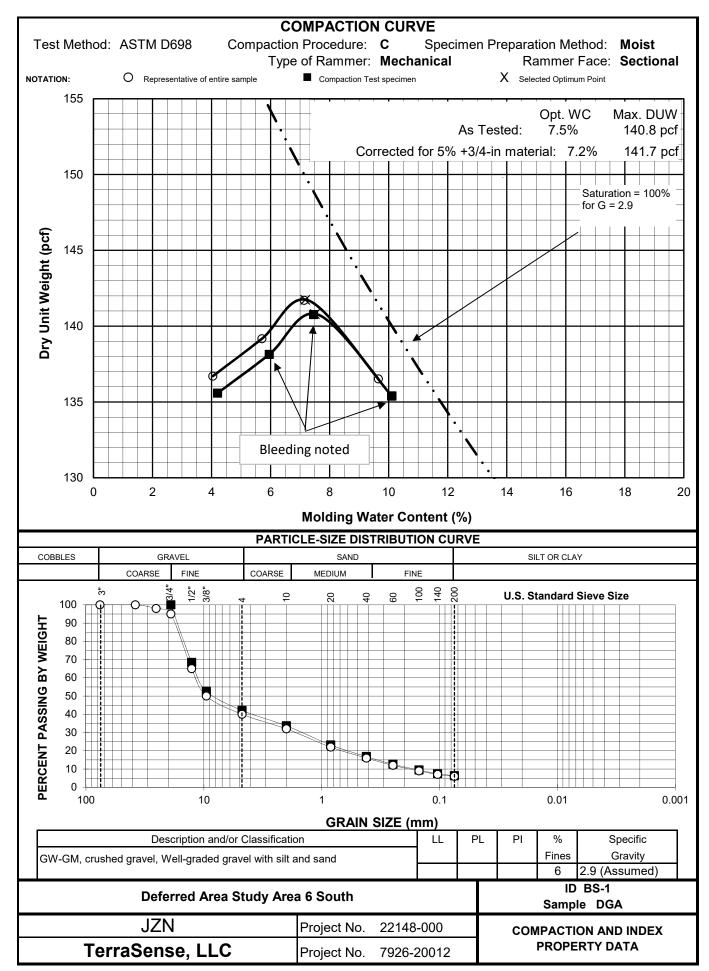
Issued pursuant to the provisions of N.J.S.A. 34:6-98.1 et. seq. Failure to comply with the provisions of the Act, and the Rules promulgated thereunder, shall be good cause for the revocation of this Certificate.

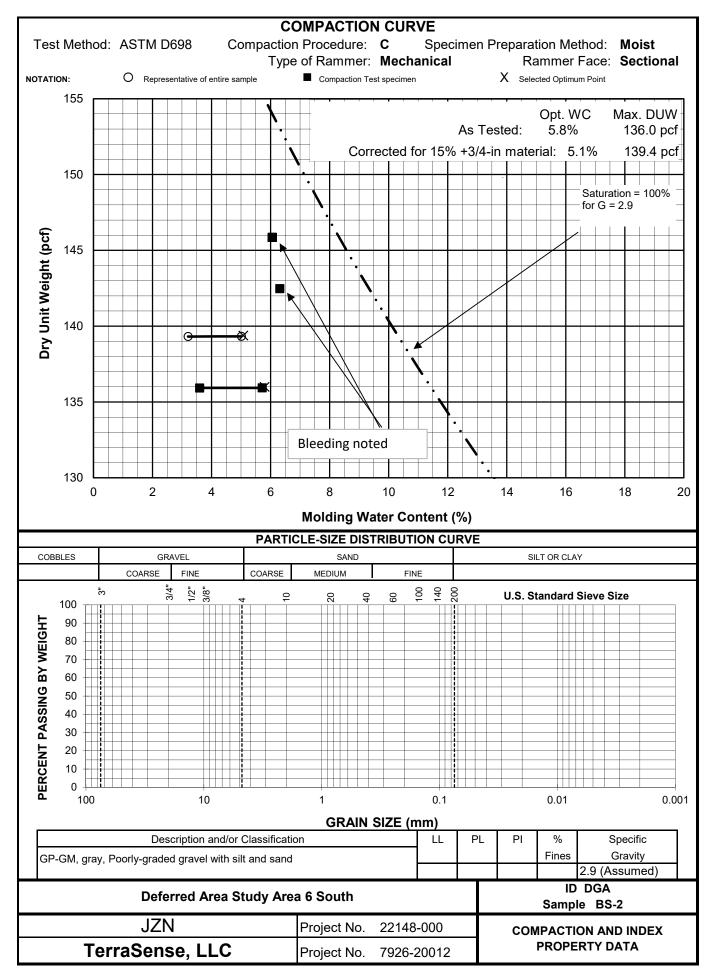
Robert Asaro-Angelo

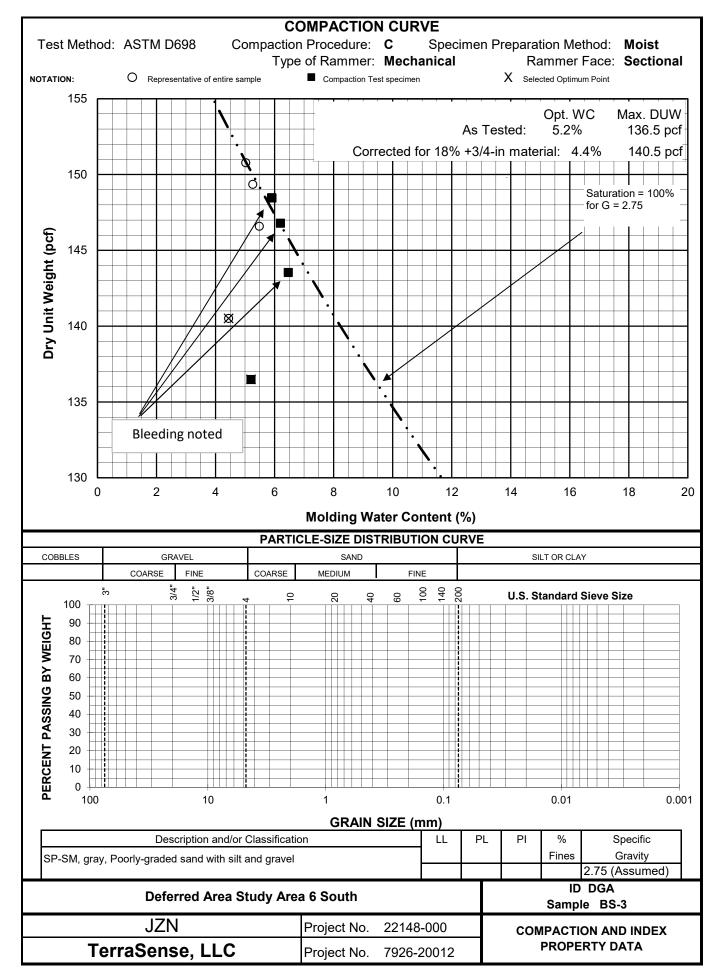
Commissioner

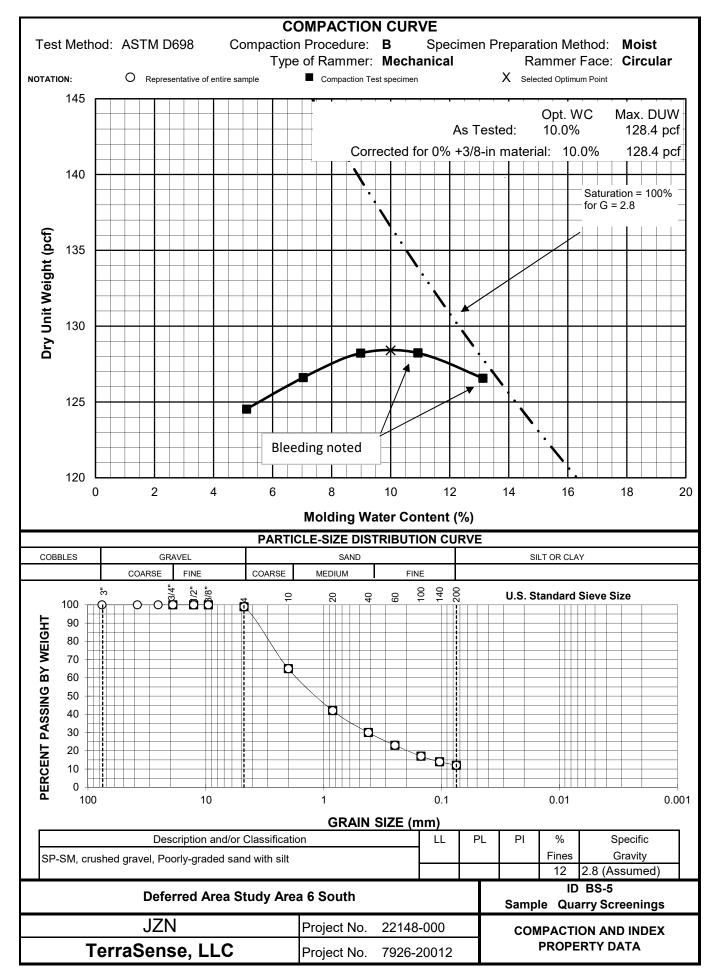
THIS CERTIFICATE MUST BE POSTED AT ALL TIMES

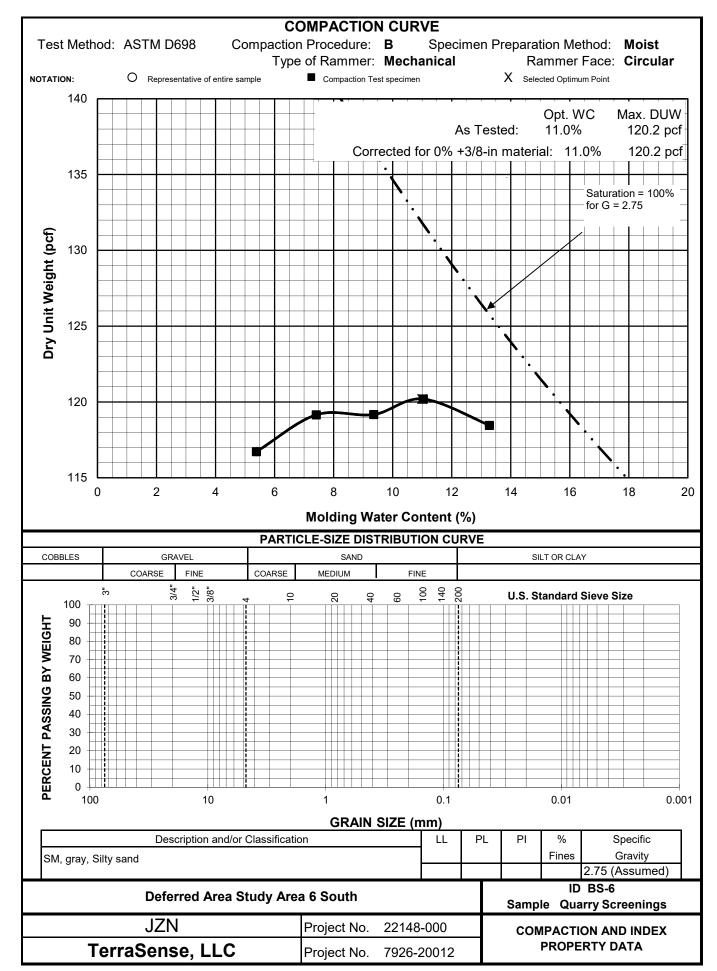

JZN #22148-000 Deferred Area Study Area 6 South LABORATORY TESTING DATA SUMMARY


BORING	SAMPLE	DEPTH	IDENTIF	ICATION T	ESTS				СО	MPA	CTION		REMARKS
			WATER	USCS	SIEVE								
NO.	NO.		CONTENT	SYMB.	MINUS	ASTM	PF	REPAR	ATIOI	V	OPT. WATER	MAX . DRY	
				(1)	NO. 200	STD.	-3/8"	-3/4"	wet	dry	CONTENT	UNIT WGT.	
		(ft)	(%)		(%)						(%)	(pcf)	
BS-1	DGA		0.3	GW-GM	6	D698		Χ	Χ		7.5	140.8	
BS-2	DGA			GP-GM		D698		Χ	Χ		5.8	136.0	
BS-3	DGA			SP-SM		D698		Χ	Χ		5.2	136.5	
BS-4	ASTM #4		0.1	GP	0								
BS-5	Quarry	Screenings	0.2	SP-SM	12	D698	Χ		Χ		10.0	128.4	
BS-6	Quarry	Screenings		SM		D698	Χ		Χ		11.0	120.2	
BS-7	Quarry	Screenings		SM		D698	Χ		Χ		9.8	119.6	


Note: (1) USCS symbol based on visual observation and Sieve reported.


Prepared by: NG Reviewed by: CMJ Date: 6/2/2020


TerraSense, LLC 45H Commerce Way Totowa, NJ 07512 Project No.: 7926-20012 File: Indx1.xlsx Page 1 of 1





> 12960 Commerce Lake Drive, A14, Fort Myers, FL 33913 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

Client:	Sevenson Environmental Services Inc.	Project:	Honeywell Project Jersey City, NJ
Item:	Lean Clay	Project Number:	200608
Source:	Dunrite	Lab Number:	20-0618C
Location:	Stockpile	Item Number:	No Specification
Date Sampled:	6/3/2020	Sampled By:	Client
Date Tested:	6/17/2020-06/18/2020	Tested By:	John Brinsfield

PARTICLE SIZE ANALYSIS BY SIEVE AND HYDROMETER METHOD Test Method: ASTM D422

Sieve Size	Particle Diameter, mm	Percent Passing	Specification
3/8"	9.50	100.0	
#4	4.75	100.0	
#10	2.00	100.0	
#40	0.425	84.1	
#200	0.075	43.1	
	0.050	37.0	
	0.020	28.7	
Hydrometer	0.010	27.2	
Analysis Results	0.005	23.8	
	0.002	19.0	

SOIL SPECIFIC GRAVITY: 2.67 (As reported separately, or estimated.)

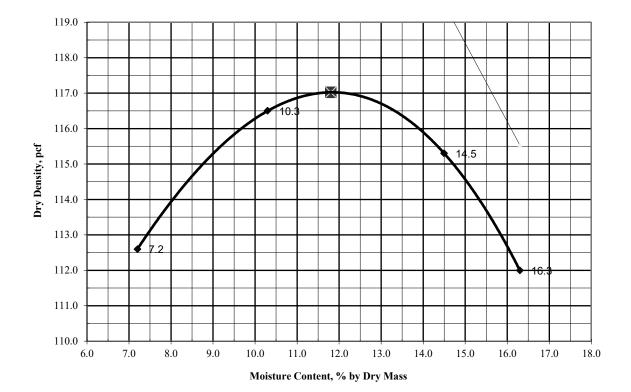
DISPERSION METHOD: Mechanical, 1 min.

SAND & GRAVEL PARTICLES: Hard Subrounded Particles

Comments:

COMPOSITION SUMMARY (USDA SIZE DESIGNATIONS)			
Gravel (3 inches to #10)	0.0%		
Fraction Passing #10:			
Sand (#10 to 0.05 mm)	63.0%		
Silt (0.05 mm to 0.002 mm)	18.0%		
Clay (Less than 0.002 mm)	19.0%		
Total	100.0%		
USDA Soil Textural Class Sandy Loam			

REPORT REVIEWED BY:_____


This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc. The results in this report relate only to the items inspected or tested.

12960 Commerce Lake Drive, A14, Fort Myers, FL 33 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

CLIENT:	Sevenson Environ	nmental Services Inc.	PROJECT NO.:	200608
PROJECT:	Honeywell Project	et Jersey City, NJ	LAB NUMBER:	20-0618C
TEST METHOD:	ASTM D 698 'Sta	andard Proctor'	Method: B	
SOIL ID NUMBER:	4			_
ITEM:	Lean Clay			
SOURCE:	Dunrite			
SOIL DESCRIPTION:	Tan/White Claye	y Silt with Sand	,	
DATE SAMPLED:	6/3/2020	SAMPLED BY:	Client	
DATE TESTED:	6/16/2020	TESTED BY:	Jake McCarey	

REPORT OF MOISTURE DENSITY RELATIONSHIP

Individual Test Points		
Percent	Dry	
Moisture	Density	
7.2	112.6	
10.3	116.5	
14.5	115.3	
16.3	112.0	

Uncorrected Maximum Dry Density:	117.0	lb/cu. ft.
Uncorrected Optimum Moisture Content:	11.8	%
Specific Gravity of Soils *:	2.65	
Percent Oversize Particles:	0.8	%
Specific Gravity of Oversize*:	2.67	

Corrected* Maximum Dry Density:	117.0	lb/cu. ft.
Corrected* Opt. Moisture Content:	11.8	%

^{**}Corrected for oversize, when oversize particles exceed 5% of sample.

Report Reviewed By:

*Specific Gravity of Soils Estimated and Specific Gravity of Oversize Estimated.

This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc.

The results in this report relate only to the items inspected or tested.

PDF

12960 Commerce Lake Drive, A14, Fort Myers, FL 33913 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

Client:	Sevenson Environmental Services Inc.	Project:	Honeywell Project Jersey City, NJ
Material:	Lean Clay	Project #:	200608
Source:	Dunrite	Lab No.:	20-0618C
Location:	Stockpile	Item Number:	No Specification
Date Sampled:	6/3/2020	Sampled By:	Client
Date Tested:	6/23/20	Tested By:	John Brinsfield

REPORT OF ATTERBERG LIMITS TEST RESULTS		
TEST METHOD: ASTM D4318; LL Method B		

Lab Number:	20-0618C	Specification
Liquid Limit:	28	
Plastic Limit:	14	
Plasticity Index:	14	

Notes: Values shown are percent moisture.

Customary procedure is to round results to the nearest whole number.

Sample was air-dried

Comments:

Report Reviewed By:

This report shall not be reproduced, except in full, without the written permission of Advance Testing Company, Inc.

The results in this report relate only to the items inspected or tested.

Page 1 of 1

PDF

12960 Commerce Lake Drive, A14, Fort Myers, FL 33913 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

Client:	Sevenson Environmental Services Inc.	Project:	Honeywell Project Jersey City, NJ
Material:	Lean Clay	Project Number:	200608
Source:	Dunrite	Lab Number:	20-0618C
Location:	Stockpile	Item Number:	No Specification
Date Sampled:	6/3/2020	Sampled By:	Client
Date Tested:	6/22/20-6/30/20	Tested By:	John Brinsfield

Report of Triaxial Permeability Test Using Back Pressure	
Test Method: ASTM D5084	

Proctor Test Data	
ASTM Proctor Test Method:	D698
Maximum Dry Density, PCF:	117
Optimum Moisture Content, Percent of Dry Weight:	11.8

Sample Preparation Method:						
Chopped to pass 3/8-inch sieve. Compacted in 1-inch lifts, scarified						
between lifts.						

Test Sample Dimensions	Before Test	After Test
Height, cm:	7.64	7.68
Diameter, cm:	7.29	7.21
Moisture Content, %:	11.90	19.49
Dry Density, PCF:	111.10	108.16

Permeability Test Conditions					
Type of Water Used:	Тар				
Maximum Back Pressure, PSI:	61.7				
Hydraulic Gradient:	28.5				
Effective Stress, PSI (min):	3.09				
Effective Stress, PSI (max):	6.17				
Initial Degree of Saturation, %:	63.5				
Final Degree of Saturation, %:	96.2				

Specific Gravity = 2.67

Permeability Test Results

Coefficient of Permeability @ 20°C (68°F): 2.59E-06 cm/sec

Specification:

Comments:

Report Reviewed By:

Chuly J. Rodriguez

This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc. The results in this report relate only to the items inspected or tested.

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-210992-1

Client Project/Site: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc. 2749 Lockport Road Niagara Falls, New York 14305

Attn: Mr. Michael F Marrone

allison Bennett

Authorized for release by: 6/25/2020 8:26:01 AM

Allison Bennett, Project Manager I (732)593-2517

allison.bennett@testamericainc.com

----- LINKS -----

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area Laboratory Job ID: 460-210992-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	9
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	20

4

5

8

9

10

Definitions/Glossary

Client: Sevenson Environmental Services, Inc.

Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-210992-1

Qualifiers

0	~ /#	AC.	111	~ A
G	ا/ز	ИS	V	JA

Qualifier Qualifier Description

* LCS or LCSD is outside acceptance limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

GC/MS VOA TICs

Qualifier Qualifier Description

J Indicates an Estimated Value for TICs

N This flag indicates the presumptive evidence of a compound.

GC/MS Semi VOA

* LCS or LCSD is outside acceptance limits.

U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA TICs

A The tentatively identified compound is a suspected aldol-condensation product.

J Indicates an Estimated Value for TICs

N This flag indicates the presumptive evidence of a compound.

GC Semi VOA

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Metals

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

General Chemistry

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly	y used abbreviations may	or may not be	present in this report.
--------------	----------------	--------------------------	---------------	-------------------------

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

Eurofins TestAmerica, Edison

Page 3 of 20 6/25/2020

Definitions/Glossary

Client: Sevenson Environmental Services, Inc. Job ID: 460-210992-1

Project/Site: 1247 HON SA-6 South Deferred Area

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

Laboratory Name: Eurofins TestAmerica, Edison Client: Sevenson Environmental Services, Inc.

Project Location: 1247 HON SA-6 South Deferred Area Project Number: 460-210992-1

Laboratory Sample ID(s): 460-210992-1

Sampling Date(s): 06/11/2020

List DKQP Methods Used: 8260C, 8270D, 8081B, 8082A, 6020B, 7471B, 7196A, 9012B

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the NJDEP Data of Known Quality performance standards?	⊠Yes □No
1A	Were the method specified handling, preservation, and holding time requirements met?	✓Yes □No□ See case narrative
1B	<u>EPH Method:</u> Was the EPH method conducted without significant modifications? (see Section 11.3 of respective DKQ methods)	□Yes □No ☑N/A
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody documents(s)?	✓Yes □No□ See case narrative
3	Were samples received at an appropriate temperature (4±2° C)?	⊠Yes □No □N/A
4	Were all QA/QC performance criteria specified in the NJDEP DKQP standards achieved?	□Yes ⊠No
	Were reporting limits specified or referenced on the chain-of-custody or communicated to the laboratory prior to sample receipt?	✓Yes □No□ See case narrative
5	b) Were these reporting limits met?	□Yes ☑No □N/A □ See case narrative
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the DKQP documents and/or site-specific QAPP?	⊠Yes □No
7	Are project-specific matrix spike and/or laboratory duplicates included in this data set?	□Yes ☑No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information should be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet requirements for "Data of Known Quality."

2

3

4

5

Q

9

10

Page 5 of 20 6/25/2020

Case Narrative

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-210992-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

CASE NARRATIVE

Client: Sevenson Environmental Services, Inc.

Project: 1247 HON SA-6 South Deferred Area

Report Number: 460-210992-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The sample was received on 6/11/2020 2:00 PM; the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 6.0° C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS (GC/MS) DKQP (TOTAL)

Sample Solite Lightweight Fill 06112020 (460-210992-1) was analyzed for Volatile Organic Compounds (GC/MS) DKQP (Total) in accordance with EPA SW-846 Method 8260C (DKQP). The samples were prepared on 06/13/2020 and analyzed on 06/22/2020.

The continuing calibration verification (CCV) associated with batch 460-701367 recovered above the upper control limit for Dichlorodifluoromethane. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported.

The continuing calibration verification (CCV) associated with batch 460-702889 recovered above the upper control limit for Acrolein and Acrylonitrile. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 460-702889 recovered outside control limits for the following analytes: Acrolein and Acrylonitrile. These analytes were biased high in the LCS/LCSD and were not detected in the associated samples; therefore, the data have been reported.

Refer to the QC report for details.

No other difficulties were encountered during the Volatile Organic Compounds (GC/MS) DKQP (Total) analysis.

All quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC/MS) DKQP (TOTAL)

Job ID: 460-210992-1

6

4

2

7

8

4.0

Case Narrative

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-210992-1

Job ID: 460-210992-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

Sample Solite Lightweight Fill 06112020 (460-210992-1) was analyzed for Semivolatile Organic Compounds (GC/MS) DKQP (Total) in accordance with EPA SW-846 Method 8270D (DKQP). The samples were prepared on 06/18/2020 and analyzed on 06/19/2020.

The continuing calibration verification (CCV) analyzed in batch 460-702339 was outside the method criteria for the following analyte(s): 2,4-Dinitrophenol, 4,6-Dinitro-2-methylphenol and Benzaldehyde. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

The laboratory control sample (LCS) and/or lab control sample duplicate (LCSD) associated with preparation batch 460-702274 and analytical batch 460-702339 was outside DKQP recovery criteria but with laboratory generated limits for the following analytes: 3,3'-Dichlorobenzidine, Acetophenone, bis (2-chloroisopropyl) ether and N-Nitrosodi-n-propylamine. The data has been reported.

Several analytes failed the recovery criteria low for the MS/MSD of sample 460-210993-1 in batch 460-702339. 2,4-Dinitrophenol exceeded the RPD limit.

Refer to the QC report for details.

No other difficulties were encountered during the Semivolatile Organic Compounds (GC/MS) DKQP (Total) analysis.

All other quality control parameters were within the acceptance limits.

ORGANOCHLORINE PESTICIDES (GC) DKQP (TOTAL)

Sample Solite Lightweight Fill 06112020 (460-210992-1) was analyzed for Organochlorine Pesticides (GC) DKQP (Total) in accordance with EPA SW-846 Method 8081B (DKQP). The samples were prepared on 06/18/2020 and analyzed on 06/19/2020.

No difficulties were encountered during the Organochlorine Pesticides (GC) DKQP (Total) analysis.

All quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS (PCBS) DKQP (TOTAL)

Sample Solite Lightweight Fill 06112020 (460-210992-1) was analyzed for Polychlorinated Biphenyls (PCBs) DKQP (Total) in accordance with EPA SW-846 Method 8082A (DKQP). The samples were prepared on 06/18/2020 and analyzed on 06/19/2020.

Aroclor 1260 failed the recovery criteria high for the MS of sample 460-210958-1 in batch 460-702562.

Aroclor 1016 and Aroclor 1260 failed the recovery criteria high for the MSD of sample 460-210958-1 in batch 460-702562.

Refer to the QC report for details.

No other difficulties were encountered during the Polychlorinated Biphenyls (PCBs) DKQP (Total) analysis.

All other quality control parameters were within the acceptance limits.

METALS DKQP (TOTAL)(ICP/MS)

Sample Solite Lightweight Fill 06112020 (460-210992-1) was analyzed for Metals DKQP (Total)(ICP/MS) in accordance with EPA SW-846 Method 6020B (DKQP). The samples were prepared and analyzed on 06/18/2020.

Several analytes failed the recovery criteria low for the MS of sample 460-211215-1 in batch 460-702189. Aluminum, Chromium, Manganese and Vanadium failed the recovery criteria high.

Arsenic, Cadmium, Cobalt, Lead, Manganese, Nickel and Zinc exceeded the RPD limit for the duplicate of sample 460-211215-1.

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

4

1

0

10

Case Narrative

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-210992-1

Job ID: 460-210992-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

Refer to the QC report for details.

No other difficulties were encountered during the Metals DKQP (Total)(ICP/MS) analysis.

All other quality control parameters were within the acceptance limits.

MERCURY (HG) DKQP (TOTAL)

Sample Solite Lightweight Fill 06112020 (460-210992-1) was analyzed for Mercury (Hg) DKQP (Total) in accordance with EPA SW-846 Method 7471B (DKQP). The samples were prepared and analyzed on 06/17/2020.

No difficulties were encountered during the Mercury (Hg) DKQP (Total) analysis.

All quality control parameters were within the acceptance limits.

CYANIDE (CN) DKQP (TOTAL)

Sample Solite Lightweight Fill 06112020 (460-210992-1) was analyzed for Cyanide (CN) DKQP (Total) in accordance with EPA SW-846 Method 9012B (DKQP). The samples were prepared and analyzed on 06/23/2020.

No difficulties were encountered during the Cyanide (CN) DKQP (Total) analysis.

All quality control parameters were within the acceptance limits.

HEXAVALENT CHROMIUM VI DKQP (TOTAL)

Sample Solite Lightweight Fill 06112020 (460-210992-1) was analyzed for Hexavalent Chromium VI DKQP (Total) in accordance with EPA SW-846 Method 7196A (DKQP). The samples were prepared and analyzed on 06/23/2020.

No difficulties were encountered during the Hexavalent Chromium VI DKQP (Total) analysis.

All other quality control parameters were within the acceptance limits.

CORROSIVITY (PH)

Sample Solite Lightweight Fill 06112020 (460-210992-1) was analyzed for corrosivity (pH) in accordance with EPA SW-846 Method 9045D. The samples were analyzed on 06/21/2020.

No difficulties were encountered during the corrosivity (pH) analysis.

All quality control parameters were within the acceptance limits.

LLOYD KAHN METHOD (TOTAL ORGANIC CARBON)

Sample Solite Lightweight Fill 06112020 (460-210992-1) was analyzed for Lloyd Kahn Method (total organic carbon) in accordance with Lloyd Kahn Method. The samples were analyzed on 06/23/2020.

No difficulties were encountered during the TOC analysis.

All quality control parameters were within the acceptance limits.

PERCENT SOLIDS/PERCENT MOISTURE

Sample Solite Lightweight Fill 06112020 (460-210992-1) was analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D) Modified. The samples were analyzed on 06/18/2020.

No difficulties were encountered during the %solids/moisture analysis.

All quality control parameters were within the acceptance limits.

J

_

8

9

Client: Sevenson Environmental Services, Inc.

Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-210992-1

Client Sample ID: Solite Lightweight Fill 06112020 Lab Sample ID: 460-210992-1

Method: 8260C - Volatile Orga Analyte	Result	Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	0.00051	U	0.0022		0.00051	mg/Kg		06/13/20 07:24	06/22/20 09:05	
1,1,2,2-Tetrachloroethane	0.00047	U	0.0022		0.00047	mg/Kg	₩	06/13/20 07:24	06/22/20 09:05	
1,1,2-Trichloroethane	0.00039	U	0.0022		0.00039	mg/Kg	☼	06/13/20 07:24	06/22/20 09:05	
1,1-Dichloroethane	0.00046	U	0.0022		0.00046	mg/Kg	≎	06/13/20 07:24	06/22/20 09:05	
1,1-Dichloroethene	0.00050	U	0.0022		0.00050	mg/Kg	☼	06/13/20 07:24	06/22/20 09:05	
1,2-Dibromo-3-Chloropropane	0.0010	U	0.0022		0.0010	mg/Kg	☼	06/13/20 07:24	06/22/20 09:05	
1,2-Dibromoethane	0.00040	U	0.0022		0.00040	mg/Kg	≎	06/13/20 07:24	06/22/20 09:05	
1,2-Dichloroethane	0.00065	U	0.0022		0.00065	mg/Kg	₽	06/13/20 07:24	06/22/20 09:05	
1,2-Dichloropropane	0.00093	U	0.0022		0.00093	mg/Kg	☼	06/13/20 07:24	06/22/20 09:05	
2-Butanone	0.0060	U	0.011		0.0060	mg/Kg		06/13/20 07:24	06/22/20 09:05	
2-Chloroethyl vinyl ether	0.0036	U	0.0044		0.0036	mg/Kg	₩	06/13/20 07:24	06/22/20 09:05	
2-Hexanone	0.0038	U	0.011		0.0038	mg/Kg	₩	06/13/20 07:24	06/22/20 09:05	
4-Methyl-2-pentanone	0.0034	U	0.011		0.0034	mg/Kg		06/13/20 07:24	06/22/20 09:05	
Acetone	0.57		0.013		0.013	mg/Kg	☼	06/13/20 07:24	06/22/20 09:05	
Acrolein	0.062	U *	0.22		0.062	mg/Kg	☼	06/13/20 07:24	06/22/20 09:05	
Acrylonitrile	0.0036	U *	0.022		0.0036	mg/Kg	ф.	06/13/20 07:24	06/22/20 09:05	
Benzene	0.00057	U	0.0022		0.00057		₽	06/13/20 07:24	06/22/20 09:05	
Bromodichloromethane	0.00057	U	0.0022		0.00057		₩	06/13/20 07:24	06/22/20 09:05	
Bromoform	0.00094	U	0.0022		0.00094			06/13/20 07:24	06/22/20 09:05	
Bromomethane	0.0010	U	0.0022		0.0010		₩	06/13/20 07:24	06/22/20 09:05	
Carbon disulfide	0.00059	U	0.0022		0.00059		₩	06/13/20 07:24	06/22/20 09:05	
Carbon tetrachloride	0.00085	U	0.0022		0.00085		· · · · · · · · · · · · · · · · · · ·	06/13/20 07:24	06/22/20 09:05	
Chlorobenzene	0.00039	U	0.0022		0.00039		₽	06/13/20 07:24	06/22/20 09:05	
Chloroethane	0.0012		0.0022		0.0012		₽		06/22/20 09:05	
Chloroform	0.00070		0.0022		0.00070		ф.		06/22/20 09:05	
Chloromethane	0.00096		0.0022		0.00096		₽		06/22/20 09:05	
cis-1,2-Dichloroethene	0.00034		0.0022		0.00034		₽		06/22/20 09:05	
cis-1,3-Dichloropropene	0.00060		0.0022		0.00060		ф.		06/22/20 09:05	
Dibromochloromethane	0.00043		0.0022		0.00043		₽	06/13/20 07:24	06/22/20 09:05	
Dichlorodifluoromethane	0.00075		0.0022		0.00075		₩		06/22/20 09:05	
Ethylbenzene	0.00044		0.0022		0.00044		ф.		06/22/20 09:05	
Methyl acetate	0.0095		0.011		0.0095		₽		06/22/20 09:05	
Methylene Chloride	0.0010		0.0022		0.0010		₩		06/22/20 09:05	
MTBE	0.00028		0.0022		0.00028		ф		06/22/20 09:05	
Styrene	0.00061		0.0022		0.00061		₩		06/22/20 09:05	
TBA	0.0073		0.022		0.0073		₩		06/22/20 09:05	
Tetrachloroethene	0.00032		0.0022		0.00032		· · · · · · · · · · · · · · · · · · ·		06/22/20 09:05	
Toluene	0.00099		0.0022		0.00052		₩		06/22/20 09:05	
trans-1,2-Dichloroethene	0.00054		0.0022		0.00054		₩		06/22/20 09:05	
trans-1,3-Dichloropropene	0.00059		0.0022		0.00059				06/22/20 09:05	
Trichloroethene	0.00039		0.0022		0.00039		Ψ.		06/22/20 09:05	
Trichlorofluoromethane	0.00032		0.0022		0.00032		Ψ.		06/22/20 09:05	
Vinyl chloride	0.00090		0.0022		0.00090				06/22/20 09:05	
Xylenes, Total	0.00012		0.0022		0.0012		ф Ф		06/22/20 09:05	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown Alkane	0.14	J	mg/Kg	☼	1.	.72		•	06/22/20 09:05	
Unknown	0.043		mg/Kg	₩		.88			06/22/20 09:05	
Cyclohexane	0.51		mg/Kg	₩		.11	110-82-7	06/13/20 07:24		

Eurofins TestAmerica, Edison

6/25/2020

Page 9 of 20

2

3

5

8

9

Job ID: 460-210992-1

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: Solite Lightweight Fill 06112020

Date Collected: 06/11/20 14:00

Lab Sample ID: 460-210992-1 **Matrix: Solid**

Percent Solids: 93.5 Date Received: 06/11/20 14:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113	70 - 130	06/13/20 07:24	06/22/20 09:05	1
Bromofluorobenzene	104	70 - 130	06/13/20 07:24	06/22/20 09:05	1
Dibromofluoromethane (Surr)	103	70 - 130	06/13/20 07:24	06/22/20 09:05	1
Toluene-d8 (Surr)	102	70 - 130	06/13/20 07:24	06/22/20 09:05	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1'-Biphenyl	0.0047	U	0.35	0.0047	mg/Kg	<u> </u>	06/18/20 17:05	06/19/20 05:00	
1,2,4-Trichlorobenzene	0.0091	U	0.035	0.0091	mg/Kg	☼	06/18/20 17:05	06/19/20 05:00	
1,2-Dichlorobenzene	0.0060	U	0.35	0.0060	mg/Kg	☼	06/18/20 17:05	06/19/20 05:00	
1,2-Diphenylhydrazine	0.0065	U	0.35	0.0065	mg/Kg	₩.	06/18/20 17:05	06/19/20 05:00	
1,3-Dichlorobenzene	0.0047	U	0.35	0.0047	mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
1,4-Dichlorobenzene	0.013	U	0.35	0.013	mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
2,4,5-Trichlorophenol	0.036	U	0.35	0.036	mg/Kg		06/18/20 17:05	06/19/20 05:00	
2,4,6-Trichlorophenol	0.045	U	0.14	0.045	mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
2,4-Dichlorophenol	0.023	U	0.14	0.023	mg/Kg	☼	06/18/20 17:05	06/19/20 05:00	
2,4-Dimethylphenol	0.016	U	0.35	0.016	mg/Kg	Φ.	06/18/20 17:05	06/19/20 05:00	
2,4-Dinitrophenol	0.17	U	0.28	0.17	mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
2,4-Dinitrotoluene	0.038	U	0.072	0.038	mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
2,6-Dinitrotoluene	0.026	U	0.072	0.026	mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
2-Chloronaphthalene	0.016	U	0.35		mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
2-Chlorophenol	0.013	U	0.35	0.013	mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
2-Methylnaphthalene	0.0099	U	0.35	0.0099		₩	06/18/20 17:05	06/19/20 05:00	
2-Methylphenol	0.013	U	0.35		mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
2-Nitroaniline	0.013	U	0.35		mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
2-Nitrophenol	0.035	U	0.35		mg/Kg		06/18/20 17:05	06/19/20 05:00	
3,3'-Dichlorobenzidine	0.053	U *	0.14		mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
3-Nitroaniline	0.040	U	0.35	0.040	mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
1,6-Dinitro-2-methylphenol	0.057	U	0.28		mg/Kg		06/18/20 17:05	06/19/20 05:00	
I-Bromophenyl phenyl ether	0.014	U	0.35		mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
4-Chloro-3-methylphenol	0.020	U	0.35	0.020	mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
1-Chloroaniline	0.025	U	0.35	0.025	mg/Kg		06/18/20 17:05	06/19/20 05:00	
1-Chlorophenyl phenyl ether	0.012	U	0.35	0.012	mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
4-Methylphenol	0.022	U	0.35		mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
4-Nitroaniline	0.041	U	0.35		mg/Kg	 ☆	06/18/20 17:05	06/19/20 05:00	
1-Nitrophenol	0.058	U	0.72		mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
Acenaphthene	0.026	U	0.35		mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
Acenaphthylene	0.0037	U	0.35	0.0037			06/18/20 17:05	06/19/20 05:00	
Acetophenone	0.017	U *	0.35		mg/Kg	₩	06/18/20 17:05	06/19/20 05:00	
Anthracene	0.011		0.35		mg/Kg	₩		06/19/20 05:00	
Atrazine	0.0089		0.14	0.0089				06/19/20 05:00	
Benzaldehyde	0.015		0.35		mg/Kg	₩		06/19/20 05:00	
Benzidine	0.035		0.35		mg/Kg	₩		06/19/20 05:00	
Benzo[a]anthracene	0.012		0.035		mg/Kg			06/19/20 05:00	
Benzo[a]pyrene	0.0094		0.035	0.0094		₩		06/19/20 05:00	
Benzo[b]fluoranthene	0.0091		0.035	0.0091		₩		06/19/20 05:00	
Benzo[g,h,i]perylene	0.010		0.35		mg/Kg			06/19/20 05:00	
Benzo[k]fluoranthene	0.0069		0.035	0.0069		₩		06/19/20 05:00	
ois (2-chloroisopropyl) ether	0.0064		0.35	0.0064		₽		06/19/20 05:00	
Bis(2-chloroethoxy)methane	0.028		0.35		mg/Kg			06/19/20 05:00	

Eurofins TestAmerica, Edison

6/25/2020

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: Solite Lightweight Fill 06112020

Date Collected: 06/11/20 14:00 Date Received: 06/11/20 14:00 Lab Sample ID: 460-210992-1

Matrix: Solid

Percent Solids: 93.5

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-chloroethyl)ether	0.012	U	0.035		0.012	mg/K	<u> </u>	06/18/20 17:05	06/19/20 05:00	1
Bis(2-ethylhexyl) phthalate	0.019	U	0.35		0.019	mg/K	3 🌣	06/18/20 17:05	06/19/20 05:00	1
Butyl benzyl phthalate	0.017	U	0.35		0.017	mg/K)	06/18/20 17:05	06/19/20 05:00	1
Caprolactam	0.055	U	0.35		0.055	mg/K)	06/18/20 17:05	06/19/20 05:00	1
Carbazole	0.013	U	0.35		0.013	mg/K	3 🌣	06/18/20 17:05	06/19/20 05:00	1
Chrysene	0.0060	U	0.35		0.0060	mg/K) [‡]	06/18/20 17:05	06/19/20 05:00	1
Dibenz(a,h)anthracene	0.015	U	0.035		0.015	mg/K)	06/18/20 17:05	06/19/20 05:00	1
Dibenzofuran	0.0050	U	0.35		0.0050	mg/K)	06/18/20 17:05	06/19/20 05:00	1
Diethyl phthalate	0.0051	U	0.35		0.0051	mg/K) [†]	06/18/20 17:05	06/19/20 05:00	1
Dimethyl phthalate	0.080	U	0.35		0.080	mg/K	ÿ	06/18/20 17:05	06/19/20 05:00	1
Di-n-butyl phthalate	0.062	U	0.35		0.062	mg/K	3	06/18/20 17:05	06/19/20 05:00	1
Di-n-octyl phthalate	0.019	U	0.35		0.019	mg/Kg	3	06/18/20 17:05	06/19/20 05:00	1
Fluoranthene	0.012	U	0.35		0.012	mg/K)	06/18/20 17:05	06/19/20 05:00	1
Fluorene	0.0048	U	0.35		0.0048	mg/K	3	06/18/20 17:05	06/19/20 05:00	1
Hexachlorobenzene	0.017	U	0.035		0.017	mg/K	3	06/18/20 17:05	06/19/20 05:00	1
Hexachlorobutadiene	0.0075	U	0.072		0.0075	mg/Kg	3 🌣	06/18/20 17:05	06/19/20 05:00	1
Hexachlorocyclopentadiene	0.031	U	0.35		0.031	mg/K	3 🌣	06/18/20 17:05	06/19/20 05:00	1
Hexachloroethane	0.012	U	0.035		0.012	mg/Kg	3	06/18/20 17:05	06/19/20 05:00	1
Indeno[1,2,3-cd]pyrene	0.014	U	0.035		0.014	mg/K	3 🌣	06/18/20 17:05	06/19/20 05:00	1
Isophorone	0.10	U	0.14		0.10	mg/Kg	3 🌣	06/18/20 17:05	06/19/20 05:00	1
Naphthalene	0.0061	U	0.35		0.0061	mg/Kg)	06/18/20 17:05	06/19/20 05:00	1
Nitrobenzene	0.0085	U	0.035		0.0085	mg/Kg	3 🌣	06/18/20 17:05	06/19/20 05:00	1
N-Nitrosodimethylamine	0.033	U	0.35		0.033	mg/Kg	3 🌣	06/18/20 17:05	06/19/20 05:00	1
N-Nitrosodi-n-propylamine	0.026	U *	0.035		0.026	mg/Kg	3	06/18/20 17:05	06/19/20 05:00	1
N-Nitrosodiphenylamine	0.0068	U	0.35		0.0068	mg/K	3 🌣	06/18/20 17:05	06/19/20 05:00	1
Pentachlorophenol	0.072	U	0.28		0.072	mg/Kg	9	06/18/20 17:05	06/19/20 05:00	1
Phenanthrene	0.0062	U	0.35		0.0062	mg/Kg)	06/18/20 17:05	06/19/20 05:00	1
Phenol	0.013	U	0.35		0.013	mg/Kg	3 🌣	06/18/20 17:05	06/19/20 05:00	1
Pyrene	0.0088	U	0.35		0.0088	mg/K	₽	06/18/20 17:05	06/19/20 05:00	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Aldol condensation product	1.6	A J	mg/Kg	\	2.	.95		06/18/20 17:05	06/19/20 05:00	1
Sulfur	0.30	JN	mg/Kg	₩	7.	.61	13798-23-7	06/18/20 17:05	06/19/20 05:00	1
Unknown	0.80	J	mg/Kg	₩	9.	.80		06/18/20 17:05	06/19/20 05:00	1
Cyclic octaatomic sulfur	0.43	JN	mg/Kg	₩.	9.	.83	10544-50-0	06/18/20 17:05	06/19/20 05:00	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	41		30 - 130					06/18/20 17:05	06/19/20 05:00	1
2-Fluorobiphenyl	38		30 - 130					06/18/20 17:05	06/19/20 05:00	1
								00/40/00 4= 5=	00/40/00 05 55	

Method: 8081B -	Organochloring	Pacticidae (GC)
MELITOU. OVO I D -	Uluanochioline	resultives (do)

2-Fluorophenol

Nitrobenzene-d5

Terphenyl-d14

Phenol-d5

43

37

40

39

Method. 000 ID - Organocinon	ne i esticio	163 (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.0012	U	0.0072	0.0012	mg/Kg		06/18/20 09:16	06/19/20 06:24	1
4,4'-DDE	0.00084	U	0.0072	0.00084	mg/Kg	₽	06/18/20 09:16	06/19/20 06:24	1
4,4'-DDT	0.0013	U	0.0072	0.0013	mg/Kg	₽	06/18/20 09:16	06/19/20 06:24	1
Aldrin	0.0011	U	0.0072	0.0011	mg/Kg	φ.	06/18/20 09:16	06/19/20 06:24	1

30 - 130

30 - 130

30 - 130

30 - 130

Eurofins TestAmerica, Edison

06/18/20 17:05 06/19/20 05:00

06/18/20 17:05 06/19/20 05:00

06/18/20 17:05 06/19/20 05:00

06/18/20 17:05 06/19/20 05:00

Job ID: 460-210992-1

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: Solite Lightweight Fill 06112020 Lab Sample ID: 460-210992-1

Date Collected: 06/11/20 14:00 Matrix: Solid
Date Received: 06/11/20 14:00 Percent Solids: 93.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
alpha-BHC	0.00073	U	0.0021	0.00073	mg/Kg	<u> </u>	06/18/20 09:16	06/19/20 06:24	1
beta-BHC	0.00080	U	0.0021	0.00080	mg/Kg	☼	06/18/20 09:16	06/19/20 06:24	1
Chlordane (n.o.s.)	0.017	U	0.072	0.017	mg/Kg	₽	06/18/20 09:16	06/19/20 06:24	1
Chlordane (technical)	0.017	U	0.072	0.017	mg/Kg	☼	06/18/20 09:16	06/19/20 06:24	1
cis-Chlordane	0.0011	U	0.0072	0.0011	mg/Kg	☼	06/18/20 09:16	06/19/20 06:24	1
delta-BHC	0.00044	U	0.0021	0.00044	mg/Kg	₩	06/18/20 09:16	06/19/20 06:24	1
Dieldrin	0.00093	U	0.0021	0.00093	mg/Kg	☼	06/18/20 09:16	06/19/20 06:24	1
Endosulfan I	0.0011	U	0.0072	0.0011	mg/Kg	☼	06/18/20 09:16	06/19/20 06:24	1
Endosulfan II	0.0018	U	0.0072	0.0018	mg/Kg	☼	06/18/20 09:16	06/19/20 06:24	1
Endosulfan sulfate	0.00090	U	0.0072	0.00090	mg/Kg	☼	06/18/20 09:16	06/19/20 06:24	1
Endrin	0.0010	U	0.0072	0.0010	mg/Kg	☼	06/18/20 09:16	06/19/20 06:24	1
Endrin aldehyde	0.0017	U	0.0072	0.0017	mg/Kg	.	06/18/20 09:16	06/19/20 06:24	1
Endrin ketone	0.0014	U	0.0072	0.0014	mg/Kg	☼	06/18/20 09:16	06/19/20 06:24	1
gamma-BHC (Lindane)	0.00066	U	0.0021	0.00066	mg/Kg	☼	06/18/20 09:16	06/19/20 06:24	1
Heptachlor	0.00084	U	0.0072	0.00084	mg/Kg	₽	06/18/20 09:16	06/19/20 06:24	1
Heptachlor epoxide	0.0011	U	0.0072	0.0011	mg/Kg	☼	06/18/20 09:16	06/19/20 06:24	1
Methoxychlor	0.0016	U	0.0072	0.0016	mg/Kg	☼	06/18/20 09:16	06/19/20 06:24	1
Toxaphene	0.026	U	0.072	0.026	mg/Kg	₽	06/18/20 09:16	06/19/20 06:24	1
trans-Chlordane	0.0013	U	0.0072	0.0013	mg/Kg	₩	06/18/20 09:16	06/19/20 06:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	77		30 - 150				06/18/20 09:16	06/19/20 06:24	1
DCB Decachlorobiphenyl	81		30 - 150				06/18/20 09:16	06/19/20 06:24	1
Tetrachloro-m-xylene	58		30 - 150				06/18/20 09:16	06/19/20 06:24	1
Tetrachloro-m-xylene	57		30 - 150				06/18/20 09:16	06/19/20 06:24	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.0095	U	0.072	0.0095	mg/Kg	<u> </u>	06/18/20 09:10	06/19/20 20:23	1
Aroclor 1221	0.0095	U	0.072	0.0095	mg/Kg	₩	06/18/20 09:10	06/19/20 20:23	1
Aroclor 1232	0.0095	U	0.072	0.0095	mg/Kg	₩	06/18/20 09:10	06/19/20 20:23	1
Aroclor 1242	0.0095	U	0.072	0.0095	mg/Kg	₩.	06/18/20 09:10	06/19/20 20:23	1
Aroclor 1248	0.0095	U	0.072	0.0095	mg/Kg	₩	06/18/20 09:10	06/19/20 20:23	1
Aroclor 1254	0.0098	U	0.072	0.0098	mg/Kg	₩	06/18/20 09:10	06/19/20 20:23	1
Aroclor 1260	0.0098	U	0.072	0.0098	mg/Kg	₩	06/18/20 09:10	06/19/20 20:23	1
Aroclor 1262	0.0098	U	0.072	0.0098	mg/Kg	☼	06/18/20 09:10	06/19/20 20:23	1
Aroclor 1268	0.0098	U	0.072	0.0098	mg/Kg	₩	06/18/20 09:10	06/19/20 20:23	1
Polychlorinated biphenyls, Total	0.0098	U	0.072	0.0098	mg/Kg	₽	06/18/20 09:10	06/19/20 20:23	1
•	0/5	0 1:5:							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	105		30 - 150	06/18/20 09:10	06/19/20 20:23	1
DCB Decachlorobiphenyl	116		30 - 150	06/18/20 09:10	06/19/20 20:23	1
Tetrachloro-m-xylene	90		30 - 150	06/18/20 09:10	06/19/20 20:23	1
Tetrachloro-m-xylene	97		30 - 150	06/18/20 09:10	06/19/20 20:23	1

Method: 6020B - Metals (ICP/	MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	6120	19.8	6.8	mg/Kg	<u> </u>	06/18/20 03:50	06/18/20 11:48	10
Antimony	0.29 U	0.99	0.29	mg/Kg	☼	06/18/20 03:50	06/18/20 11:48	10
Arsenic	7.0	0.99	0.32	mg/Kg	☼	06/18/20 03:50	06/18/20 11:48	10

Eurofins TestAmerica, Edison

Page 12 of 20

2

3

6

8

Client Sample Results

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: Solite Lightweight Fill 06112020 Lab Sample ID: 460-210992-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	24.6		2.0	0.66	mg/Kg	<u> </u>	06/18/20 03:50	06/18/20 11:48	10
Beryllium	0.16	U	0.40	0.16	mg/Kg		06/18/20 03:50	06/18/20 11:48	10
Cadmium	0.33	U	0.99	0.33	mg/Kg	☼	06/18/20 03:50	06/18/20 11:48	10
Chromium	41.4		2.0	0.59	mg/Kg	₩	06/18/20 03:50	06/18/20 11:48	10
Cobalt	8.6		2.0	0.60	mg/Kg	☼	06/18/20 03:50	06/18/20 11:48	10
Copper	14.8		2.0	0.57	mg/Kg	☼	06/18/20 03:50	06/18/20 11:48	10
Lead	3.3		0.59	0.19	mg/Kg	₩	06/18/20 03:50	06/18/20 11:48	10
Manganese	32.1		4.0	1.2	mg/Kg	☼	06/18/20 03:50	06/18/20 11:48	10
Nickel	22.8		2.0	0.64	mg/Kg	☼	06/18/20 03:50	06/18/20 11:48	10
Selenium	0.29	U	4.9	0.29	mg/Kg	₽	06/18/20 03:50	06/18/20 11:48	10
Silver	0.61	U	0.99	0.61	mg/Kg	☼	06/18/20 03:50	06/18/20 11:48	10
Thallium	0.12	U	0.40	0.12	mg/Kg	☼	06/18/20 03:50	06/18/20 11:48	10
Vanadium	12.9		2.0	0.56	mg/Kg		06/18/20 03:50	06/18/20 11:48	10
Zinc	21.4		7.9	3.9	mg/Kg	₩	06/18/20 03:50	06/18/20 11:48	10

Method: 7471B - Mercury (CVA	AA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.013	J	0.018	0.0041	mg/Kg	₩	06/17/20 03:08	06/17/20 07:28	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	0.38	U	2.2	0.38	mg/Kg	₽	06/23/20 08:30	06/23/20 13:40	1
Cyanide, Total	0.13	U	0.25	0.13	mg/Kg	₩	06/23/20 06:26	06/23/20 14:27	1
pH	9.2	HF	0.1	0.1	SU			06/21/20 15:09	1
Corrosivity	9.2	HF	0.1	0.1	SU			06/21/20 15:09	1
TOC Result 1	4690		107	86.9	mg/Kg	☼		06/23/20 16:28	1
Percent Moisture	6.5		1.0	1.0	%			06/18/20 16:13	1
Percent Solids	93.5		1.0	1.0	%			06/18/20 16:13	1

2

Job ID: 460-210992-1

3

5

8

10

Lab Chronicle

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: Solite Lightweight Fill 06112020 Lab Sample ID: 460-210992-1

Date Collected: 06/11/20 14:00 Las Gample 15. 400-210332-1

Date Received: 06/11/20 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9045D			702817	06/21/20 15:09	AAP	TAL EDI
Total/NA	Analysis	Moisture		1	702244	06/18/20 16:13	MMC	TAL EDI

Client Sample ID: Solite Lightweight Fill 06112020 Lab Sample ID: 460-210992-1

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			701096	06/13/20 07:24	DBM	TAL EDI
Total/NA	Analysis	8260C		1	702889	06/22/20 09:05	AAT	TAL EDI
Total/NA	Prep	3546			702274	06/18/20 17:05	DMS	TAL EDI
Total/NA	Analysis	8270D		1	702339	06/19/20 05:00	MME	TAL EDI
Total/NA	Prep	3546			702163	06/18/20 09:16	ZXB	TAL EDI
Total/NA	Analysis	8081B		1	702358	06/19/20 06:24	FAM	TAL EDI
Total/NA	Prep	3546			702161	06/18/20 09:10	ZXB	TAL EDI
Total/NA	Analysis	8082A		1	702562	06/19/20 20:23	KMH	TAL EDI
Total/NA	Prep	3050B			702081	06/18/20 03:50	GMC	TAL EDI
Total/NA	Analysis	6020B		10	702189	06/18/20 11:48	MDC	TAL EDI
Total/NA	Prep	7471B			701817	06/17/20 03:08	TJS	TAL EDI
Total/NA	Analysis	7471B		1	701885	06/17/20 07:28	TJS	TAL EDI
Total/NA	Prep	3060A			703006	06/23/20 08:30	RAK	TAL EDI
Total/NA	Analysis	7196A		1	703260	06/23/20 13:40	RAK	TAL EDI
Total/NA	Prep	9012B			703164	06/23/20 06:26	IAA	TAL EDI
Total/NA	Analysis	9012B		1	703276	06/23/20 14:27	AJP	TAL EDI
Total/NA	Analysis	Lloyd Kahn		1	703497	06/23/20 16:28	AJP	TAL EDI

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Job ID: 460-210992-1

5

6

9

10

Accreditation/Certification Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-210992-1

Laboratory: Eurofins TestAmerica, Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
New Jersey		NELAP	12028	06-30-20
The following analytes the agency does not do		report, but the laboratory is	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
7196A	3060A	Solid	Cr (VI)	
8081B	3546	Solid	Chlordane (n.o.s.)	
8082A	3546	Solid	Polychlorinated biphenyls, T	otal
9045D		Solid	Corrosivity	
Lloyd Kahn		Solid	TOC Result 1	
Moisture		Solid	Percent Moisture	
Moisture		Solid	Percent Solids	

9

3

4

O

7

8

9

Method Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-210992-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL EDI
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL EDI
8081B	Organochlorine Pesticides (GC)	SW846	TAL EDI
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL EDI
6020B	Metals (ICP/MS)	SW846	TAL EDI
7471B	Mercury (CVAA)	SW846	TAL EDI
7196A	Chromium, Hexavalent	SW846	TAL EDI
9012B	Cyanide, Total andor Amenable	SW846	TAL EDI
9045D	pH	SW846	TAL EDI
Lloyd Kahn	Organic Carbon, Total (TOC)	EPA	TAL EDI
Moisture	Percent Moisture	EPA	TAL EDI
3050B	Preparation, Metals	SW846	TAL EDI
3060A	Alkaline Digestion (Chromium, Hexavalent)	SW846	TAL EDI
3546	Microwave Extraction	SW846	TAL EDI
5035	Closed System Purge and Trap	SW846	TAL EDI
7471B	Preparation, Mercury	SW846	TAL EDI
9012B	Cyanide, Total and/or Amenable, Distillation	SW846	TAL EDI

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins TestAmerica, Edison

Sample Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-210992-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
460-210992-1	Solite Lightweight Fill 06112020	Solid	06/11/20 14:00	06/11/20 14:00	

6

8

9

M - Hexane
N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2S203
S - H2SO4
T - TSP Dodecahydrate
U - Acetone
U - Acetone
W - pH 4-5
Z - other (specify) Special Instructions/Note: Ver. 01/16/2019 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client — Disposal By Lab Archive For Month
Special Instructions/QC Requirements: 160 G - Amchlor H - Ascorbic Acid C - Zn Acetate D - Nitric Acid Page: Page 1 of 1 E - NaHSO4 F - MeOH I - Ice J - DI Water K - EDTA L - EDA Total Number of containers ECC. lethod of Shipment 20mL Unpreserved) × 8260C_DKQP - SRS VOCs + 10 TICs (Encore 5g, Plastic Analysis Requested 6020B_DKQP - SRS Metals w/o hG (160z Jar) cooler Temperature(s) °C and Other Remarks: × 8082A_DKQP - SRS PCBs (1602 Jar) 196A_DKQP - Hexavalent Chromium - 7196 (160z jar) × × 9012B - Cyanide Total (1602 Jar) Lab PM:
Bennett, Allison L
E-Mail:
allison.bennett@testamericainc.com × 7471B_DKQP - hG (16 oz Jar) × 8081_DKQP - SRS Pesticides (16oz Jar) × SZYOD_DKQP - SRS BNA + 20 TICs (Soil Jar 160z) eceived by: Received by: × Joyd_Kahn_Mod - TOC by Lloyd Kahn (402 Soil Jar) × (16U lioS soat) Hq - G3406 Perform MS/MSD (Yes or No) BT=TIssue, A=Air) Preservation Code Matrix (W=water, S=solid, O=waste/oil Company S Sompany Type (C=comp, Radiological G=grab) Sample O Sample 5 Time 1400 Date: Unknown TAT Requested (days): Due Date Requested Sample Date Phone: 716 308 1990 6/11/20 Sampler: Toni Polk PO#: 460-210992 Chain of Custody Date/Time: Project #: 1247 SSOW#: Poison B 7786 Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: Sevenson Environmental Services, Inc. Possible Hazard Identification Solite Lightweight Fill 06112020 1247 - SA-6 Deferred Area SA-6 South Deferred Area Empty Kit Relinquished by Custody Seals Intact:

Δ Yes Δ No Client Information Sample Identification 2749 Lockport Road elinquisped by Mike Marrone Niagara Falls 716 284 0431 linquished by: Client Contact: NY, 14305

Environment Testing TestAmerica

💸 eurofins

COC No:

Carrier Tracking No(s)

Chain of Custody Record

Eurofins TestAmerica, Edison

777 New Durham Road

Edison, NJ 08817.

Phone (732) 549-3900 Fax (732) 549-3679

Receipt Temperature and pH Log **Eurofins TestAmerica Edison**

of

Page_

26607

Job Number:

Other Other The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. (pH<2) Total Phos Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis. (pH>12) Total Cyanide (pH<2) TOC Cooler #9: Cooler #8: Cooler #7: (pH<2) TKN Volume of Preservative used (ml): Phenols Sulfide Expiration Date: (b<+d) (pH<2) **Cooler Temperatures** S CAM QAM (pH<2) If pH adjustments are required record the information below: (bH 2-8) Pest Cooler #4: Cooler #6: Cooler #5: Metals Hardness (pH<2) IR Gun # (pH<2) (pH<2) Nitrate Nitrite (pH<2) COD Sample No(s). adjusted: Preservative Name/Conc.: Ammonia Lot # of Preservative(s): (pH<2) Cooler #1: Cooler #2: Cooler #3: TALS Sample Number Number of Coolers:

EDS-WI-038, Rev 4.1 10/22/2019

Initials:

Client: Sevenson Environmental Services, Inc.

Job Number: 460-210992-1

Login Number: 210992 List Source: Eurofins TestAmerica, Edison

List Number: 1

Creator: Rivera, Kenneth

Grouter: Arrora, reminum		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210992-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	ID NJ_SRS7_26D_Tbl1A NJ_SRS7_26D_Tbl1B NJDEP Solite Lightweight Fi							
Lab Sample ID	Residential	Non-Residential	IGW Screening		460-210992			
Sampling Date	Sept_2017	Sept_2017	Nov_2013	06/1	1/20	20 14:00:00		
Matrix						Soi		
Dilution Factor						1		
Unit	mg/kg	mg/kg	mg/kg			mg/kg		
				Result	Q	MDI		
SOIL BY 8260C								
1,1,1-Trichloroethane	160000	NA	0.3	0.00051	U	0.00051		
1,1,2,2-Tetrachloroethane	1	3	0.007	0.00047	U	0.00047		
1,1,2-Trichloroethane	2	6	0.02	0.00039	U	0.00039		
1,1-Dichloroethane	8	24	0.2	0.00046	U	0.00046		
1,1-Dichloroethene	11	150	0.008	0.00050	U	0.00050		
1,2-Dibromo-3-Chloropropane	0.08	0.2	0.005	0.0010	U	0.0010		
1,2-Dibromoethane	0.008	0.04	0.005	0.00040	U	0.00040		
1,2-Dichloroethane	0.9	3	0.005	0.00065	U	0.00065		
1,2-Dichloropropane	2	5	0.005	0.00093	U	0.00093		
2-Butanone	3100	44000	0.9	0.0060	U	0.0060		
2-Chloroethyl vinyl ether	NA	NA	NA	0.0036	U	0.0036		
2-Hexanone	NA	NA	NA	0.0038	U	0.0038		
4-Methyl-2-pentanone	NA	NA	NA	0.0034	U	0.0034		
Acetone	70000	NA	19	0.57		0.013		
Acrolein	0.5	1	0.5	0.062	U *	0.062		
Acrylonitrile	0.9	3	0.5	0.0036	U *	0.0036		
Benzene	2	5	0.005	0.00057	U	0.00057		
Bromodichloromethane	1	3	0.005	0.00057	U	0.00057		
Bromoform	81	280	0.03	0.00094	U	0.00094		
Bromomethane	25	59	0.04	0.0010	U	0.0010		
Carbon disulfide	7800	110000	6	0.00059	U	0.00059		
Carbon tetrachloride	2	4	0.005	0.00085	U	0.00085		
Chlorobenzene	510	7400	0.6	0.00039	U	0.00039		
Chloroethane	220	1100	NA	0.0012	U	0.0012		
Chloroform	0.6	2	0.4	0.00070	U	0.00070		
Chloromethane	4	12	NA	0.00096	U	0.00096		
cis-1,2-Dichloroethene	230	560	0.3	0.00034	U	0.00034		
cis-1,3-Dichloropropene	NA NA	NA	NA	0.00060	U	0.00060		
Dibromochloromethane	3	8	0.005	0.00043	U	0.00043		
Dichlorodifluoromethane	490	230000	39	0.00075	U	0.00075		
Ethylbenzene	7800	110000	13	0.00044	U	0.00044		
Methyl acetate	78000	NA	22	0.0095	U	0.0095		
Methylene Chloride	46	230	0.01	0.0010	U	0.0010		
MTBE	110	320	0.2	0.00028	U	0.00028		
Styrene	90	260	3	0.00023	U	0.00020		
TBA	1400	11000	0.3	0.0073	U	0.0003		
Tetrachloroethene	43	1500	0.005	0.0073	U	0.00032		
Toluene	6300	91000	0.003	0.00032	ı	0.00052		
trans-1,2-Dichloroethene	300	720	0.6	0.00054	IJ	0.00054		
trans-1,3-Dichloropropene	NA	720 NA	NA	0.00059	U	0.00052		
Trichloroethene	3	10	0.01	0.00039	U	0.00032		

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210992-1
Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Solite Lightweight Fill 061120			
Lab Sample ID	Residential	Non-Residential	IGW Screening	460-210992			
Sampling Date	Sept_2017	Sept_2017	Nov_2013	06/1	06/11/2020 14:00:		
Matrix							
Dilution Factor						1	
Unit	mg/kg	mg/kg	mg/kg	mg		mg/kg	
				Result	Q	MDL	
Trichlorofluoromethane	23000	340000	34	0.00090	U	0.00090	
Vinyl chloride	0.7	2	0.005	0.0012	U	0.0012	
Xylenes, Total	12000	170000	19	0.00038	U	0.00038	
Total Conc	NA	NA	NA	0.57099			
Total Estimated Conc. (TICs)	NA	NA	NA	0.693			

^{*:} LCS or LCSD is outside acceptance limits.

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210992-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	Solite Lightweight Fill 06112020
Lab Sample ID	460-210992-1
Sampling Date	06/11/2020 14:00:00
Matrix	Soil
Dilution Factor	1
Unit	mg/kg
	Result Q RT mm:ss
SOIL TICS BY 8260C	
Unknown Alkane	0.14 J 01:43
Unknown	0.043 J 01:53
Cyclohexane	0.51 J N 03:06

RT mm:ss Retention Time in mm:ss format

J : Indicates an Estimated Value for TICs

N : This flag indicates the presumptive evidence of a compound.

Lab Contact: Allison Bennett Project Manager I (732)593-2517 Eurofins TestAmerica, Edison

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210992-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Solite Lightweig	ght Fi	II 0611202	
Lab Sample ID	Residential	Non-Residential	IGW Screening		460-210992		
Sampling Date	Sept_2017	Sept_2017	Nov_2013	06/1	.1/20	20 14:00:0	
Matrix						So	
Dilution Factor							
Unit	mg/kg	mg/kg	mg/kg			mg/k	
				Result	Q	MD	
SOIL BY 8270D							
1,1'-Biphenyl	61	240	140	0.0047	U	0.004	
1,2,4-Trichlorobenzene	73	820	0.7	0.0091	U	0.009	
1,2-Dichlorobenzene	5300	59000	17	0.0060	U	0.006	
1,2-Diphenylhydrazine	0.7	2	0.7	0.0065	U	0.006	
1,3-Dichlorobenzene	5300	59000	19	0.0047	U	0.004	
1,4-Dichlorobenzene	5	13	2	0.013	U	0.01	
2,4,5-Trichlorophenol	6100	68000	68	0.036	U	0.03	
2,4,6-Trichlorophenol	19	74	0.2	0.045	U	0.04	
2,4-Dichlorophenol	180	2100	0.2	0.023	U	0.02	
2,4-Dimethylphenol	1200	14000	1	0.016	U	0.01	
2,4-Dinitrophenol	120	1400	0.3	0.17	U	0.1	
2,4-Dinitrotoluene	0.7	3	NA	0.038	U	0.03	
2,6-Dinitrotoluene	0.7	3	NA	0.026	U	0.02	
2-Chloronaphthalene	NA	NA	NA	0.016	U	0.01	
2-Chlorophenol	310	2200	0.8	0.013	U	0.01	
2-Methylnaphthalene	230	2400	8	0.0099	U	0.009	
2-Methylphenol	310	3400	NA	0.013	U	0.01	
2-Nitroaniline	39	23000	NA	0.013	U	0.01	
2-Nitrophenol	NA	NA	NA	0.035	U	0.03	
3.3'-Dichlorobenzidine	1	4	0.2	0.053	U *	0.05	
3-Nitroaniline	NA	NA	NA	0.040	U	0.04	
4,6-Dinitro-2-methylphenol	6	68	0.3	0.057	U	0.05	
4-Bromophenyl phenyl ether	NA	NA	NA	0.014	U	0.01	
4-Chloro-3-methylphenol	NA	NA	NA	0.020	U	0.02	
4-Chloroaniline	NA	NA	NA	0.025	U	0.02	
4-Chlorophenyl phenyl ether	NA	NA	NA	0.012	U	0.01	
4-Methylphenol	31	340	NA	0.022	U	0.02	
4-Nitroaniline	NA NA	NA	NA	0.041	U	0.04	
4-Nitrophenol	NA NA	NA NA	NA	0.058	U	0.05	
Acenaphthene	3400	37000	110	0.026	U	0.02	
Acenaphthylene	NA NA	300000	NA	0.0037	U	0.003	
Acetophenone	2	5	3	0.017	U*	0.01	
Anthracene	17000	30000	2400	0.011	U	0.0	
Atrazine	210	2400	0.2	0.0089	U	0.008	
Benzaldehyde	6100	68000	NA	0.0089	U	0.00	
Benzidine	0.7	0.7	0.7	0.015	U	0.03	
Benzo[a]anthracene	5	17	0.7	0.033	U	0.03	
Benzo[a]pyrene	0.5	2	0.8	0.0094	U	0.00	
Benzo[b]fluoranthene	5	17	2	0.0094	U	0.003	
Benzo[g,h,i]perylene	380000	30000	NA	0.0091	U	0.00	
Benzo[k]fluoranthene	45	170	25	0.010	U	0.00	

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210992-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ SRS7 26D Tbl1A	NJ SRS7 26D Tbl1B	NJDEP	Solite Lightwei	ght Fi	II 06112020
Lab Sample ID	Residential	Non-Residential	IGW Screening		46	0-210992-1
Sampling Date	Sept 2017	Sept 2017	Nov 2013	06/1	1/20	20 14:00:00
Matrix	'-		-			Soil
Dilution Factor						1
Unit	mg/kg	mg/kg	mg/kg			mg/kg
	<u> </u>		<u> </u>	Result	Q	MDL
bis (2-chloroisopropyl) ether	23	67	5	0.0064	U *	0.0064
Bis(2-chloroethoxy)methane	NA	NA	NA	0.028	U	0.028
Bis(2-chloroethyl)ether	0.4	2	0.2	0.012	U	0.012
Bis(2-ethylhexyl) phthalate	35	140	1200	0.019	U	0.019
Butyl benzyl phthalate	1200	14000	230	0.017	U	0.017
Caprolactam	31000	340000	12	0.055	U	0.055
Carbazole	24	96	NA	0.013	U	0.013
Chrysene	450	1700	80	0.0060	U	0.0060
Dibenz(a,h)anthracene	0.5	2	0.8	0.015	U	0.015
Dibenzofuran	NA	NA	NA	0.0050	U	0.0050
Diethyl phthalate	49000	550000	88	0.0051	U	0.0051
Dimethyl phthalate	NA	NA	NA	0.080	U	0.080
Di-n-butyl phthalate	6100	68000	760	0.062	U	0.062
Di-n-octyl phthalate	2400	27000	3300	0.019	U	0.019
Fluoranthene	2300	24000	1300	0.012	U	0.012
Fluorene	2300	24000	170	0.0048	U	0.0048
Hexachlorobenzene	0.3	1	0.2	0.017	U	0.017
Hexachlorobutadiene	6	25	0.9	0.0075	U	0.0075
Hexachlorocyclopentadiene	45	110	320	0.031	U	0.031
Hexachloroethane	12	48	0.2	0.012	U	0.012
Indeno[1,2,3-cd]pyrene	5	17	7	0.014	U	0.014
Isophorone	510	2000	0.2	0.10	U	0.10
Naphthalene	6	17	25	0.0061	U	0.0061
Nitrobenzene	5	14	0.2	0.0085	U	0.0085
N-Nitrosodimethylamine	0.7	0.7	0.7	0.033	U	0.033
N-Nitrosodi-n-propylamine	0.2	0.3	0.2	0.026	U *	0.026
N-Nitrosodiphenylamine	99	390	0.4	0.0068	U	0.0068
Pentachlorophenol	0.9	3	0.3	0.072	U	0.072
Phenanthrene	NA	300000	NA	0.0062	U	0.0062
Phenol	18000	210000	8	0.013	U	0.013
Pyrene	1700	18000	840	0.0088	U	0.0088
Total Conc	NA	NA	NA	0.0		
Total Estimated Conc. (TICs)	NA	NA	NA	3.13		

^{*:} LCS or LCSD is outside acceptance limits.

U : Indicates the analyte was analyzed for but not detected.

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210992-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Solite Lightweight Fill 06112020
Lab Sample ID	Residential	Non-Residential	IGW Screening	460-210992-1
Sampling Date	Sept_2017	Sept_2017	Nov_2013	06/11/2020 14:00:00
Matrix				Soil
Dilution Factor				1
Unit	mg/kg	mg/kg	mg/kg	mg/kg
				Result Q MDL

Eurofins TestAmerica, Edison

TestAmerica Laboratories, Inc.

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210992-1 Job Description: 1247 HON SA-6 South Deferred Area

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	Solite Lightwei	Solite Lightweight Fill 06112020					
Lab Sample ID		460-210992-1					
Sampling Date	06/1	06/11/2020 14:00:00					
Matrix		Soil					
Dilution Factor		1					
Unit		mg/kg					
	Result	Q	RT mm:ss				
SOIL TICS BY 8270D							
Aldol condensation product	1.6	A J	02:57				
Sulfur	0.30	0.30 JN 07:36					
Unknown	0.80	0.80 J 09:48					
Cyclic octaatomic sulfur	0.43	JN	09:50				

RT mm:ss Retention Time in mm:ss format

A: The tentatively identified compound is a suspected aldol-condensation product.

J : Indicates an Estimated Value for TICs

N : This flag indicates the presumptive evidence of a compound.

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210992-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Solite Lightweight Fill 061120		
Lab Sample ID	Residential	Non-Residential	IGW Screening		46	0-210992-1
Sampling Date	Sept_2017	Sept_2017	Nov_2013	06/1	1/20	20 14:00:00
Matrix						Soil
Dilution Factor						1
Unit	mg/kg	mg/kg	mg/kg			mg/kg
				Result	Q	MDL
SOIL BY 8081B						
4,4'-DDD	3	13	4	0.0012	U	0.0012
4,4'-DDE	2	9	18	0.00084	U	0.00084
4,4'-DDT	2	8	11	0.0013	U	0.0013
Aldrin	0.04	0.2	0.2	0.0011	U	0.0011
alpha-BHC	0.1	0.5	0.002	0.00073	U	0.00073
beta-BHC	0.4	2	0.002	0.00080	U	0.00080
Chlordane (n.o.s.)	NA	NA	0.05	0.017	U	0.017
Chlordane (technical)	0.2	1	NA	0.017	U	0.017
cis-Chlordane	NA	NA	NA	0.0011	U	0.0011
delta-BHC	NA	NA	NA	0.00044	U	0.00044
Dieldrin	0.04	0.2	0.003	0.00093	U	0.00093
Endosulfan I	NA	NA	NA	0.0011	U	0.0011
Endosulfan II	NA	NA	NA	0.0018	U	0.0018
Endosulfan sulfate	470	6800	2	0.00090	U	0.00090
Endrin	23	340	1	0.0010	U	0.0010
Endrin aldehyde	NA	NA	NA	0.0017	U	0.0017
Endrin ketone	NA	NA	NA	0.0014	U	0.0014
gamma-BHC (Lindane)	0.4	2	0.002	0.00066	U	0.00066
Heptachlor	0.1	0.7	0.5	0.00084	U	0.00084
Heptachlor epoxide	0.07	0.3	0.01	0.0011	U	0.0011
Methoxychlor	390	5700	160	0.0016	U	0.0016
Toxaphene	0.6	3	0.3	0.026	U	0.026
trans-Chlordane	NA	NA	NA	0.0013	υ	0.0013

U : Indicates the analyte was analyzed for but not detected.

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210992-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Solite Lightweight Fill 06112020		
Lab Sample ID	Residential	Non-Residential	IGW Screening	460-210992-1		
Sampling Date	Sept_2017	Sept_2017	Nov_2013	06/11/2020 14:00:00		
Matrix				So		Soil
Dilution Factor						1
Unit	mg/kg	mg/kg	mg/kg	mg		mg/kg
				Result	Q	MDL
SOIL BY 8082A						
Aroclor 1016	NA	NA	NA	0.0095	U	0.0095
Aroclor 1221	NA	NA	NA	0.0095	U	0.0095
Aroclor 1232	NA	NA	NA	0.0095	U	0.0095
Aroclor 1242	NA	NA	NA	0.0095	U	0.0095
Aroclor 1248	NA	NA	NA	0.0095	U	0.0095
Aroclor 1254	NA	NA	NA	0.0098	U	0.0098
Aroclor 1260	NA	NA	NA	0.0098	U	0.0098
Aroclor 1262	NA	NA	NA	0.0098	U	0.0098
Aroclor 1268	NA	NA	NA	0.0098	U	0.0098
Total PCBs	0.2	1	0.2	0.0098	U	0.0098

U : Indicates the analyte was analyzed for but not detected.

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210992-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Solite Lightweight Fill 06112020		
Lab Sample ID	Residential	Non-Residential	IGW Screening	460-210992-1		
Sampling Date	Sept_2017	Sept_2017	Nov_2013	06/11/2020 14:00:00		
Matrix	. =	. =				Soil
Unit						
				Result	Q	MDL
SOIL BY 6020B(MG/KG)						
Aluminum	78000	NA	6000	6120		6.8
Antimony	31	450	6	0.29	U	0.29
Arsenic	19	19	19	7.0		0.32
Barium	16000	59000	2100	24.6		0.66
Beryllium	16	140	0.7	0.16	U	0.16
Cadmium	78	78	2	0.33	U	0.33
Chromium	NA	NA	NA	41.4		0.59
Cobalt	1600	590	90	8.6		0.60
Copper	3100	45000	11000	14.8		0.57
Lead	400	800	90	3.3		0.19
Manganese	11000	5900	65	32.1		1.2
Nickel	1600	23000	48	22.8		0.64
Selenium	390	5700	11	0.29	U	0.29
Silver	390	5700	1	0.61	U	0.61
Thallium	NA	NA	3	0.12	U	0.12
Vanadium	78	1100	NA	12.9		0.56
Zinc	23000	110000	930	21.4		3.9
SOIL BY 7471B(MG/KG)						
Mercury	23	65	0.1	0.013	J	0.0041

Highlighted Concentrations shown in bold type face exceed limits

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210992-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Solite Lightweight Fill 06112020		
Lab Sample ID	Residential	Non-Residential	IGW Screening	460-210992-1		
Sampling Date	Sept_2017	Sept_2017	Nov_2013	06/11/2020 14:00:00		
Matrix					Soil	
				Result Q	MDL	
SOIL BY 7196A						
Cr (VI) (mg/kg)	NA	NA	NA	0.38 U	0.38	
SOIL BY 9012B						
Cyanide, Total (mg/kg)	47	680	20	0.13 U	0.13	
SOIL BY 9045D						
Corrosivity (su)	NA	NA	NA	9.2 HF	0.1	
pH (su)	NA	NA	NA	9.2 HF	0.1	
SOIL BY LLOYD KAHN						
TOC Result 1 (mg/kg)	NA	NA	NA	4690	86.9	

HF: Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

U : Indicates the analyte was analyzed for but not detected.

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-210993-1

Client Project/Site: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc. 2749 Lockport Road Niagara Falls, New York 14305

Attn: Mr. Michael F Marrone

allion Bernett

Authorized for release by: 6/25/2020 8:51:50 AM

Allison Bennett, Project Manager I (732)593-2517

allison.bennett@testamericainc.com

----- LINKS -----

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

7

8

9

10

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area Laboratory Job ID: 460-210993-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	10
Lab Chronicle	20
Certification Summary	22
Method Summary	23
Sample Summary	24
Chain of Custody	25
Receipt Checklists	27

6

R

9

10

Definitions/Glossary

Client: Sevenson Environmental Services, Inc.

Job ID: 460-210993-1

Project/Site: 1247 HON SA-6 South Deferred Area

Qualifiers

G			

Qualifier Qualifier Description

* LCS or LCSD is outside acceptance limits.

U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
F1	MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA TICs

Quaimer	Qualifier Description
A	The tentatively identified compound is a suspected aldol-condensation product.

F1 MS and/or MSD recovery exceeds control limits.

J Indicates an Estimated Value for TICs

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

N This flag indicates the presumptive evidence of a compound.

GC Semi VOA

U Indicates the analyte was analyzed for but not detected.

Metals

Ĭ.

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier Qualifier Description

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

Eurofins TestAmerica, Edison

Page 3 of 27 6/25/2020

Definitions/Glossary

Client: Sevenson Environmental Services, Inc.

Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-210993-1

Glossary (Continued)

Too Numerous To Count

TNTC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

6/25/2020

DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

Laboratory Name: Eurofins TestAmerica, Edison Client: Sevenson Environmental Services, Inc.

Project Location: 1247 HON SA-6 South Deferred Area Project Number: 460-210993-1 Laboratory Sample ID(s): 460-210993-1, 460-210993-2 Sampling Date(s): 06/11/2020

List DKQP Methods Used: 8260C, 8270D, 8081B, 8082A, 6020B, 7471B, 7196A, 9012B

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the NJDEP Data of Known Quality performance standards?	⊠Yes □No					
1A	Were the method specified handling, preservation, and holding time requirements met?	✓Yes □No□ See case narrative					
1B	<u>EPH Method:</u> Was the EPH method conducted without significant modifications? (see Section 11.3 of respective DKQ methods)	□Yes □No ☑N/A					
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody documents(s)?	✓Yes □No□ See case narrative					
3	Were samples received at an appropriate temperature (4±2° C)?						
4	Were all QA/QC performance criteria specified in the NJDEP DKQP standards achieved?	□Yes ⊠No					
	Were reporting limits specified or referenced on the chain-of-custody or communicated to the laboratory prior to sample receipt?						
5	b) Were these reporting limits met?	□Yes ☑No □N/A □ See case narrative					
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the DKQP documents and/or site-specific QAPP?	⊠Yes □No					
7	Are project-specific matrix spike and/or laboratory duplicates included in this data set?	□Yes ⊠No					

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information should be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet requirements for "Data of Known Quality."

2

3

4

8

10

1-

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-210993-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

CASE NARRATIVE

Client: Sevenson Environmental Services, Inc.

Project: 1247 HON SA-6 South Deferred Area

Report Number: 460-210993-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 6/11/2020 2:00 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 6.0° C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS (GC/MS) DKQP (TOTAL)

Samples Dun Rite Lean Clay 06112020 (460-210993-1) and EME Horizon A Topsoil 06112020 (460-210993-2) were analyzed for Volatile Organic Compounds (GC/MS) DKQP (Total) in accordance with EPA SW-846 Method 8260C (DKQP). The samples were prepared on 06/13/2020 and analyzed on 06/22/2020.

The continuing calibration verification (CCV) associated with batch 460-701367 recovered above the upper control limit for Dichlorodifluoromethane. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported.

The continuing calibration verification (CCV) associated with batch 460-702889 recovered above the upper control limit for Acrolein and Acrylonitrile. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 460-702889 recovered outside control limits for the following analytes: Acrolein and Acrylonitrile. These analytes were biased high in the LCS/LCSD and were not detected in the associated samples; therefore, the data have been reported.

Refer to the QC report for details.

No other difficulties were encountered during the Volatile Organic Compounds (GC/MS) DKQP (Total) analysis.

All quality control parameters were within the acceptance limits.

Job ID: 460-210993-1

1

_

5

0

8

9

10

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-210993-1

Job ID: 460-210993-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

SEMIVOLATILE ORGANIC COMPOUNDS (GC/MS) DKQP (TOTAL)

Samples Dun Rite Lean Clay 06112020 (460-210993-1) and EME Horizon A Topsoil 06112020 (460-210993-2) were analyzed for Semivolatile Organic Compounds (GC/MS) DKQP (Total) in accordance with EPA SW-846 Method 8270D (DKQP). The samples were prepared on 06/18/2020 and analyzed on 06/19/2020.

The continuing calibration verification (CCV) analyzed in batch 460-702339 was outside the method criteria for the following analyte(s): 2,4-Dinitrophenol, 4,6-Dinitro-2-methylphenol and Benzaldehyde. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

The laboratory control sample (LCS) and/or lab control sample duplicate (LCSD) associated with preparation batch 460-702274 and analytical batch 460-702339 was outside DKQP recovery criteria but with laboratory generated limits for the following analytes: 3,3'-Dichlorobenzidine, Acetophenone, bis (2-chloroisopropyl) ether and N-Nitrosodi-n-propylamine. The data has been reported.

Several analytes failed the recovery criteria low for the MS/MSD of sample Dun Rite Lean Clay 06112020MS/MSD (460-210993-1) in batch 460-702339. 2,4-Dinitrophenol exceeded the RPD limit.

Refer to the QC report for details.

No other difficulties were encountered during the Semivolatile Organic Compounds (GC/MS) DKQP (Total) analysis.

All other quality control parameters were within the acceptance limits.

ORGANOCHLORINE PESTICIDES (GC) DKQP (TOTAL)

Samples Dun Rite Lean Clay 06112020 (460-210993-1) and EME Horizon A Topsoil 06112020 (460-210993-2) were analyzed for Organochlorine Pesticides (GC) DKQP (Total) in accordance with EPA SW-846 Method 8081B (DKQP). The samples were prepared on 06/17/2020 and 06/18/2020 and analyzed on 06/18/2020 and 06/19/2020.

Decachlorobiphenyl surrogate recovery for this sample was outside control limits but Tetrachloro-m-xylene surrogate recovery within control limits; therefore the data have been qualified and reported.(460-211149-A-17-J)

The continuing calibration verification (CCV) for Methoxychlor recovered outside the lower control limit on the primary column but within control limits on the secondary column. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported on the secondary column. (CCVIS 460-702077/6)

Refer to the QC report for details.

No other difficulties were encountered during the Organochlorine Pesticides (GC) DKQP (Total) analysis.

All quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS (PCBS) DKQP (TOTAL)

Samples Dun Rite Lean Clay 06112020 (460-210993-1) and EME Horizon A Topsoil 06112020 (460-210993-2) were analyzed for Polychlorinated Biphenyls (PCBs) DKQP (Total) in accordance with EPA SW-846 Method 8082A (DKQP). The samples were prepared on 06/17/2020 and 06/18/2020 and 06/18/2020 and 06/19/2020.

Aroclor 1260 failed the recovery criteria high for the MS of sample 460-210958-1 in batch 460-702562.

Aroclor 1016 and Aroclor 1260 failed the recovery criteria high for the MSD of sample 460-210958-1 in batch 460-702562.

Aroclor 1016 and Aroclor 1260 failed the recovery criteria high for the MSD of sample 460-211149-17 in batch 460-702122.

Refer to the QC report for details.

No other difficulties were encountered during the Polychlorinated Biphenyls (PCBs) DKQP (Total) analysis.

1

Ė

5

7

8

9

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-210993-1

Job ID: 460-210993-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

All other quality control parameters were within the acceptance limits.

METALS DKQP (TOTAL)(ICP/MS)

Samples Dun Rite Lean Clay 06112020 (460-210993-1) and EME Horizon A Topsoil 06112020 (460-210993-2) were analyzed for Metals DKQP (Total)(ICP/MS) in accordance with EPA SW-846 Method 6020B (DKQP). The samples were prepared and analyzed on 06/18/2020.

Several analytes failed the recovery criteria low for the MS of sample 460-211215-1 in batch 460-702189. Aluminum, Chromium, Manganese and Vanadium failed the recovery criteria high.

Arsenic, Cadmium, Cobalt, Lead, Manganese, Nickel and Zinc exceeded the RPD limit for the duplicate of sample 460-211215-1.

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

Refer to the QC report for details.

No other difficulties were encountered during the Metals DKQP (Total)(ICP/MS) analysis.

All other quality control parameters were within the acceptance limits.

MERCURY (HG) DKQP (TOTAL)

Samples Dun Rite Lean Clay 06112020 (460-210993-1) and EME Horizon A Topsoil 06112020 (460-210993-2) were analyzed for Mercury (Hg) DKQP (Total) in accordance with EPA SW-846 Method 7471B (DKQP). The samples were prepared and analyzed on 06/17/2020.

Mercury failed the recovery criteria high for the MS/MSD of sample 460-211136-2 in batch 460-701885.

Refer to the QC report for details.

No other difficulties were encountered during the Mercury (Hg) DKQP (Total) analysis.

All other quality control parameters were within the acceptance limits.

CYANIDE (CN) DKQP (TOTAL)

Samples Dun Rite Lean Clay 06112020 (460-210993-1) and EME Horizon A Topsoil 06112020 (460-210993-2) were analyzed for Cyanide (CN) DKQP (Total) in accordance with EPA SW-846 Method 9012B (DKQP). The samples were prepared and analyzed on 06/23/2020.

No difficulties were encountered during the Cyanide (CN) DKQP (Total) analysis.

All quality control parameters were within the acceptance limits.

HEXAVALENT CHROMIUM VI DKQP (TOTAL)

Samples Dun Rite Lean Clay 06112020 (460-210993-1) and EME Horizon A Topsoil 06112020 (460-210993-2) were analyzed for Hexavalent Chromium VI DKQP (Total) in accordance with EPA SW-846 Method 7196A (DKQP). The samples were prepared and analyzed on 06/23/2020.

No difficulties were encountered during the Hexavalent Chromium VI DKQP (Total) analysis.

All other quality control parameters were within the acceptance limits

CORROSIVITY (PH)

Samples Dun Rite Lean Clay 06112020 (460-210993-1) and EME Horizon A Topsoil 06112020 (460-210993-2) were analyzed for corrosivity (pH) in accordance with EPA SW-846 Method 9045D. The samples were analyzed on 06/21/2020.

No difficulties were encountered during the corrosivity (pH) analysis.

1

7

E

6

1

1 N

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-210993-1

Job ID: 460-210993-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

All quality control parameters were within the acceptance limits.

LLOYD KAHN METHOD (TOTAL ORGANIC CARBON)

Samples Dun Rite Lean Clay 06112020 (460-210993-1) and EME Horizon A Topsoil 06112020 (460-210993-2) were analyzed for Lloyd Kahn Method (total organic carbon) in accordance with Lloyd Kahn Method. The samples were analyzed on 06/23/2020.

No difficulties were encountered during the TOC analysis.

All quality control parameters were within the acceptance limits.

PERCENT SOLIDS/PERCENT MOISTURE

Samples Dun Rite Lean Clay 06112020 (460-210993-1) and EME Horizon A Topsoil 06112020 (460-210993-2) were analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D) Modified. The samples were analyzed on 06/18/2020.

No difficulties were encountered during the %solids/moisture analysis.

All quality control parameters were within the acceptance limits.

210000 1

3

4

5

6

0

1 በ

Client Sample ID: Dun Rite Lean Clay 06112020

Lab Sample ID: 460-210993-1 Date Collected: 06/11/20 14:00 **Matrix: Solid** Percent Solids: 90.9 Date Received: 06/11/20 14:00

1.1.1-Trichloroethane	Method: 8260C - Volatile Org Analyte	•	Qualifier	RL		MDI	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachioroethane				_	_						1
1,1,2-Tichloroethane	, ,										1
1.1-Dichloroethane	, , ,							₩			1
1.1-Dichioroelhene											
1,2-Dibromo-4-Chloropropane 0.00072 0.0016 0.00028 mgKg 0.061320 07:33 0622220 09:29	,						0 0				1
1.2-Dichloropethane											1
1.2-Dichloroerhane	· · · · · · · · · · · · · · · · · · ·										י 1
1.2-Dichloropropane								**			-
2-Butanone 0.0043 U 0.0079 0.0043 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Chioroethyl vinyl ether 0.0025 U 0.0031 0.0025 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.0027 U 0.0079 0.0027 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.0027 U 0.0079 0.0027 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.0004 U 0.0094 0.0090 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.0004 U 0.0094 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.0004 U 0.0066 0.0044 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00041 U 0.0016 0.00041 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00041 U 0.0016 0.00041 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00041 U 0.0016 0.00041 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00067 U 0.0016 0.00067 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00067 U 0.0016 0.00067 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00067 U 0.0016 0.00067 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00067 U 0.0016 0.00067 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00068 U 0.0016 0.00062 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00068 U 0.0016 0.00062 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00068 U 0.0016 0.00062 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00068 U 0.0016 0.00068 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00068 U 0.0016 0.00068 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00068 U 0.0016 0.00068 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00068 U 0.0016 0.00068 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00068 U 0.0016 0.00068 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00068 U 0.0016 0.00063 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00068 U 0.0016 0.00063 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00068 U 0.0016 0.00063 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00064 U 0.0016 0.00064 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00064 U 0.0016 0.00064 mg/Kg 0 06/13/20 07:33 06/22/20 09:29 12-Hexanone 0.00064 U 0.0016											1
2-Chloroethyl vinyl ether 0.0025 U 0.0031 0.0025 mg/kg □ 06/13/20 07:33 06/22/20 09:29 2-Hexanone 0.0027 U 0.0079 0.0027 mg/kg □ 06/13/20 07:33 06/22/20 09:29 Acetone 0.0090 U 0.0094 0.0096 □ 06/13/20 07:33 06/22/20 09:29 Acrolein 0.0044 U 0.016 0.006 mg/kg □ 06/13/20 07:33 06/22/20 09:29 Acrylonitrile 0.0004 U 0.016 0.0006 mg/kg □ 06/13/20 07:33 06/22/20 09:29 Berzene 0.00041 U 0.0016 0.00040 mg/kg □ 06/13/20 07:33 06/22/20 09:29 Bromofichioromethane 0.00067 U 0.0016 0.00067 mg/kg □ 06/13/20 07:33 06/22/20 09:29 Bromofichioromethane 0.00067 U 0.0016 0.00067 mg/kg □ 06/13/20 07:33 06/22/20 09:29 Carbon disulfide 0.00024 U											1
2-Hexanone 0.0027 U 0.0027 mg/kg 0 06/13/20 07:33 06/22/20 09:29 4-Methyl-2-pentanone 0.0024 U 0.0094 0.0094 0.0090 W 0.0094 0.0094 0.0096 0 06/13/20 07:33 06/22/20 09:29 Acrolenie 0.044 U* 0.166 0.044 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Benzene 0.00041 U* 0.016 0.0041 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Benzene 0.00041 U* 0.0016 0.00041 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Bromodichloromethane 0.00067 U 0.016 0.00075 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Bromodichloromethane 0.00067 U 0.0016 0.00075 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Bromodichloromethane 0.00061 U 0.0016 0.00042 mg/kg 0 06/13/20 07:33 06/22/20 09:2											1
4-Methyl-2-pentanone 0.0024 U 0.0079 0.0024 mg/kg □ 06/13/20 07:33 06/22/20 09:29 Acerlone 0.0094 U 0.0094 0.0094 mg/kg □ 06/13/20 07:33 06/22/20 09:29 Acrylonitrile 0.0046 U 0.016 0.0046 mg/kg □ 06/13/20 07:33 06/22/20 09:29 Berzene 0.00041 U 0.0016 0.00041 mg/kg □ 06/13/20 07:33 06/22/20 09:29 Bromofidm 0.00040 U 0.0016 0.00047 mg/kg □ 06/13/20 07:33 06/22/20 09:29 Bromoform 0.00067 U 0.0016 0.00067 mg/kg □ 06/13/20 07:33 06/22/20 09:29 Carbon disulfide 0.00061 U 0.0016 0.00061 mg/kg □ 06/13/20 07:33 06/22/20 09:29 Carbon disulfide 0.00061 U 0.0016 0.00024 mg/kg □ 06/13/20 07:33 06/22/20 09:29 Carbon distraction fide 0.	• •										1
Acetone 0.0096 U 0.0094 0.0090 mg/kg © 6/13/22 0 7:33 06/22/20 09:29 Acrolein 0.044 U* 0.016 0.044 mg/kg © 06/13/20 07:33 06/22/20 09:29 Benzene 0.00041 U 0.016 0.00041 mg/kg © 06/13/20 07:33 06/22/20 09:29 Benzene 0.00040 U 0.0016 0.00041 mg/kg © 06/13/20 07:33 06/22/20 09:29 Bromonform 0.00075 U 0.0016 0.00067 mg/kg © 06/13/20 07:33 06/22/20 09:29 Bromomethane 0.00075 U 0.0016 0.00067 mg/kg © 06/13/20 07:33 06/22/20 09:29 Bromomethane 0.00075 U 0.0016 0.00062 mg/kg © 06/13/20 07:33 06/22/20 09:29 Bromomethane 0.00061 0.0016 0.00062 mg/kg © 06/13/20 07:33 06/22/20 09:29 Chlorobethare 0.00082 U 0.0016 0.00028 mg/kg © 06/13/20 07:33 06/22/20 09:29											1
Acrolein 0.044 U* 0.16 0.044 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Acrylonitrile 0.00026 U* 0.016 0.00041 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Benzene 0.00041 U 0.0016 0.00041 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Bromodichloromethane 0.00067 U 0.0016 0.00067 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Carbon disulfide 0.00075 U 0.0016 0.000675 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Carbon disulfide 0.00061 U 0.0016 0.00062 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Carbon disulfide 0.00028 U 0.0016 0.00062 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Chloromethane 0.00028 U 0.0016 0.00088 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Chloromethane <t< td=""><td>4-Methyl-2-pentanone</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>	4-Methyl-2-pentanone										1
Acrylonitrile											1
Benzene 0.00041 U 0.0016 0.00041 mg/Kg % 06/13/20 07:33 06/22/20 09:29 Bromodichloromethane 0.00040 U 0.0016 0.00047 mg/Kg % 06/13/20 07:33 06/22/20 09:29 Bromomethane 0.00075 U 0.0016 0.00077 mg/Kg % 06/13/20 07:33 06/22/20 09:29 Bromodisulfide 0.00075 U 0.0016 0.00042 mg/Kg % 06/13/20 07:33 06/22/20 09:29 Carbon tetrachloride 0.00016 0.00061 0.00061 mg/Kg % 06/13/20 07:33 06/22/20 09:29 Chlorobenzene 0.00028 U 0.0016 0.00081 mg/Kg % 06/13/20 07:33 06/22/20 09:29 Chlorobethane 0.00028 U 0.016 0.00080 mg/Kg % 06/13/20 07:33 06/22/20 09:29 Chlorobethane 0.00068 U 0.0016 0.00080 mg/Kg % 06/13/20 07:33 06/22/20 09:29 Chloromethane 0.00068 U 0.0016 0.00043 mg/Kg % 06/13/20 07:33											1
Bromodichloromethane 0.00040 U 0.0016 0.00040 mg/Kg 06/13/20 07:33 06/22/20 09:29 Bromoform 0.00067 U 0.0016 0.00067 mg/Kg 06/13/20 07:33 06/22/20 09:29 Bromomethane 0.00075 U 0.0016 0.00075 mg/Kg 06/13/20 07:33 06/22/20 09:29 Carbon disulfide 0.00042 U 0.0016 0.00042 mg/Kg 06/13/20 07:33 06/22/20 09:29 Carbon tetrachloride 0.00061 U 0.0016 0.00042 mg/Kg 06/13/20 07:33 06/22/20 09:29 Carbon tetrachloride 0.00061 U 0.0016 0.00061 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chlorobenzene 0.00082 U 0.0016 0.00082 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chlorobenzene 0.00082 U 0.0016 0.00082 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chlorobethane 0.00065 U 0.0016 0.00065 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chlorobethane 0.00068 U 0.0016 0.00068 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chlorobethane 0.00064 U 0.0016 0.00068 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chlorobethane 0.00064 U 0.0016 0.00044 mg/Kg 06/13/20 07:33 06/22/20 09:29 Cis-1,3-Dichloropropene 0.00043 U 0.0016 0.00043 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chlorobethane 0.00031 U 0.0016 0.00031 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chloromethane 0.00031 U 0.0016 0.00031 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chloromethane 0.00031 U 0.0016 0.00031 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chloromethane 0.00031 U 0.0016 0.00031 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chloromethane 0.00032 U 0.0016 0.00031 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chloromethane 0.00032 U 0.0016 0.00032 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chloromethane 0.00032 U 0.0016 0.00032 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chlorobethane 0.00032 U 0.0016 0.00032 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chlorobethane 0.00032 U 0.0016 0.00032 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chlorobethane	Acrylonitrile	0.0026	U *				0 0	≎	06/13/20 07:33	06/22/20 09:29	1
Bromoform 0.00067 U 0.0016 0.00067 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 Bromomethane 0.00075 U 0.0016 0.00075 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 Carbon disulfide 0.00061 U 0.0016 0.00042 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 Chlorobenzene 0.00061 U 0.0016 0.00028 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 Chlorobenzene 0.00082 U 0.0016 0.00028 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 Chloroform 0.00080 U 0.0016 0.00028 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 Chloromethane 0.00068 U 0.0016 0.00068 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 Chloromethane 0.00024 U 0.0016 0.00043 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 Dichloromethane 0.00031 U 0.0016 0.00033 mg/Kg 0 6/13/20 07:33 <	Benzene	0.00041	U	0.0016		0.00041	mg/Kg	≎	06/13/20 07:33	06/22/20 09:29	1
Bromomethane	Bromodichloromethane	0.00040	U	0.0016		0.00040	mg/Kg	₽	06/13/20 07:33	06/22/20 09:29	1
Carbon disulfide 0.00042 U 0.0016 0.00042 mg/kg 06/13/20 07:33 06/22/20 09:29 Carbon tetrachloride 0.00061 U 0.0016 0.00061 mg/kg 06/13/20 07:33 06/22/20 09:29 Chloroebnace 0.00028 U 0.0016 0.00028 mg/kg 06/13/20 07:33 06/22/20 09:29 Chloroefma 0.00050 U 0.0016 0.00082 mg/kg 06/13/20 07:33 06/22/20 09:29 Chloroefma 0.00050 U 0.0016 0.00068 mg/kg 06/13/20 07:33 06/22/20 09:29 Chloromethane 0.00068 U 0.0016 0.00068 mg/kg 06/13/20 07:33 06/22/20 09:29 Chloromethane 0.00024 U 0.0016 0.00024 mg/kg 06/13/20 07:33 06/22/20 09:29 Dibromochloromethane 0.00031 U 0.0016 0.00031 mg/kg 06/13/20 07:33 06/22/20 09:29 Dibromochloromethane 0.00031 U 0.0016 0.00031 mg/kg 06/13/20 07:33	Bromoform	0.00067	U	0.0016		0.00067	mg/Kg	₽	06/13/20 07:33	06/22/20 09:29	1
Carbon tetrachloride 0.00061 U 0.0016 0.00061 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Chlorobenzene 0.00028 U 0.0016 0.00028 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Chlorotethane 0.00080 U 0.0016 0.00080 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Chloromethane 0.00050 U 0.0016 0.00068 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Chloromethane 0.00068 U 0.0016 0.00068 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Chloromethane 0.00041 U 0.0016 0.00024 mg/Kg © 06/13/20 07:33 06/22/20 09:29 cis-1,3-Dichloropropene 0.00043 U 0.0016 0.00031 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Dichlorodifluoromethane 0.00051 U 0.0016 0.00031 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Eithylbenzene 0.00031 U 0.0016 0.00031 mg/Kg	Bromomethane	0.00075	U	0.0016		0.00075	mg/Kg	≎	06/13/20 07:33	06/22/20 09:29	1
Chlorobenzene 0.00028 U 0.0016 0.00028 mg/Kg " 0.6/13/20 07:33 06/22/20 09:29 Chloroethane 0.00082 U 0.0016 0.00082 mg/Kg " 0.6/13/20 07:33 06/22/20 09:29 Chloroform 0.00050 U 0.0016 0.00050 mg/Kg " 0.6/13/20 07:33 06/22/20 09:29 Chloromethane 0.00068 U 0.0016 0.00068 mg/Kg " 0.6/13/20 07:33 06/22/20 09:29 cis-1,2-Dichloroethene 0.00043 U 0.0016 0.00043 mg/Kg " 0.6/13/20 07:33 06/22/20 09:29 Dibromochloromethane 0.00031 U 0.0016 0.00031 mg/Kg " 0.6/13/20 07:33 06/22/20 09:29 Dibromochloromethane 0.00031 U 0.0016 0.00031 mg/Kg " 0.6/13/20 07:33 06/22/20 09:29 Ethylbenzene 0.00031 U 0.0016 0.00031 mg/Kg " 0.6/13/20 07:33 06/22/20 09:29 Ethylbenzene 0.00031 U 0.0016 0.00031 mg/Kg " 0.6/13/20 07:33 06/22/20 09:29 Ethylbenzene 0.00031 U	Carbon disulfide	0.00042	U	0.0016		0.00042	mg/Kg	≎	06/13/20 07:33	06/22/20 09:29	1
Chloroethane 0.00082 U 0.0016 0.00082 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chloroform 0.00060 U 0.0016 0.00068 mg/Kg 06/13/20 07:33 06/22/20 09:29 Chloromethane 0.00068 U 0.0016 0.00068 mg/Kg 06/13/20 07:33 06/22/20 09:29 cis-1,2-Dichloroethene 0.00024 U 0.0016 0.00024 mg/Kg 06/13/20 07:33 06/22/20 09:29 cis-1,3-Dichloropropene 0.00031 U 0.0016 0.00031 mg/Kg 06/13/20 07:33 06/22/20 09:29 Dibromochloromethane 0.00031 U 0.0016 0.00031 mg/Kg 06/13/20 07:33 06/22/20 09:29 Dibromochloromethane 0.00053 U 0.0016 0.00033 mg/Kg 06/13/20 07:33 06/22/20 09:29 Dibromochloromethane 0.00053 U 0.0016 0.00033 mg/Kg 06/13/20 07:33 06/22/20 09:29 Bibry Dibromochloromethane 0.00031 0.00016 0.00031 mg/Kg	Carbon tetrachloride	0.00061	U	0.0016		0.00061	mg/Kg	\$	06/13/20 07:33	06/22/20 09:29	1
Chloroform 0.00050 U 0.0016 0.00050 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 Chloromethane 0.00068 U 0.0016 0.00084 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 cis-1,2-Dichloropthene 0.00024 U 0.0016 0.00024 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 Dibromochloromethane 0.00031 U 0.0016 0.00031 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 Dibromochloromethane 0.00031 U 0.0016 0.00031 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 Ethylbenzene 0.00031 U 0.0016 0.00031 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 Methyl acetate 0.00068 U 0.0079 0.0088 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 MTBE 0.00073 U 0.0016 0.00073 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 Styrene 0.00044 mg/Kg 0 6/13/20 07:33 06/22/20 09:29 Tetrachl	Chlorobenzene	0.00028	U	0.0016		0.00028	mg/Kg	₽	06/13/20 07:33	06/22/20 09:29	1
Chloromethane 0.00068 U 0.0016 0.00068 mg/Kg © 06/13/20 07:33 06/22/20 09:29 cis-1,2-Dichloroethene 0.00024 U 0.0016 0.00024 mg/Kg © 06/13/20 07:33 06/22/20 09:29 cis-1,3-Dichloropropene 0.00043 U 0.0016 0.00043 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Dibromochloromethane 0.00031 U 0.0016 0.00031 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Ethylbenzene 0.00031 U 0.0016 0.00031 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Methylacetate 0.00088 U 0.0079 0.0088 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Methylene Chloride 0.00073 U 0.0016 0.00073 mg/Kg © 06/13/20 07:33 06/22/20 09:29 MTBE 0.00020 U 0.0016 0.00027 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Tetrachloroethene 0.00022 U 0.016 0.00024 mg/Kg <	Chloroethane	0.00082	U	0.0016		0.00082	mg/Kg	₩	06/13/20 07:33	06/22/20 09:29	1
cis-1,2-Dichloroethene 0.00024 U 0.0016 0.00024 mg/Kg © 06/13/20 07:33 06/22/20 09:29 cis-1,3-Dichloropropene 0.00043 U 0.0016 0.00043 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Dibromochloromethane 0.00051 U 0.0016 0.00031 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Dichlorodifluoromethane 0.00053 U 0.0016 0.00031 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Methyl acetate 0.0008 U 0.0079 0.0068 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Methylene Chloride 0.00073 U 0.0016 0.00073 mg/Kg © 06/13/20 07:33 06/22/20 09:29 MTBE 0.00020 U 0.0016 0.00020 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Styrene 0.00044 U 0.0016 0.00020 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Tetrachloroethene 0.00052 U 0.0016 0.00022 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Tolulene 0.00037 U	Chloroform	0.00050	U	0.0016		0.00050	mg/Kg		06/13/20 07:33	06/22/20 09:29	1
cis-1,3-Dichloropropene 0.00043 U 0.0016 0.00043 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Dibromochloromethane 0.00031 U 0.0016 0.00031 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Dichlorodifluoromethane 0.00053 U 0.0016 0.00053 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Ethylbenzene 0.00031 U 0.0016 0.00031 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Methylacetate 0.00068 U 0.0079 0.0068 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Methylacetate 0.00073 U 0.0016 0.00073 mg/kg 0 06/13/20 07:33 06/22/20 09:29 MTBE 0.00020 U 0.0016 0.00020 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Styrene 0.00044 U 0.0016 0.00024 mg/kg 0 06/13/20 07:33 06/22/20 09:29 Tetrachloroethene 0.00052 U 0.0016 0.00022 mg/kg 0 06/1	Chloromethane	0.00068	U	0.0016		0.00068	mg/Kg	₩	06/13/20 07:33	06/22/20 09:29	1
Dibromochloromethane 0.00031 U 0.0016 0.00031 mg/kg © 06/13/20 07:33 06/22/20 09:29 Ethylbenzene 0.00031 U 0.0016 0.00031 mg/kg 06/13/20 07:33 06/22/20 09:29 Ethylbenzene 0.00031 U 0.0016 0.00031 mg/kg 06/13/20 07:33 06/22/20 09:29 Methyl acetate 0.0008 U 0.0016 0.00073 mg/kg 06/13/20 07:33 06/22/20 09:29 Methylene Chloride 0.00073 U 0.0016 0.00073 mg/kg 06/13/20 07:33 06/22/20 09:29 MTBE 0.00020 U 0.0016 0.00020 mg/kg 06/13/20 07:33 06/22/20 09:29 Styrene 0.00044 U 0.0016 0.00024 mg/kg 06/13/20 07:33 06/22/20 09:29 Tetrachloroethene 0.00052 U 0.016 0.0052 mg/kg 06/13/20 07:33 06/22/20 09:29 Toluene 0.00037 U 0.0016 0.00037 mg/kg 06/13/20 07:33 06/22/20 09	cis-1,2-Dichloroethene	0.00024	U	0.0016		0.00024	mg/Kg	₩	06/13/20 07:33	06/22/20 09:29	1
Dibromochloromethane 0.00031 U 0.0016 0.00031 mg/kg © 06/13/20 07:33 06/22/20 09:29 Ethylbenzene 0.00031 U 0.0016 0.00031 mg/kg 06/13/20 07:33 06/22/20 09:29 Ethylbenzene 0.00031 U 0.0016 0.00031 mg/kg 06/13/20 07:33 06/22/20 09:29 Methyl acetate 0.0008 U 0.0016 0.00073 mg/kg 06/13/20 07:33 06/22/20 09:29 Methylene Chloride 0.00073 U 0.0016 0.00073 mg/kg 06/13/20 07:33 06/22/20 09:29 MTBE 0.00020 U 0.0016 0.00020 mg/kg 06/13/20 07:33 06/22/20 09:29 Styrene 0.00044 U 0.0016 0.00024 mg/kg 06/13/20 07:33 06/22/20 09:29 Tetrachloroethene 0.00052 U 0.016 0.0052 mg/kg 06/13/20 07:33 06/22/20 09:29 Toluene 0.00037 U 0.0016 0.00037 mg/kg 06/13/20 07:33 06/22/20 09	cis-1,3-Dichloropropene	0.00043	U	0.0016		0.00043	mg/Kg		06/13/20 07:33	06/22/20 09:29	1
Ethylbenzene 0.00031 U 0.0016 0.00031 mg/Kg 06/13/20 07:33 06/22/20 09:29 Methyl acetate 0.0068 U 0.0079 0.0068 mg/Kg 06/13/20 07:33 06/22/20 09:29 Methylene Chloride 0.00073 U 0.0016 0.00073 mg/Kg 06/13/20 07:33 06/22/20 09:29 MTBE 0.00020 U 0.0016 0.00020 mg/Kg 06/13/20 07:33 06/22/20 09:29 MTBE 0.00020 U 0.0016 0.00020 mg/Kg 06/13/20 07:33 06/22/20 09:29 MTBE 0.00044 U 0.0016 0.00024 mg/Kg 06/13/20 07:33 06/22/20 09:29 MTBA 0.0052 U 0.0016 0.0052 mg/Kg 06/13/20 07:33 06/22/20 09:29 MTBA 0.0052 U 0.0016 0.0052 mg/Kg 06/13/20 07:33 06/22/20 09:29 MTBA 0.00022 U 0.0016 0.00022 mg/Kg 06/13/20 07:33 06/22/20 09:29 MTBA 0.00037 U 0.0016 0.00022 mg/Kg 06/13/20 07:33 06/22/20 09:29 MTBA 0.00037 U 0.0016 0.00037 mg/Kg 06/13/20 07:33 06/22/20 09:29 MTBA 0.00037 U 0.0016 0.00037 mg/Kg 06/13/20 07:33 06/22/20 09:29 MTBA 0.00039 U 0.0016 0.00039 mg/Kg 06/13/20 07:33 06/22/20 09:29 MTBA 0.00039 U 0.0016 0.00039 mg/Kg 06/13/20 07:33 06/22/20 09:29 MTBA 0.00039 U 0.0016 0.00039 mg/Kg 06/13/20 07:33 06/22/20 09:29 MTBA 0.00039 mg/Kg 06/13/20 07:33 06/22/20 09:29 M	Dibromochloromethane	0.00031	U	0.0016				₽	06/13/20 07:33	06/22/20 09:29	1
Ethylbenzene 0.00031 U 0.0016 0.00031 mg/Kg 06/13/20 07:33 06/22/20 09:29 0.0068 mg/Kg 0.0013/20 07:33 06/22/20 09:29 0.0068 mg/Kg 0.0013/20 07:33 06/22/20 09:29 0.0016 0.00073 mg/Kg 0.0013/20 07:33 06/22/20 09:29 0.0016 0.00073 mg/Kg 0.0013/20 07:33 06/22/20 09:29 0.0016 0.00020 mg/Kg 0.0013/20 07:33 06/22/20 09:29 0.0016 0.00020 mg/Kg 0.0013/20 07:33 06/22/20 09:29 0.0016 0.00024 mg/Kg 0.0013/20 07:33 06/22/20 09:29 0.0016 0.00024 mg/Kg 0.0013/20 07:33 06/22/20 09:29 0.0016 0.00022 mg/Kg 0.0013/20 07:33 06/22/20 09:29 0.0016 0.00022 mg/Kg 0.0013/20 07:33 06/22/20 09:29 0.0016 0.00022 mg/Kg 0.0013/20 07:33 06/22/20 09:29 0.0016 0.00037 mg/Kg 0.0016 0.00037 mg/Kg 0.0013/20 07:33 06/22/20 09:29 0.0016 0.00037 mg/Kg 0.0016 0.00037 mg/Kg 0.0013/20 07:33 06/22/20 09:29 0.0016 0.00037 mg/Kg 0.0016 0.00037 mg/Kg 0.0016/20 mg/Kg 0.0016/20 mg/Kg 0.0013/20 07:33 06/22/20 09:29 0.0013/	Dichlorodifluoromethane	0.00053	U	0.0016		0.00053	mg/Kg	≎	06/13/20 07:33	06/22/20 09:29	1
Methyl acetate 0.0068 U 0.0079 0.0068 mg/Kg 06/13/20 07:33 06/22/20 09:29 Methylene Chloride 0.00073 U 0.0016 0.00073 mg/Kg 06/13/20 07:33 06/22/20 09:29 MTBE 0.00020 U 0.0016 0.00020 mg/Kg 06/13/20 07:33 06/22/20 09:29 Styrene 0.00044 U 0.0016 0.00022 mg/Kg 06/13/20 07:33 06/22/20 09:29 TBA 0.0052 U 0.016 0.0052 mg/Kg 06/13/20 07:33 06/22/20 09:29 Tetrachloroethene 0.00022 U 0.0016 0.00022 mg/Kg 06/13/20 07:33 06/22/20 09:29 Toluene 0.00037 U 0.0016 0.00022 mg/Kg 06/13/20 07:33 06/22/20 09:29 Toluene 0.00037 U 0.0016 0.00037 mg/Kg 06/13/20 07:33 06/22/20 09:29 trans-1,2-Dichloroethene 0.00039 U 0.0016 0.00039 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trichloroethene 0.00042 U 0.0016 0.00023 mg/Kg	Ethylbenzene	0.00031		0.0016					06/13/20 07:33	06/22/20 09:29	1
Methylene Chloride 0.00073 U 0.0016 0.00073 mg/kg © 06/13/20 07:33 06/22/20 09:29 MTBE 0.00020 U 0.0016 0.00020 mg/kg © 06/13/20 07:33 06/22/20 09:29 Styrene 0.00044 U 0.0016 0.00044 mg/kg © 06/13/20 07:33 06/22/20 09:29 TBA 0.0052 U 0.016 0.0052 mg/kg © 06/13/20 07:33 06/22/20 09:29 Tetrachloroethene 0.00022 U 0.0016 0.00022 mg/kg © 06/13/20 07:33 06/22/20 09:29 Toluene 0.00037 U 0.0016 0.00037 mg/kg © 06/13/20 07:33 06/22/20 09:29 trans-1,2-Dichloroethene 0.00039 U 0.0016 0.00039 mg/kg © 06/13/20 07:33 06/22/20 09:29 trans-1,3-Dichloropropene 0.00042 U 0.0016 0.00042 mg/kg © 06/13/20 07:33 06/22/20 09:29 Trichloroethene 0.00023 U 0.0016 0.00023 mg/kg © 06/13/20 07:33 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>≎</td> <td>06/13/20 07:33</td> <td>06/22/20 09:29</td> <td>1</td>	•							≎	06/13/20 07:33	06/22/20 09:29	1
MTBE 0.00020 U 0.0016 0.00020 mg/Kg 06/13/20 07:33 06/22/20 09:29 Styrene 0.00044 U 0.0016 0.00044 mg/Kg 06/13/20 07:33 06/22/20 09:29 TBA 0.0052 U 0.016 0.0052 mg/Kg 06/13/20 07:33 06/22/20 09:29 Tetrachloroethene 0.00022 U 0.0016 0.00022 mg/Kg 06/13/20 07:33 06/22/20 09:29 Toluene 0.00037 U 0.0016 0.00037 mg/Kg 06/13/20 07:33 06/22/20 09:29 trans-1,2-Dichloroethene 0.00039 U 0.0016 0.00039 mg/Kg 06/13/20 07:33 06/22/20 09:29 trans-1,3-Dichloropropene 0.00042 U 0.0016 0.00039 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trichloroftuoromethane 0.00023 U 0.0016 0.00023 mg/Kg 06/13/20 07:33 06/22/20 09:29 Vinyl chloride 0.00064 U 0.0016 0.00064 mg/Kg 06/13/20 07:33 06/22/20 09:29 Xylenes, Total 0.00027 U 0.0016 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>₽</td> <td></td> <td></td> <td>1</td>	•							₽			1
Styrene 0.00044 U 0.0016 0.00044 mg/kg 06/13/20 07:33 06/22/20 09:29 TBA 0.0052 U 0.016 0.0052 mg/kg 06/13/20 07:33 06/22/20 09:29 Tetrachloroethene 0.00022 U 0.0016 0.00022 mg/kg 06/13/20 07:33 06/22/20 09:29 Toluene 0.00037 U 0.0016 0.00037 mg/kg 06/13/20 07:33 06/22/20 09:29 trans-1,2-Dichloroethene 0.00039 U 0.0016 0.00039 mg/kg 06/13/20 07:33 06/22/20 09:29 trans-1,3-Dichloropropene 0.00042 U 0.0016 0.00042 mg/kg 06/13/20 07:33 06/22/20 09:29 Trichloroethene 0.00023 U 0.0016 0.00023 mg/kg 06/13/20 07:33 06/22/20 09:29 Trichlorofluoromethane 0.00064 U 0.0016 0.00064 mg/kg 06/13/20 07:33 06/22/20 09:29 Vinyl chloride 0.00086 U 0.0016 0.00027 mg/kg 06/13/20 07:33											1
TBA 0.0052 U 0.016 0.0052 mg/Kg 06/13/20 07:33 06/22/20 09:29 Tetrachloroethene 0.00022 U 0.0016 0.00022 mg/Kg 06/13/20 07:33 06/22/20 09:29 Toluene 0.00037 U 0.0016 0.00037 mg/Kg 06/13/20 07:33 06/22/20 09:29 trans-1,2-Dichloroethene 0.00039 U 0.0016 0.00039 mg/Kg 06/13/20 07:33 06/22/20 09:29 trans-1,3-Dichloropropene 0.00042 U 0.0016 0.00042 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trichloroethene 0.00023 U 0.0016 0.00023 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trichlorofluoromethane 0.00064 U 0.0016 0.00064 mg/Kg 06/13/20 07:33 06/22/20 09:29 Vinyl chloride 0.00086 U 0.0016 0.00086 mg/Kg 06/13/20 07:33 06/22/20 09:29 Xylenes, Total 0.00027 U 0.0016 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Tentatively Identified Compound Est. Result 7 0.0016 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Tentatively Identified Compound None mg/Kg 06/13/20 07:33 06/22/20 09:29 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Farance Compound Dil Forest CAS No. 1 0.0016 0								₩			1
Tetrachloroethene 0.00022 U 0.0016 0.00022 mg/Kg 06/13/20 07:33 06/22/20 09:29 Toluene 0.00037 U 0.0016 0.00037 mg/Kg 06/13/20 07:33 06/22/20 09:29 trans-1,2-Dichloroethene 0.00039 U 0.0016 0.00039 mg/Kg 06/13/20 07:33 06/22/20 09:29 trans-1,3-Dichloropropene 0.00042 U 0.0016 0.00042 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trichloroethene 0.00023 U 0.0016 0.00023 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trichlorofluoromethane 0.00064 U 0.0016 0.00064 mg/Kg 06/13/20 07:33 06/22/20 09:29 Vinyl chloride 0.00086 U 0.0016 0.00086 mg/Kg 06/13/20 07:33 06/22/20 09:29 Xylenes, Total 0.00027 U 0.0016 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Prepared O6/13/20 07:33 06/22/20 09:29 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Father Compound Property Compound Dil Formative Dil Father Compound Dil Father Dil Father Compound Dil Father Dil Father Compound Dil Father Dil Fath	•							₩			1
Toluene 0.00037 U 0.0016 0.00037 mg/Kg 06/13/20 07:33 06/22/20 09:29 trans-1,2-Dichloroethene 0.00039 U 0.0016 0.00039 mg/Kg 06/13/20 07:33 06/22/20 09:29 trans-1,3-Dichloropropene 0.00042 U 0.0016 0.00042 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trichloroethene 0.00023 U 0.0016 0.00023 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trichlorofluoromethane 0.00064 U 0.0016 0.00064 mg/Kg 06/13/20 07:33 06/22/20 09:29 Vinyl chloride 0.00086 U 0.0016 0.00086 mg/Kg 06/13/20 07:33 06/22/20 09:29 Vinyl chloride 0.00027 U 0.0016 0.00086 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound Est. Result 0.00027 U 0.0016 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trentatively Identified Compound 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29											
trans-1,2-Dichloroethene 0.00039 U 0.0016 0.00039 mg/Kg © 06/13/20 07:33 06/22/20 09:29 trans-1,3-Dichloropropene 0.00042 U 0.0016 0.00042 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Trichloroethene 0.00023 U 0.0016 0.00023 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Trichlorofluoromethane 0.00064 U 0.0016 0.00064 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Vinyl chloride 0.00086 U 0.0016 0.00086 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Xylenes, Total 0.00027 U 0.0016 0.00027 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Prepared Analyzed Dil Fo Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fo								₩.			1
trans-1,3-Dichloropropene 0.00042 U 0.0016 0.00042 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trichloroethene 0.00023 U 0.0016 0.00023 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trichlorofluoromethane 0.00064 U 0.0016 0.00064 mg/Kg 06/13/20 07:33 06/22/20 09:29 Vinyl chloride 0.00086 U 0.0016 0.00086 mg/Kg 06/13/20 07:33 06/22/20 09:29 Xylenes, Total 0.00027 U 0.0016 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Tentatively Identified Compound Est. Result Tentatively Identified Compound Unit Moderation of Moderatio											1
Trichloroethene 0.00023 U 0.0016 0.00023 mg/Kg 06/13/20 07:33 06/22/20 09:29 Trichlorofluoromethane 0.00064 U 0.0016 0.00064 mg/Kg 06/13/20 07:33 06/22/20 09:29 Vinyl chloride 0.00086 U 0.0016 0.00086 mg/Kg 06/13/20 07:33 06/22/20 09:29 Xylenes, Total 0.00027 U 0.0016 0.00027 mg/Kg 06/13/20 07:33 06/22/20 09:29 Tentatively Identified Compound Est. Result Tentatively Identified Compound None D RT CAS No. Prepared Prepared Off/13/20 07:33 06/22/20 09:29 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Ferror											י 1
Trichlorofluoromethane 0.00064 U 0.0016 0.00064 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Vinyl chloride 0.00086 U 0.0016 0.00086 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Xylenes, Total 0.00027 U 0.0016 0.00027 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Tentatively Identified Compound Est. Result None Unit Mg/Kg D RT CAS No. Prepared None Analyzed None Dil Following Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Following Dil Following	···										_
Vinyl chloride 0.00086 U 0.0016 0.00086 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Xylenes, Total 0.00027 U 0.0016 0.00027 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Tentatively Identified Compound Est. Result Tentatively Identified Compound Unit May 100 mg/Kg Description RT CAS No. Prepared Tentatively Identified Compound Analyzed Tentatively Identified Compound Dil Formation Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Formation											1
Xylenes, Total 0.00027 U 0.0016 0.00027 mg/Kg © 06/13/20 07:33 06/22/20 09:29 Tentatively Identified Compound Tentatively Identified Compound Est. Result None Unit mg/Kg D mg/Kg RT CAS No. Departed None Prepared None/06/13/20 07:33 Analyzed Of/22/20 09:29 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Ferrogate											
Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Prepared Analyzed Dil Fatatively Identified Compound None mg/Kg 06/13/20 07:33 06/22/20 09:29	•										1
Tentatively Identified Compound None mg/Kg 06/13/20 07:33 06/22/20 09:29 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fa	xyienes, I otal	0.00027	U	0.0016		U.UU027	mg/Kg	-Q-	06/13/20 07:33	06/22/20 09:29	1
Surrogate			Qualifier				RT	CAS No.			Dil Fac
	। entatively identified Compound	None		mg/Kg	347				06/13/20 07:33	06/22/20 09:29	1
	Surrogate 1,2-Dichloroethane-d4 (Surr)		Qualifier	Limits 70 - 130					Prepared 06/13/20 07:33		Dil Fac

Client Sample ID: Dun Rite Lean Clay 06112020

Lab Sample ID: 460-210993-1 Date Collected: 06/11/20 14:00 **Matrix: Solid**

Percent Solids: 90.9

Date Received: 06/11/20 14:00

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Bromofluorobenzene	96		70 - 130	06/13/20 07:33	06/22/20 09:29	1
Dibromofluoromethane (Surr)	101		70 - 130	06/13/20 07:33	06/22/20 09:29	1
Toluene-d8 (Surr)	98		70 - 130	06/13/20 07:33	06/22/20 09:29	1

Method: 8270D - Semivolatile Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1'-Biphenyl	0.0048	U F1	0.36	0.0048	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
1,2,4-Trichlorobenzene	0.0094	U F1	0.036	0.0094	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
1,2-Dichlorobenzene	0.0062	U F1	0.36	0.0062	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
1,2-Diphenylhydrazine	0.020	J F1	0.36	0.0067	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
1,3-Dichlorobenzene	0.0048	U F1	0.36	0.0048	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
1,4-Dichlorobenzene	0.014	U F1	0.36	0.014	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
2,4,5-Trichlorophenol	0.037	U	0.36	0.037	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
2,4,6-Trichlorophenol	0.047	U	0.15	0.047	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
2,4-Dichlorophenol	0.023	U F1	0.15	0.023	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
2,4-Dimethylphenol	0.016	U F1	0.36	0.016	mg/Kg	₽	06/18/20 17:05	06/19/20 03:29	
2,4-Dinitrophenol	0.18	U F2	0.29	0.18	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
2,4-Dinitrotoluene	0.039	U F1	0.074	0.039	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
2,6-Dinitrotoluene	0.026	U F1	0.074	0.026	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
2-Chloronaphthalene	0.017	U F1	0.36	0.017	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
2-Chlorophenol	0.013	U F1	0.36	0.013	mg/Kg	☼	06/18/20 17:05	06/19/20 03:29	
2-Methylnaphthalene	0.010	U F1	0.36	0.010	mg/Kg	φ.	06/18/20 17:05	06/19/20 03:29	
2-Methylphenol	0.014	U F1	0.36	0.014	mg/Kg	☼	06/18/20 17:05	06/19/20 03:29	
2-Nitroaniline	0.014	U	0.36	0.014	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
2-Nitrophenol	0.036	U F1	0.36	0.036	mg/Kg	φ.	06/18/20 17:05	06/19/20 03:29	
3,3'-Dichlorobenzidine	0.055	U F1 *	0.15	0.055	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
3-Nitroaniline	0.041	U	0.36	0.041	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
4,6-Dinitro-2-methylphenol	0.059	U	0.29	0.059	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
4-Bromophenyl phenyl ether	0.015	J F1	0.36	0.014	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
4-Chloro-3-methylphenol	0.020	U	0.36	0.020	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
4-Chloroaniline	0.025	U	0.36	0.025	mg/Kg		06/18/20 17:05	06/19/20 03:29	
4-Chlorophenyl phenyl ether	0.017	J F1	0.36		mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
4-Methylphenol	0.023	U F1	0.36		mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
4-Nitroaniline	0.042	U	0.36		mg/Kg		06/18/20 17:05	06/19/20 03:29	
4-Nitrophenol	0.059	U	0.74		mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
Acenaphthene	0.026	U F1	0.36		mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
Acenaphthylene	0.0080	J F1	0.36	0.0038	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
Acetophenone		U F1 *	0.36		mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
Anthracene	0.019	J F1	0.36	0.011	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
Atrazine	0.0092		0.15	0.0092		ф	06/18/20 17:05	06/19/20 03:29	
Benzaldehyde	0.016	U	0.36		mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
Benzidine	0.036	U F1	0.36		mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	
Benzo[a]anthracene	0.013	U F1	0.036		mg/Kg		06/18/20 17:05	06/19/20 03:29	
Benzo[a]pyrene	0.0097		0.036	0.0097		₩		06/19/20 03:29	
Benzo[b]fluoranthene	0.0095		0.036	0.0094		₩		06/19/20 03:29	
Benzo[g,h,i]perylene	0.011		0.36		mg/Kg			06/19/20 03:29	
Benzo[k]fluoranthene	0.0084		0.036	0.0071		☼		06/19/20 03:29	
bis (2-chloroisopropyl) ether	0.0066		0.36	0.0066		₩		06/19/20 03:29	
Bis(2-chloroethoxy)methane	0.028		0.36		mg/Kg	ф		06/19/20 03:29	

Eurofins TestAmerica, Edison

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Date Received: 06/11/20 14:00

Client Sample ID: Dun Rite Lean Clay 06112020 Date Collected: 06/11/20 14:00

Lab Sample ID: 460-210993-1

Matrix: Solid

Percent Solids: 90.9

Method: 8270D - Semivolatile Analyte	_	Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-chloroethyl)ether	0.013	U F1	0.036		0.013	mg/Kg		06/18/20 17:05	06/19/20 03:29	1
Bis(2-ethylhexyl) phthalate	0.019	U F1	0.36			mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	1
Butyl benzyl phthalate	0.017	U F1	0.36		0.017	mg/Kg		06/18/20 17:05	06/19/20 03:29	1
Caprolactam	0.057	U	0.36		0.057	mg/Kg	☼	06/18/20 17:05	06/19/20 03:29	1
Carbazole	0.014	U F1	0.36		0.014	mg/Kg	☆	06/18/20 17:05	06/19/20 03:29	1
Chrysene	0.010	J F1	0.36		0.0062	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	1
Dibenz(a,h)anthracene	0.016	U F1	0.036		0.016	mg/Kg	₽	06/18/20 17:05	06/19/20 03:29	1
Dibenzofuran	0.016	J F1	0.36		0.0051	mg/Kg	☆	06/18/20 17:05	06/19/20 03:29	1
Diethyl phthalate	0.013	J F1	0.36		0.0053	mg/Kg	\$	06/18/20 17:05	06/19/20 03:29	1
Dimethyl phthalate	0.083	U F1	0.36		0.083	mg/Kg	₽	06/18/20 17:05	06/19/20 03:29	1
Di-n-butyl phthalate	0.064	U F1	0.36		0.064	mg/Kg	☼	06/18/20 17:05	06/19/20 03:29	1
Di-n-octyl phthalate	0.019	U F1	0.36		0.019	mg/Kg	ф.	06/18/20 17:05	06/19/20 03:29	1
Fluoranthene	0.013	U F1	0.36		0.013	mg/Kg	☼	06/18/20 17:05	06/19/20 03:29	1
Fluorene	0.014	J F1	0.36		0.0049	mg/Kg	☼	06/18/20 17:05	06/19/20 03:29	1
Hexachlorobenzene	0.017	J F1	0.036		0.017	mg/Kg	\$	06/18/20 17:05	06/19/20 03:29	1
Hexachlorobutadiene	0.0077	U F1	0.074		0.0077	mg/Kg	☼	06/18/20 17:05	06/19/20 03:29	1
Hexachlorocyclopentadiene	0.032	U	0.36		0.032	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	1
Hexachloroethane	0.012	U F1	0.036		0.012	mg/Kg	\$	06/18/20 17:05	06/19/20 03:29	1
Indeno[1,2,3-cd]pyrene	0.014	U F1	0.036		0.014	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	1
Isophorone	0.11	U F1	0.15		0.11	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	1
Naphthalene	0.0063	U F1	0.36		0.0063	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	1
Nitrobenzene	0.0087	U F1	0.036		0.0087	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	1
N-Nitrosodimethylamine	0.034	U	0.36		0.034	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	1
N-Nitrosodi-n-propylamine	0.026	U F1 *	0.036		0.026	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	1
N-Nitrosodiphenylamine	0.012	J F1	0.36		0.0070	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	1
Pentachlorophenol	0.075	U	0.29		0.075	mg/Kg	₩	06/18/20 17:05	06/19/20 03:29	1
Phenanthrene	0.018	J F1	0.36		0.0064	mg/Kg	\$	06/18/20 17:05	06/19/20 03:29	1
Phenol	0.013	U	0.36		0.013	mg/Kg	₽	06/18/20 17:05	06/19/20 03:29	1
Pyrene	0.012	J F1	0.36		0.0091	mg/Kg	≎	06/18/20 17:05	06/19/20 03:29	1
Tentatively Identified Compound	Est. Result	-	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fac
Aldol condensation product	2.3	A J	mg/Kg	₩	3.	.12		06/18/20 17:05	06/19/20 03:29	1
Benzoic acid	270	J	ug/Kg	₩	5.	43	65-85-0	06/18/20 17:05	06/19/20 03:29	1
n-Octadecane	33	J F1	ug/Kg	₩	8.	64	593-45-3	06/18/20 17:05	06/19/20 03:29	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	58		30 - 130	06/18/20 17:05	06/19/20 03:29	1
2-Fluorobiphenyl	50		30 - 130	06/18/20 17:05	06/19/20 03:29	1
2-Fluorophenol	67		30 - 130	06/18/20 17:05	06/19/20 03:29	1
Nitrobenzene-d5	54		30 - 130	06/18/20 17:05	06/19/20 03:29	1
Phenol-d5	64		30 - 130	06/18/20 17:05	06/19/20 03:29	1
Terphenyl-d14	53		30 - 130	06/18/20 17:05	06/19/20 03:29	1

Method: 8081B - Organochlorine Pesticides (GC)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
4,4'-DDD	0.0013	U	0.0074	0.0013	mg/Kg	<u> </u>	06/18/20 09:16	06/19/20 06:37	1	
4,4'-DDE	0.00087	U	0.0074	0.00087	mg/Kg	₩	06/18/20 09:16	06/19/20 06:37	1	
4,4'-DDT	0.0014	U	0.0074	0.0014	mg/Kg	₩	06/18/20 09:16	06/19/20 06:37	1	
Aldrin	0.0011	Ü	0.0074	0.0011	mg/Kg		06/18/20 09:16	06/19/20 06:37	1	
alpha-BHC	0.00075	U	0.0022	0.00075	mg/Kg	₩	06/18/20 09:16	06/19/20 06:37	1	

Eurofins TestAmerica, Edison

Page 12 of 27

Client Sample ID: Dun Rite Lean Clay 06112020

Lab Sample ID: 460-210993-1 Date Collected: 06/11/20 14:00 **Matrix: Solid**

Percent Solids: 90.9 Date Received: 06/11/20 14:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
beta-BHC	0.00083	U	0.0022	0.00083	mg/Kg	₩	06/18/20 09:16	06/19/20 06:37	1
Chlordane (n.o.s.)	0.018	U	0.074	0.018	mg/Kg	.	06/18/20 09:16	06/19/20 06:37	1
Chlordane (technical)	0.018	U	0.074	0.018	mg/Kg	☼	06/18/20 09:16	06/19/20 06:37	1
cis-Chlordane	0.0012	U	0.0074	0.0012	mg/Kg	☼	06/18/20 09:16	06/19/20 06:37	1
delta-BHC	0.00045	U	0.0022	0.00045	mg/Kg	₽	06/18/20 09:16	06/19/20 06:37	1
Dieldrin	0.00096	U	0.0022	0.00096	mg/Kg	☼	06/18/20 09:16	06/19/20 06:37	1
Endosulfan I	0.0011	U	0.0074	0.0011	mg/Kg	☼	06/18/20 09:16	06/19/20 06:37	1
Endosulfan II	0.0019	U	0.0074	0.0019	mg/Kg	₽	06/18/20 09:16	06/19/20 06:37	1
Endosulfan sulfate	0.00092	U	0.0074	0.00092	mg/Kg	☼	06/18/20 09:16	06/19/20 06:37	1
Endrin	0.0011	U	0.0074	0.0011	mg/Kg	☼	06/18/20 09:16	06/19/20 06:37	1
Endrin aldehyde	0.0017	U	0.0074	0.0017	mg/Kg	₽	06/18/20 09:16	06/19/20 06:37	1
Endrin ketone	0.0014	U	0.0074	0.0014	mg/Kg	☼	06/18/20 09:16	06/19/20 06:37	1
gamma-BHC (Lindane)	0.00068	U	0.0022	0.00068	mg/Kg	☼	06/18/20 09:16	06/19/20 06:37	1
Heptachlor	0.00087	U	0.0074	0.00087	mg/Kg	.	06/18/20 09:16	06/19/20 06:37	1
Heptachlor epoxide	0.0011	U	0.0074	0.0011	mg/Kg	☼	06/18/20 09:16	06/19/20 06:37	1
Methoxychlor	0.0017	U	0.0074	0.0017	mg/Kg	☼	06/18/20 09:16	06/19/20 06:37	1
Toxaphene	0.027	U	0.074	0.027	mg/Kg	.	06/18/20 09:16	06/19/20 06:37	1
trans-Chlordane	0.0013	U	0.0074	0.0013	mg/Kg	₩	06/18/20 09:16	06/19/20 06:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	81		30 - 150				06/18/20 09:16	06/19/20 06:37	1
DCB Decachlorobiphenyl	88		30 - 150				06/18/20 09:16	06/19/20 06:37	1
Tetrachloro-m-xylene	69		30 - 150				06/18/20 09:16	06/19/20 06:37	1
Tetrachloro-m-xylene	66		30 - 150				06/18/20 09:16	06/19/20 06:37	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.0098	U	0.074	0.0098	mg/Kg	<u> </u>	06/18/20 09:10	06/19/20 20:39	1
Aroclor 1221	0.0098	U	0.074	0.0098	mg/Kg	☼	06/18/20 09:10	06/19/20 20:39	1
Aroclor 1232	0.0098	U	0.074	0.0098	mg/Kg	☼	06/18/20 09:10	06/19/20 20:39	1
Aroclor 1242	0.0098	U	0.074	0.0098	mg/Kg	φ.	06/18/20 09:10	06/19/20 20:39	1
Aroclor 1248	0.0098	U	0.074	0.0098	mg/Kg	₩	06/18/20 09:10	06/19/20 20:39	1
Aroclor 1254	0.010	U	0.074	0.010	mg/Kg	☼	06/18/20 09:10	06/19/20 20:39	1
Aroclor 1260	0.010	U	0.074	0.010	mg/Kg	φ.	06/18/20 09:10	06/19/20 20:39	1
Aroclor 1262	0.010	U	0.074	0.010	mg/Kg	₩	06/18/20 09:10	06/19/20 20:39	1
Aroclor 1268	0.010	U	0.074	0.010	mg/Kg	☼	06/18/20 09:10	06/19/20 20:39	1
Polychlorinated biphenyls, Total	0.010	U	0.074	0.010	mg/Kg	\$	06/18/20 09:10	06/19/20 20:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	105		30 - 150				06/18/20 09:10	06/19/20 20:39	1

Surrogate	%Recovery Qualit	fier Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	105	30 - 150	06/18/20 09:10	06/19/20 20:39	
DCB Decachlorobiphenyl	117	30 - 150	06/18/20 09:10	06/19/20 20:39	1
Tetrachloro-m-xylene	97	30 - 150	06/18/20 09:10	06/19/20 20:39	1
Tetrachloro-m-xylene	106	30 - 150	06/18/20 09:10	06/19/20 20:39	1

Method: 6020B - Metal	s (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	5390		21.0	7.2	mg/Kg	<u> </u>	06/18/20 03:50	06/18/20 11:51	10
Antimony	0.31	U	1.0	0.31	mg/Kg	≎	06/18/20 03:50	06/18/20 11:51	10
Arsenic	1.6		1.0	0.34	mg/Kg	≎	06/18/20 03:50	06/18/20 11:51	10
Barium	31.0		2.1	0.70	mg/Kg	≎	06/18/20 03:50	06/18/20 11:51	10

Eurofins TestAmerica, Edison

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: Dun Rite Lean Clay 06112020 Lab Sample ID: 460-210993-1

Date Collected: 06/11/20 14:00

Matrix: Solid

Date Received: 06/11/20 14:00

Percent Solids: 90.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.17	U	0.42	0.17	mg/Kg	<u> </u>	06/18/20 03:50	06/18/20 11:51	10
Cadmium	0.35	U	1.0	0.35	mg/Kg	☼	06/18/20 03:50	06/18/20 11:51	10
Chromium	10.2		2.1	0.63	mg/Kg	₽	06/18/20 03:50	06/18/20 11:51	10
Cobalt	0.63	U	2.1	0.63	mg/Kg	☼	06/18/20 03:50	06/18/20 11:51	10
Copper	5.1		2.1	0.60	mg/Kg	☼	06/18/20 03:50	06/18/20 11:51	10
Lead	7.2		0.63	0.20	mg/Kg	₩	06/18/20 03:50	06/18/20 11:51	10
Manganese	5.0		4.2	1.3	mg/Kg	☼	06/18/20 03:50	06/18/20 11:51	10
Nickel	1.6	J	2.1	0.68	mg/Kg	☼	06/18/20 03:50	06/18/20 11:51	10
Selenium	0.30	U	5.2	0.30	mg/Kg	₩	06/18/20 03:50	06/18/20 11:51	10
Silver	0.65	U	1.0	0.65	mg/Kg	☼	06/18/20 03:50	06/18/20 11:51	10
Thallium	0.13	U	0.42	0.13	mg/Kg	☼	06/18/20 03:50	06/18/20 11:51	10
Vanadium	15.6		2.1	0.60	mg/Kg	₩	06/18/20 03:50	06/18/20 11:51	10
Zinc	5.3	J	8.4	4.1	mg/Kg	☼	06/18/20 03:50	06/18/20 11:51	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.046		0.018	0.0042	mg/Kg		06/17/20 03:33	06/17/20 08:01	1
General Chemistry	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	0.58	J	2.2	0.38	mg/Kg	₩	06/23/20 08:30	06/23/20 11:40	1
Cyanide, Total	0.12	U	0.23	0.12	mg/Kg	☼	06/23/20 06:26	06/23/20 14:28	1
pH	4.8	HF	0.1	0.1	SU			06/21/20 15:11	1
Corrosivity	4.8	HF	0.1	0.1	SU			06/21/20 15:11	1
TOC Result 1	241		110	89.5	mg/Kg	≎		06/23/20 16:14	1
Percent Moisture	9.1		1.0	1.0	%			06/18/20 16:13	1
Percent Solids	90.9		1.0	1.0	%			06/18/20 16:13	1

Client Sample ID: EME Horizon A Topsoil 06112020

Date Collected: 06/11/20 14:00

Matrix: Solid
Date Received: 06/11/20 14:00

Percent Solids: 92.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.00042	U	0.0018	0.00042	mg/Kg	<u> </u>	06/13/20 07:34	06/22/20 09:52	1
1,1,2,2-Tetrachloroethane	0.00039	U	0.0018	0.00039	mg/Kg	☆	06/13/20 07:34	06/22/20 09:52	1
1,1,2-Trichloroethane	0.00032	U	0.0018	0.00032	mg/Kg	☆	06/13/20 07:34	06/22/20 09:52	1
1,1-Dichloroethane	0.00037	U	0.0018	0.00037	mg/Kg	₩.	06/13/20 07:34	06/22/20 09:52	1
1,1-Dichloroethene	0.00041	U	0.0018	0.00041	mg/Kg	☼	06/13/20 07:34	06/22/20 09:52	1
1,2-Dibromo-3-Chloropropane	0.00083	U	0.0018	0.00083	mg/Kg	☆	06/13/20 07:34	06/22/20 09:52	1
1,2-Dibromoethane	0.00032	U	0.0018	0.00032	mg/Kg	☼	06/13/20 07:34	06/22/20 09:52	1
1,2-Dichloroethane	0.00053	U	0.0018	0.00053	mg/Kg	☆	06/13/20 07:34	06/22/20 09:52	1
1,2-Dichloropropane	0.00076	U	0.0018	0.00076	mg/Kg	₩	06/13/20 07:34	06/22/20 09:52	1
2-Butanone	0.0049	U	0.0090	0.0049	mg/Kg	₩.	06/13/20 07:34	06/22/20 09:52	1
2-Chloroethyl vinyl ether	0.0029	U	0.0036	0.0029	mg/Kg	☆	06/13/20 07:34	06/22/20 09:52	1
2-Hexanone	0.0031	U	0.0090	0.0031	mg/Kg	☼	06/13/20 07:34	06/22/20 09:52	1
4-Methyl-2-pentanone	0.0028	Ü	0.0090	0.0028	mg/Kg	₩	06/13/20 07:34	06/22/20 09:52	1
Acetone	0.010	U	0.011	0.010	mg/Kg	☆	06/13/20 07:34	06/22/20 09:52	1
Acrolein	0.050	U *	0.18	0.050	mg/Kg	☼	06/13/20 07:34	06/22/20 09:52	1
Acrylonitrile	0.0030	U *	0.018	0.0030	ma/Ka	.	06/13/20 07:34	06/22/20 09:52	1

Eurofins TestAmerica, Edison

6/25/2020

Client Sample ID: EME Horizon A Topsoil 06112020

Lab Sample ID: 460-210993-2 Date Collected: 06/11/20 14:00 **Matrix: Solid** Date Received: 06/11/20 14:00

Percent Solids: 92.2

Method: 8260C - Volatile Org Analyte	•	Qualifier	` RL			Unit	D	Prepared	Analyzed	Dil Fa
Benzene	0.00047	U	0.0018		0.00047	mg/Kg	₩	06/13/20 07:34	06/22/20 09:52	
Bromodichloromethane	0.00046	U	0.0018		0.00046	mg/Kg	₽	06/13/20 07:34	06/22/20 09:52	
Bromoform	0.00077	U	0.0018		0.00077	mg/Kg		06/13/20 07:34	06/22/20 09:52	
Bromomethane	0.00085	U	0.0018		0.00085	mg/Kg	☼	06/13/20 07:34	06/22/20 09:52	
Carbon disulfide	0.00048	U	0.0018		0.00048	mg/Kg	₽	06/13/20 07:34	06/22/20 09:52	
Carbon tetrachloride	0.00070	U	0.0018		0.00070	mg/Kg	\$	06/13/20 07:34	06/22/20 09:52	
Chlorobenzene	0.00032	U	0.0018		0.00032	mg/Kg	₽	06/13/20 07:34	06/22/20 09:52	
Chloroethane	0.00094	U	0.0018		0.00094	mg/Kg	₽	06/13/20 07:34	06/22/20 09:52	
Chloroform	0.00058	Ü	0.0018		0.00058	mg/Kg	\$	06/13/20 07:34	06/22/20 09:52	
Chloromethane	0.00078	U	0.0018		0.00078	mg/Kg	₩	06/13/20 07:34	06/22/20 09:52	
cis-1,2-Dichloroethene	0.00027	U	0.0018		0.00027	mg/Kg	₽	06/13/20 07:34	06/22/20 09:52	
cis-1,3-Dichloropropene	0.00049	U	0.0018		0.00049	mg/Kg		06/13/20 07:34	06/22/20 09:52	
Dibromochloromethane	0.00035	U	0.0018		0.00035	mg/Kg	₽	06/13/20 07:34	06/22/20 09:52	
Dichlorodifluoromethane	0.00061	U	0.0018		0.00061	mg/Kg	₩	06/13/20 07:34	06/22/20 09:52	
Ethylbenzene	0.00036	U	0.0018		0.00036	mg/Kg		06/13/20 07:34	06/22/20 09:52	
Methyl acetate	0.0078	U	0.0090		0.0078	mg/Kg	₽	06/13/20 07:34	06/22/20 09:52	
Methylene Chloride	0.00084	U	0.0018		0.00084	mg/Kg	₩	06/13/20 07:34	06/22/20 09:52	
MTBE	0.00023	U	0.0018		0.00023	mg/Kg	₽	06/13/20 07:34	06/22/20 09:52	
Styrene	0.00050	U	0.0018		0.00050	mg/Kg	₩	06/13/20 07:34	06/22/20 09:52	
TBA	0.0059	U	0.018		0.0059	mg/Kg	☼	06/13/20 07:34	06/22/20 09:52	
Tetrachloroethene	0.00026	U	0.0018		0.00026	mg/Kg	≎	06/13/20 07:34	06/22/20 09:52	
Toluene	0.00042	U	0.0018		0.00042	mg/Kg	₩	06/13/20 07:34	06/22/20 09:52	
trans-1,2-Dichloroethene	0.00044	U	0.0018		0.00044	mg/Kg	☼	06/13/20 07:34	06/22/20 09:52	
trans-1,3-Dichloropropene	0.00048	U	0.0018		0.00048	mg/Kg	☼	06/13/20 07:34	06/22/20 09:52	
Trichloroethene	0.00026	U	0.0018		0.00026	mg/Kg	₩	06/13/20 07:34	06/22/20 09:52	
Trichlorofluoromethane	0.00073	U	0.0018		0.00073	mg/Kg	₩	06/13/20 07:34	06/22/20 09:52	
Vinyl chloride	0.00098	U	0.0018		0.00098	mg/Kg	¢	06/13/20 07:34	06/22/20 09:52	
Xylenes, Total	0.00031	U	0.0018		0.00031	mg/Kg	₩	06/13/20 07:34	06/22/20 09:52	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		mg/Kg	\				06/13/20 07:34	06/22/20 09:52	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	116		70 - 130					06/13/20 07:34	06/22/20 09:52	
Bromofluorobenzene	102		70 - 130					06/13/20 07:34	06/22/20 09:52	
Dibromofluoromethane (Surr)	103		70 - 130					06/13/20 07:34	06/22/20 09:52	
Toluene-d8 (Surr)	100		70 - 130					06/13/20 07:34	06/22/20 09:52	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	0.0048	U	0.36	0.0048	mg/Kg	<u> </u>	06/18/20 17:05	06/19/20 06:33	1
1,2,4-Trichlorobenzene	0.0092	U	0.036	0.0092	mg/Kg	₩	06/18/20 17:05	06/19/20 06:33	1
1,2-Dichlorobenzene	0.0061	U	0.36	0.0061	mg/Kg	₩	06/18/20 17:05	06/19/20 06:33	1
1,2-Diphenylhydrazine	0.0066	U	0.36	0.0066	mg/Kg	₩.	06/18/20 17:05	06/19/20 06:33	1
1,3-Dichlorobenzene	0.0048	U	0.36	0.0048	mg/Kg	☼	06/18/20 17:05	06/19/20 06:33	1
1,4-Dichlorobenzene	0.014	U	0.36	0.014	mg/Kg	₩	06/18/20 17:05	06/19/20 06:33	1
2,4,5-Trichlorophenol	0.037	U	0.36	0.037	mg/Kg	₩.	06/18/20 17:05	06/19/20 06:33	1
2,4,6-Trichlorophenol	0.046	U	0.14	0.046	mg/Kg	₩	06/18/20 17:05	06/19/20 06:33	1
2,4-Dichlorophenol	0.023	U	0.14	0.023	mg/Kg	₩	06/18/20 17:05	06/19/20 06:33	1
2,4-Dimethylphenol	0.016	U	0.36	0.016	mg/Kg	₩.	06/18/20 17:05	06/19/20 06:33	1

Eurofins TestAmerica, Edison

Client Sample Results

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: EME Horizon A Topsoil 06112020 Lab Sample ID: 460-210993-2

Date Collected: 06/11/20 14:00

Matrix: Solid

Date Received: 06/11/20 14:00

Percent Solids: 92.2

2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 3-Nitroaniline 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene	0.18 0.039 0.026 0.017 0.013 0.010 0.013 0.013 0.036 0.054 0.040 0.058 0.014	U U U U U U U U	0.29 0.073 0.073 0.36 0.36 0.36 0.36 0.36	0.017 0.013 0.010 0.013	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$	06/18/20 17:05 06/18/20 17:05 06/18/20 17:05 06/18/20 17:05 06/18/20 17:05	06/19/20 06:33 06/19/20 06:33 06/19/20 06:33 06/19/20 06:33 06/19/20 06:33	
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene	0.026 0.017 0.013 0.010 0.013 0.036 0.054 0.040 0.058 0.014	U U U U U U U U	0.073 0.36 0.36 0.36 0.36 0.36	0.026 0.017 0.013 0.010 0.013	mg/Kg mg/Kg mg/Kg mg/Kg	† †	06/18/20 17:05 06/18/20 17:05 06/18/20 17:05	06/19/20 06:33 06/19/20 06:33	
2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene	0.017 0.013 0.010 0.013 0.013 0.036 0.054 0.040 0.058 0.014	U U U U U U U	0.36 0.36 0.36 0.36 0.36	0.017 0.013 0.010 0.013	mg/Kg mg/Kg mg/Kg	\$	06/18/20 17:05 06/18/20 17:05	06/19/20 06:33	
2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Mitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthylene	0.013 0.010 0.013 0.013 0.036 0.054 0.040 0.058 0.014 0.020	U U U U U U*	0.36 0.36 0.36 0.36	0.017 0.013 0.010 0.013	mg/Kg mg/Kg mg/Kg	₽	06/18/20 17:05		
2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthylene	0.010 0.013 0.013 0.036 0.054 0.040 0.058 0.014	U U U U *	0.36 0.36 0.36	0.010 0.013	mg/Kg			06/19/20 06:33	
2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene	0.013 0.013 0.036 0.054 0.040 0.058 0.014 0.020	U U U *	0.36 0.36	0.010 0.013	mg/Kg				
2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene	0.013 0.036 0.054 0.040 0.058 0.014 0.020	U U *	0.36		0 0		06/18/20 17:05	06/19/20 06:33	
2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene	0.036 0.054 0.040 0.058 0.014 0.020	U U *		0.012	mg/Kg	₩	06/18/20 17:05	06/19/20 06:33	
3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene	0.054 0.040 0.058 0.014 0.020	U *	0.36	0.013	mg/Kg	₩	06/18/20 17:05	06/19/20 06:33	
3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene	0.040 0.058 0.014 0.020				mg/Kg		06/18/20 17:05	06/19/20 06:33	
3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene	0.058 0.014 0.020	U	0.14			₩	06/18/20 17:05	06/19/20 06:33	
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene	0.014 0.020		0.36		mg/Kg	₩	06/18/20 17:05	06/19/20 06:33	
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene	0.020	. U	0.29		mg/Kg	.	06/18/20 17:05	06/19/20 06:33	
4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene		U	0.36	0.014	mg/Kg	₩	06/18/20 17:05	06/19/20 06:33	
4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene			0.36	0.020	mg/Kg	₩	06/18/20 17:05	06/19/20 06:33	
4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene	0.025		0.36				06/18/20 17:05	06/19/20 06:33	
4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene	0.013		0.36	0.013	mg/Kg	₩	06/18/20 17:05	06/19/20 06:33	
4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene	0.022		0.36		mg/Kg	₽	06/18/20 17:05	06/19/20 06:33	
4-Nitrophenol Acenaphthene Acenaphthylene	0.041		0.36	0.041		 \$	06/18/20 17:05	06/19/20 06:33	
Acenaphthene Acenaphthylene	0.058		0.73		mg/Kg	₩	06/18/20 17:05	06/19/20 06:33	
Acenaphthylene	0.026		0.36		mg/Kg	₩	06/18/20 17:05	06/19/20 06:33	
' '	0.0037		0.36	0.0037		 \$	06/18/20 17:05	06/19/20 06:33	
Acetophenone	0.018		0.36		mg/Kg	₩	06/18/20 17:05		
Anthracene	0.011		0.36	0.011	mg/Kg	₩	06/18/20 17:05	06/19/20 06:33	
Atrazine	0.0091		0.14	0.0091			06/18/20 17:05	06/19/20 06:33	
Benzaldehyde	0.016		0.14		0 0	₩	06/18/20 17:05	06/19/20 06:33	
Benzidine	0.036		0.36		mg/Kg	₽	06/18/20 17:05	06/19/20 06:33	
Benzo[a]anthracene	0.030		0.036	0.030	mg/Kg		06/18/20 17:05	06/19/20 06:33	
Benzo[a]pyrene	0.0096		0.036	0.0096	mg/Kg		06/18/20 17:05	06/19/20 06:33	
Benzo[b]fluoranthene	0.0090		0.036	0.0090	mg/Kg	≎	06/18/20 17:05	06/19/20 06:33	
Benzo[g,h,i]perylene	0.0093		0.36	0.0093	mg/Kg		06/18/20 17:05	06/19/20 06:33	
Benzo[k]fluoranthene	0.0070		0.036			₽	06/18/20 17:05	06/19/20 06:33	
• •	0.0070		0.036			~ -∀-	06/18/20 17:05	06/19/20 06:33	
bis (2-chloroisopropyl) ether				0.0065					
Bis(2-chloroethoxy)methane	0.028 0.012		0.36 0.036		mg/Kg mg/Kg	₩	06/18/20 17:05 06/18/20 17:05	06/19/20 06:33 06/19/20 06:33	
Bis(2-chloroethyl)ether	0.012		0.036		mg/Kg	≎		06/19/20 06:33	
Bis(2-ethylhexyl) phthalate									
Butyl benzyl phthalate	0.017		0.36		mg/Kg	₽	06/18/20 17:05	06/19/20 06:33	
Caprolactam	0.056		0.36		mg/Kg		06/18/20 17:05	06/19/20 06:33	
Carbazole	0.014		0.36		mg/Kg		06/18/20 17:05		
Chrysene	0.0061		0.36	0.0061		*			
Dibenz(a,h)anthracene	0.016		0.036		mg/Kg	₩	06/18/20 17:05		
Dibenzofuran	0.0050		0.36	0.0050		% .	06/18/20 17:05		
Diethyl phthalate	0.0052		0.36	0.0052		☆	06/18/20 17:05		
Dimethyl phthalate	0.082		0.36		mg/Kg	☆	06/18/20 17:05		
Di-n-butyl phthalate	0.063		0.36		mg/Kg				
Di-n-octyl phthalate	0.019		0.36		mg/Kg	₩			
Fluoranthene	0.013		0.36	0.013	mg/Kg	₩	ロドバリンハ イフ・ハモ	DE140100 00:00	
Fluorene								06/19/20 06:33	
Hexachlorobenzene Hexachlorobutadiene	0.0049 0.017		0.36	0.0049			06/18/20 17:05	06/19/20 06:33 06/19/20 06:33	

Eurofins TestAmerica, Edison

Job ID: 460-210993-1

2

4

6

8

10

Client Sample ID: EME Horizon A Topsoil 06112020

Lab Sample ID: 460-210993-2

Date Collected: 06/11/20 14:00 Date Received: 06/11/20 14:00

Matrix: Solid Percent Solids: 92.2

Analyte		Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorocyclopentadiene	0.031	U	0.36		0.031	mg/K	g 🛱	06/18/20 17:05	06/19/20 06:33	1
Hexachloroethane	0.012	U	0.036		0.012	mg/K	g 🌣	06/18/20 17:05	06/19/20 06:33	1
Indeno[1,2,3-cd]pyrene	0.014	U	0.036		0.014	mg/K	g [⇔]	06/18/20 17:05	06/19/20 06:33	1
Isophorone	0.10	U	0.14		0.10	mg/K	g [⇔]	06/18/20 17:05	06/19/20 06:33	1
Naphthalene	0.0062	U	0.36		0.0062	mg/K	g [‡]	06/18/20 17:05	06/19/20 06:33	1
Nitrobenzene	0.0086	U	0.036		0.0086	mg/K	g ☆	06/18/20 17:05	06/19/20 06:33	1
N-Nitrosodimethylamine	0.033	U	0.36		0.033	mg/K	g ☆	06/18/20 17:05	06/19/20 06:33	1
N-Nitrosodi-n-propylamine	0.026	U *	0.036		0.026	mg/K	g ☆	06/18/20 17:05	06/19/20 06:33	1
N-Nitrosodiphenylamine	0.0069	U	0.36		0.0069	mg/K	g ☆	06/18/20 17:05	06/19/20 06:33	1
Pentachlorophenol	0.074	U	0.29		0.074	mg/K	g 🌣	06/18/20 17:05	06/19/20 06:33	1
Phenanthrene	0.0063	U	0.36		0.0063	mg/K	g 🌣	06/18/20 17:05	06/19/20 06:33	1
Phenol	0.013	U	0.36		0.013	mg/K	g 🌣	06/18/20 17:05	06/19/20 06:33	1
Pyrene	0.0089	U	0.36		0.0089	mg/K	g ⇔	06/18/20 17:05	06/19/20 06:33	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	0.43	J	mg/Kg	\	1.	.69		06/18/20 17:05	06/19/20 06:33	1
Aldol condensation product	1.9	AJ	mg/Kg	₩	2.	.95		06/18/20 17:05	06/19/20 06:33	1
Unknown	0.66	J	mg/Kg	₩	11.	.28		06/18/20 17:05	06/19/20 06:33	1
2-Pentacosanone	0.74	JN	mg/Kg	₩.	13.	.11	75207-54-4	06/18/20 17:05	06/19/20 06:33	1
1,19-Eicosadiene	0.46	JN	mg/Kg	₩	13.	.75	14811-95-1	06/18/20 17:05	06/19/20 06:33	1
Unknown	2.1	J	mg/Kg	₩	14.	.02		06/18/20 17:05	06/19/20 06:33	1
Unknown	0.99	J	mg/Kg		14.	.11		06/18/20 17:05	06/19/20 06:33	1
Unknown	0.48	J	mg/Kg	₩	14.	.15		06/18/20 17:05	06/19/20 06:33	1
Vitamin E	0.41	J N	mg/Kg	₩	14.	.28	59-02-9	06/18/20 17:05	06/19/20 06:33	1
Unknown	0.40	J	mg/Kg		14.	.85		06/18/20 17:05	06/19/20 06:33	1
Unknown	1.5	J	mg/Kg	₩	14.	.92		06/18/20 17:05	06/19/20 06:33	1
2,2,4a,6a,8a,9,12b,14a-Octamethyl-1 ,2,3,4,4a,5,6,6a,6b,7,8,8	1.1	JN	mg/Kg	₩	15.	.24	53013-35-7	06/18/20 17:05	06/19/20 06:33	1
Unknown	1.9	J	mg/Kg	₩.	15.	.39		06/18/20 17:05	06/19/20 06:33	1
Phenanthrene, 1,2,3,4,4a,9,10,10a-octahydro-7-meth	4.2	JN	mg/Kg	₩	15.	.61	15340-83-7	06/18/20 17:05	06/19/20 06:33	1
oxy-1,1,4a 4,4,6a,6b,8a,11,11,14b-Octamethyl-1 ,4,4a,5,6,6a,6b,7,8,8a,9,	0.68	JN	mg/Kg	₩	15.	.74 1	000194-62- 4	06/18/20 17:05	06/19/20 06:33	1
Unknown	1.3	J	mg/Kg		15.	.89		06/18/20 17:05	06/19/20 06:33	
Unknown	0.50	J	mg/Kg	₽	16.	.08		06/18/20 17:05	06/19/20 06:33	1
4H-Dibenz[a,kl]anthracene,	0.77	JN	mg/Kg	₩	16.	.30	7198-87-0	06/18/20 17:05	06/19/20 06:33	1
5,6-dihydro- Unknown	0.43	. <i>i</i>	mg/Kg		16	.42		06/18/20 17:05	06/19/20 06:33	
Stigmast-4-en-3-one	0.54		mg/Kg mg/Kg	₩		.62	1058-61-3	06/18/20 17:05		1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	41		30 - 130						06/19/20 06:33	
2-Fluorobiphenyl	41		30 - 130						06/19/20 06:33	1
2-Fluorophenol	45		30 - 130						06/19/20 06:33	,
Nitrobenzene-d5	39		30 - 130						06/19/20 06:33	
Phenol-d5	41		30 - 130						06/19/20 06:33	1
Terphenyl-d14	43		30 - 130 30 - 130						06/19/20 06:33	1

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Methoxychlor

trans-Chlordane

Toxaphene

Client Sample ID: EME Horizon A Topsoil 06112020

Date Collected: 06/11/20 14:00
Date Received: 06/11/20 14:00

Lab Sample ID: 460-210993-2

06/17/20 09:33 06/18/20 09:12

06/17/20 09:33 06/18/20 09:12

© 06/17/20 09:33 06/18/20 09:12

Matrix: Solid Percent Solids: 92.2

Method: 8081B - Organochlorine Pesticides (GC) Result Qualifier **Analyte** RL **MDL** Unit D Prepared Analyzed Dil Fac 4,4'-DDD 0.0012 U 0.0073 0.0012 mg/Kg 06/17/20 09:33 06/18/20 09:12 4.4'-DDE 0.00086 U 0.0073 0.00086 mg/Kg 06/17/20 09:33 06/18/20 09:12 1 4,4'-DDT 0.0013 mg/Kg 06/17/20 09:33 06/18/20 09:12 0.0013 U 0.0073 Aldrin 0.0011 U 0.0073 0.0011 mg/Kg 06/17/20 09:33 06/18/20 09:12 alpha-BHC 0.00074 U 0.00074 mg/Kg 06/17/20 09:33 06/18/20 09:12 0.0022 beta-BHC 0.00081 U 0.0022 0.00081 mg/Kg 06/17/20 09:33 06/18/20 09:12 06/17/20 09:33 06/18/20 09:12 Chlordane (n.o.s.) 0.018 U 0.073 0.018 mg/Kg Chlordane (technical) 0.018 U 0.073 0.018 mg/Kg 06/17/20 09:33 06/18/20 09:12 0.0012 mg/Kg 06/17/20 09:33 06/18/20 09:12 cis-Chlordane 0.0012 U 0.0073 delta-BHC 0.00044 U 0.0022 0.00044 mg/Kg 06/17/20 09:33 06/18/20 09:12 Dieldrin 0.00094 U 0.0022 0.00094 mg/Kg 06/17/20 09:33 06/18/20 09:12 Endosulfan I 0.0011 U 0.0073 0.0011 mg/Kg 06/17/20 09:33 06/18/20 09:12 Endosulfan II 0.0019 U 0.0073 0.0019 mg/Kg 06/17/20 09:33 06/18/20 09:12 Endosulfan sulfate 0.00091 U 0.0073 0.00091 mg/Kg 06/17/20 09:33 06/18/20 09:12 Endrin 0.0073 0.0010 mg/Kg 06/17/20 09:33 06/18/20 09:12 0.0010 U Endrin aldehyde 0.0017 U 0.0073 0.0017 mg/Kg 06/17/20 09:33 06/18/20 09:12 Endrin ketone 0.0014 U 0.0073 0.0014 mg/Kg 06/17/20 09:33 06/18/20 09:12 gamma-BHC (Lindane) 0.00067 U 0.0022 0.00067 mg/Kg 06/17/20 09:33 06/18/20 09:12 Heptachlor 0.00086 U 0.0073 0.00086 mg/Kg 06/17/20 09:33 06/18/20 09:12 Heptachlor epoxide 0.0073 0.0011 mg/Kg 06/17/20 09:33 06/18/20 09:12 0.0011 U

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	70	30 - 150	06/17/20 09:33	06/18/20 09:12	1
DCB Decachlorobiphenyl	101	30 - 150	06/17/20 09:33	06/18/20 09:12	1
Tetrachloro-m-xylene	66	30 - 150	06/17/20 09:33	06/18/20 09:12	1
Tetrachloro-m-xvlene	66	30 - 150	06/17/20 09:33	06/18/20 09:12	1

0.0073

0.073

0.0073

0.0017 mg/Kg

0.026 mg/Kg

0.0013 mg/Kg

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

0.0017 U

0.026 U

0.0013 U

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.0097	U	0.073	0.0097	mg/Kg	<u> </u>	06/17/20 09:28	06/18/20 14:06	1
Aroclor 1221	0.0097	U	0.073	0.0097	mg/Kg	☼	06/17/20 09:28	06/18/20 14:06	1
Aroclor 1232	0.0097	U	0.073	0.0097	mg/Kg	☼	06/17/20 09:28	06/18/20 14:06	1
Aroclor 1242	0.0097	U	0.073	0.0097	mg/Kg	.	06/17/20 09:28	06/18/20 14:06	1
Aroclor 1248	0.0097	U	0.073	0.0097	mg/Kg	☼	06/17/20 09:28	06/18/20 14:06	1
Aroclor 1254	0.010	U	0.073	0.010	mg/Kg	☼	06/17/20 09:28	06/18/20 14:06	1
Aroclor 1260	0.010	U	0.073	0.010	mg/Kg	₽	06/17/20 09:28	06/18/20 14:06	1
Aroclor 1262	0.010	U	0.073	0.010	mg/Kg	☼	06/17/20 09:28	06/18/20 14:06	1
Aroclor 1268	0.010	U	0.073	0.010	mg/Kg	☼	06/17/20 09:28	06/18/20 14:06	1
Polychlorinated biphenyls, Total	0.010	U	0.073	0.010	mg/Kg	₩.	06/17/20 09:28	06/18/20 14:06	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	106		30 - 150	06/17/20 09:28	06/18/20 14:06	1
DCB Decachlorobiphenyl	109		30 - 150	06/17/20 09:28	06/18/20 14:06	1
Tetrachloro-m-xylene	109		30 - 150	06/17/20 09:28	06/18/20 14:06	1
Tetrachloro-m-xylene	107		30 - 150	06/17/20 09:28	06/18/20 14:06	1

10

10

10

10

Date Collected: 06/11/20 14:00

Date Received: 06/11/20 14:00

Silver

Zinc

Thallium

Vanadium

Client Sample ID: EME Horizon A Topsoil 06112020

0.64 U

0.13 U

5.1 J

14.1

Lab Sample ID: 460-210993-2

© 06/18/20 03:50 06/18/20 11:54

© 06/18/20 03:50 06/18/20 11:54

© 06/18/20 03:50 06/18/20 11:54

☼ 06/18/20 03:50 06/18/20 11:54

Matrix: Solid

Percent Solids: 92.2

Job ID: 460-210993-1

Method: 6020B - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	6340		20.7	7.1	mg/Kg	☆	06/18/20 03:50	06/18/20 11:54	10
Antimony	0.30	U	1.0	0.30	mg/Kg	₩	06/18/20 03:50	06/18/20 11:54	10
Arsenic	2.7		1.0	0.33	mg/Kg	☼	06/18/20 03:50	06/18/20 11:54	10
Barium	11.1		2.1	0.69	mg/Kg	₩	06/18/20 03:50	06/18/20 11:54	10
Beryllium	0.17	U	0.41	0.17	mg/Kg	₩	06/18/20 03:50	06/18/20 11:54	10
Cadmium	0.35	U	1.0	0.35	mg/Kg	₩	06/18/20 03:50	06/18/20 11:54	10
Chromium	8.3		2.1	0.62	mg/Kg	₩.	06/18/20 03:50	06/18/20 11:54	10
Cobalt	0.70	J	2.1	0.62	mg/Kg	₩	06/18/20 03:50	06/18/20 11:54	10
Copper	3.5		2.1	0.59	mg/Kg	₩	06/18/20 03:50	06/18/20 11:54	10
Lead	4.1		0.62	0.20	mg/Kg	₩	06/18/20 03:50	06/18/20 11:54	10
Manganese	15.8		4.1	1.3	mg/Kg	☼	06/18/20 03:50	06/18/20 11:54	10
Nickel	2.3		2.1	0.67	mg/Kg	☼	06/18/20 03:50	06/18/20 11:54	10
Selenium	0.30	U	5.2	0.30	mg/Kg		06/18/20 03:50	06/18/20 11:54	10

Method: 7471B - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.027		0.018	0.0043	mg/Kg	<u> </u>	06/17/20 03:33	06/17/20 08:03	1

1.0

0.41

2.1

8.3

0.64 mg/Kg

0.13 mg/Kg

0.59 mg/Kg

4.0 mg/Kg

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	1.1	J	2.2	0.39	mg/Kg	<u> </u>	06/23/20 08:30	06/23/20 11:52	1
Cyanide, Total	0.13	U	0.26	0.13	mg/Kg	☼	06/23/20 06:26	06/23/20 14:29	1
pH	4.6	HF	0.1	0.1	SU			06/21/20 15:12	1
Corrosivity	4.6	HF	0.1	0.1	SU			06/21/20 15:12	1
TOC Result 1	30500		109	88.2	mg/Kg	☼		06/23/20 16:21	1
Percent Moisture	7.8		1.0	1.0	%			06/18/20 16:13	1
Percent Solids	92.2		1.0	1.0	%			06/18/20 16:13	1

Matrix: Solid

Client Sample ID: Dun Rite Lean Clay 06112020

Date Collected: 06/11/20 14:00 Date Received: 06/11/20 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9045D		1	702817	06/21/20 15:11	AAP	TAL EDI
Total/NA	Analysis	Moisture		1	702244	06/18/20 16:13	MMC	TAL EDI

Client Sample ID: Dun Rite Lean Clay 06112020 Lab Sample ID: 460-210993-1

Date Collected: 06/11/20 14:00

Matrix: Solid

Date Received: 06/11/20 14:00 Percent Solids: 90.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			701096	06/13/20 07:33	DBM	TAL EDI
Total/NA	Analysis	8260C		1	702889	06/22/20 09:29	AAT	TAL EDI
Total/NA	Prep	3546			702274	06/18/20 17:05	DMS	TAL EDI
Total/NA	Analysis	8270D		1	702339	06/19/20 03:29	MME	TAL EDI
Total/NA	Prep	3546			702163	06/18/20 09:16	ZXB	TAL EDI
Total/NA	Analysis	8081B		1	702358	06/19/20 06:37	FAM	TAL EDI
Total/NA	Prep	3546			702161	06/18/20 09:10	ZXB	TAL EDI
Total/NA	Analysis	8082A		1	702562	06/19/20 20:39	KMH	TAL EDI
Total/NA	Prep	3050B			702081	06/18/20 03:50	GMC	TAL EDI
Total/NA	Analysis	6020B		10	702189	06/18/20 11:51	MDC	TAL EDI
Total/NA	Prep	7471B			701824	06/17/20 03:33	TJS	TAL EDI
Total/NA	Analysis	7471B		1	701885	06/17/20 08:01	TJS	TAL EDI
Total/NA	Prep	3060A			703006	06/23/20 08:30	RAK	TAL EDI
Total/NA	Analysis	7196A		1	703260	06/23/20 11:40	RAK	TAL EDI
Total/NA	Prep	9012B			703164	06/23/20 06:26	IAA	TAL EDI
Total/NA	Analysis	9012B		1	703276	06/23/20 14:28	AJP	TAL EDI
Total/NA	Analysis	Lloyd Kahn		1	703497	06/23/20 16:14	AJP	TAL EDI

Client Sample ID: EME Horizon A Topsoil 06112020

Lab Sample ID: 460-210993-2 Date Collected: 06/11/20 14:00 **Matrix: Solid**

Date Received: 06/11/20 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9045D		1	702817	06/21/20 15:12	AAP	TAL EDI
Total/NA	Analysis	Moisture		1	702244	06/18/20 16:13	MMC	TAL EDI

Client Sample ID: EME Horizon A Topsoil 06112020 Lab Sample ID: 460-210993-2

Date Collected: 06/11/20 14:00 **Matrix: Solid** Date Received: 06/11/20 14:00 Percent Solids: 92.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			701096	06/13/20 07:34	DBM	TAL EDI
Total/NA	Analysis	8260C		1	702889	06/22/20 09:52	AAT	TAL EDI
Total/NA	Prep	3546			702274	06/18/20 17:05	DMS	TAL EDI
Total/NA	Analysis	8270D		1	702339	06/19/20 06:33	MME	TAL EDI
Total/NA	Prep	3546			701907	06/17/20 09:33	ZXB	TAL EDI
Total/NA	Analysis	8081B		1	702077	06/18/20 09:12	FAM	TAL EDI

Eurofins TestAmerica, Edison

Lab Chronicle

Client: Sevenson Environmental Services, Inc. Job ID: 460-210993-1 Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: EME Horizon A Topsoil 06112020

Lab Sample ID: 460-210993-2 Date Collected: 06/11/20 14:00 **Matrix: Solid** Date Received: 06/11/20 14:00 Percent Solids: 92.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			701901	06/17/20 09:28	ZXB	TAL EDI
Total/NA	Analysis	8082A		1	702122	06/18/20 14:06	KMH	TAL EDI
Total/NA	Prep	3050B			702081	06/18/20 03:50	GMC	TAL EDI
Total/NA	Analysis	6020B		10	702189	06/18/20 11:54	MDC	TAL EDI
Total/NA	Prep	7471B			701824	06/17/20 03:33	TJS	TAL EDI
Total/NA	Analysis	7471B		1	701885	06/17/20 08:03	TJS	TAL EDI
Total/NA	Prep	3060A			703006	06/23/20 08:30	RAK	TAL EDI
Total/NA	Analysis	7196A		1	703260	06/23/20 11:52	RAK	TAL EDI
Total/NA	Prep	9012B			703164	06/23/20 06:26	IAA	TAL EDI
Total/NA	Analysis	9012B		1	703276	06/23/20 14:29	AJP	TAL EDI
Total/NA	Analysis	Lloyd Kahn		1	703497	06/23/20 16:21	AJP	TAL EDI

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-210993-1

Laboratory: Eurofins TestAmerica, Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
New Jersey		NELAP	12028	06-30-20
• ,		report, but the laboratory is i	not certified by the governing authority.	This list may include analytes for which
the agency does not of Analysis Method	offer certification. Prep Method	Matrix	Analyte	
7196A	3060A	Solid	Cr (VI)	
8081B	3546	Solid	Chlordane (n.o.s.)	
8082A	3546	Solid	Polychlorinated biphenyls, T	otal
9045D		Solid	Corrosivity	
Lloyd Kahn		Solid	TOC Result 1	
Moisture		Solid	Percent Moisture	
Moisture		Solid	Percent Solids	

5

a

10

Method Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-210993-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL EDI
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL EDI
8081B	Organochlorine Pesticides (GC)	SW846	TAL EDI
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL EDI
6020B	Metals (ICP/MS)	SW846	TAL EDI
7471B	Mercury (CVAA)	SW846	TAL EDI
7196A	Chromium, Hexavalent	SW846	TAL EDI
9012B	Cyanide, Total andor Amenable	SW846	TAL EDI
9045D	pH	SW846	TAL EDI
Lloyd Kahn	Organic Carbon, Total (TOC)	EPA	TAL EDI
Moisture	Percent Moisture	EPA	TAL EDI
3050B	Preparation, Metals	SW846	TAL EDI
3060A	Alkaline Digestion (Chromium, Hexavalent)	SW846	TAL EDI
3546	Microwave Extraction	SW846	TAL EDI
5035	Closed System Purge and Trap	SW846	TAL EDI
7471B	Preparation, Mercury	SW846	TAL EDI
9012B	Cyanide, Total and/or Amenable, Distillation	SW846	TAL EDI

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins TestAmerica, Edison

2

5

8

9

40

Sample Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-210993-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
460-210993-1	Dun Rite Lean Clay 06112020	Solid	06/11/20 14:00	06/11/20 14:00	
460-210993-2	EME Horizon A Topsoil 06112020	Solid	06/11/20 14:00	06/11/20 14:00	

4

6

8

9

M - Hexane
N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2S2O3
S - H2SO4
T - TSP Dodecahydrate
U - Acetone
U - Acetone
W - PH 4-5
Z - other (specify) Special Instructions/Note: Ver: 01/16/2019 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Montt シイクグ Preservation Codes: D - Nitric Acid E - NaHSO4 F - MeOH G - Amchlor H - Ascorbic Acid C - Zn Acetate Page 1 of 1 A - HCL B - NaOH J - DI Water Total Number of containers SHORY Date/Time: ate/Time: Aethod of Shipmen Lloyd_Kahn_Mod - TOC by Lloyd Kahn (402 Soil Jar) × × **Analysis Requested** × × 9045D - pH (802 Soil Jar) Cooler Temperature(s) °C and Other Remarks: × × 9012B - Cyanide, Total (Soil Jar 80z) Special Instructions/QC Requirements: × × 8270D - SRS BNA + 25 TICs (Soil Jar 8 oz) × × 8082A - PCBs (Soil Jar 802) E-Mail: allison.bennett@testamericainc.com × 8081B - SRS Pesticides (Soil Jar 8oz) × × × 471B Mercury (Soil Jar 80z) × × 7196A Hexavalent Chromium - 7196 (Soil Jar 80z) eceived by: Received by: Received by 6020B - SRS Metals w/o Hg (Soil Jar 802) × × Lab PM: Bennett, Allison L BZ60C - SRS VOCs + 15 TICs (Encore 5g, Plastic 20 mL) Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) BT=Tissue, A=Air) (W=water, S=solid, O=waste/oll, Preservation Code: Matrix Company Company S S Type (C=comp, Radiological G=grab) Sample U O (1941) 460-210993 Chain of Custody Sample Time 1400 1400 Date: Unknown (days): Due Date Requested: 14 Phone: 716 308 1990 Sample Date 6/11/20 6/11/20 Sampler: Toni Polk PO#: Jate/Time: Project #: 1247 SSOW#: Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. Sevenson Environmental Services, Inc. EME Horizon A Topsoil 06112020 Dun Rite Lean Clay 06112020 247 - SA-6 Deferred Area SA-6 South Deferred Area Empty Kit Relinquished by: Custody Seals Intact:

A Yes A No Client Information Sample Identification 2749 Lockport Road Phone: 716 284 0431 Mike Marrone inquished by: Niagara Falls Client Contact: State, Zip: NY, 14305

Environment Testing

eurofins 🚉

COC No:

Carrier Tracking No(s)

Chain of Custody Record

Eurofins TestAmerica, Edison

777 New Durham Road

Edison, NJ 08817

Phone (732) 549-3900 Fax (732) 549-3679

Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis.

Date:

Receipt Temperature and pH Log **Eurofins TestAmerica Edison**

Job Number:

of

Page

Cooler #2: C C C C C C C C C C C C C C C C C C C			RAW			THE PERSON NAMED IN COLUMN						١
Ammonia COD	· ·	Cooler #4:	ပူ	CORRECTED		ŭ	Cooler #7:	Paw C	CORRECTED			
Ammonia COD		Cooler #5:	S 8	8		ŭ i	Cooler#8:	ပ္ (8 9			
	Nitrate Metals	Hardness	Pest	EPH or	Phenols	Sulfide	TKN	100	Total	Total	Other	Othe
(pH<2)		(pH<2)	(bH 2-9)	(pH<2)	(pH<2)	(6 <hd)< td=""><td>(pH<2)</td><td>(pH<2)</td><td>(pH>12)</td><td>(pH<2)</td><td></td><td></td></hd)<>	(pH<2)	(pH<2)	(pH>12)	(pH<2)		
	-	-										
	_											
If pH adjustments are required record the information below: Sample No(s). adjusted:	required recor	d the inform	nation be	low:								
Preservative Name/Conc.:			Volun	ne of Pres	Volume of Preservative used (ml):	sed (ml):						
Lot # of Preservative(s):					Expirat	Expiration Date:						

EDS-WI-038, Rev 4.1 10/22/2019

Initials:

Client: Sevenson Environmental Services, Inc.

Job Number: 460-210993-1

Login Number: 210993 List Source: Eurofins TestAmerica, Edison

List Number: 1

Creator: Rivera, Kenneth

oroator: Nivora, Normoth		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Edison

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210993-1
Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Dun Rite Lea	n Cla	ay 06112020	EME Horizon A T	opso	I 06112020
Lab Sample ID	Residential	Non-Residential	IGW Screening		4	60-210993-1		46	0-210993-
Sampling Date	Sept_2017	Sept_2017	Nov_2013	06/1	1/20	020 14:00:00	06/1	1/20	20 14:00:0
Matrix						Soil			So
Dilution Factor						1			
Unit	mg/kg	mg/kg	mg/kg			mg/kg			mg/k
				Result	α	MDL	Result	Q	MD
SOIL BY 8260C									
1,1,1-Trichloroethane	160000	NA	0.3	0.00037	J	0.00037	0.00042	U	0.0004
1,1,2,2-Tetrachloroethane	1	3	0.007	0.00034	J	0.00034	0.00039	U	0.0003
1,1,2-Trichloroethane	2	6	0.02	0.00028	U	0.00028	0.00032	U	0.0003
1,1-Dichloroethane	8	24	0.2	0.00032	U	0.00032	0.00037	U	0.0003
1,1-Dichloroethene	11	150	0.008	0.00035	U	0.00035	0.00041	U	0.0004
1,2-Dibromo-3-Chloropropane	0.08	0.2	0.005	0.00072	U	0.00072	0.00083	U	0.0008
1,2-Dibromoethane	0.008	0.04	0.005	0.00028	U	0.00028	0.00032	U	0.0003
1,2-Dichloroethane	0.9	3	0.005	0.00047	U	0.00047	0.00053	U	0.0005
1,2-Dichloropropane	2	5	0.005	0.00067	U	0.00067	0.00076	U	0.0007
2-Butanone	3100	44000	0.9	0.0043	U	0.0043	0.0049	U	0.004
2-Chloroethyl vinyl ether	NA	NA	NA	0.0025	U	0.0025	0.0029	U	0.002
2-Hexanone	NA	NA	NA	0.0027	U	0.0027	0.0031	U	0.003
4-Methyl-2-pentanone	NA	NA	NA	0.0024	U	0.0024	0.0028	U	0.002
Acetone	70000	NA	19	0.0090	U	0.0090	0.010	U	0.01
Acrolein	0.5	1	0.5	0.044	U *	0.044	0.050	U *	0.050
Acrylonitrile	0.9	3	0.5	0.0026	U *	0.0026	0.0030	U *	0.0030
Benzene	2	5	0.005	0.00041	U	0.00041	0.00047	U	0.0004
Bromodichloromethane	1	3	0.005	0.00040	U	0.00040	0.00046	U	0.0004
Bromoform	81	280	0.03	0.00067	U	0.00067	0.00077	U	0.0007
Bromomethane	25	59	0.04	0.00075	U	0.00075	0.00085	U	0.0008
Carbon disulfide	7800	110000	6	0.00042	U	0.00042	0.00048	U	0.0004
Carbon tetrachloride	2	4	0.005	0.00061	U	0.00061	0.00070	U	0.0007
Chlorobenzene	510	7400	0.6	0.00028	U	0.00028	0.00032	U	0.0003
Chloroethane	220	1100	NA	0.00082	U	0.00082	0.00094	U	0.00094
Chloroform	0.6	2	0.4	0.00050	U	0.00050	0.00058	U	0.0005
Chloromethane	4	12	NA	0.00068	U	0.00068	0.00078	U	0.0007
cis-1,2-Dichloroethene	230	560	0.3	0.00024	U	0.00024	0.00027	U	0.0002
cis-1,3-Dichloropropene	NA	NA	NA	0.00043	U	0.00043	0.00049	U	0.0004
Dibromochloromethane	3	8	0.005	0.00031	U	0.00031	0.00035	U	0.0003
Dichlorodifluoromethane	490	230000	39	0.00053	U	0.00053	0.00061	U	0.0006
Ethylbenzene	7800	110000	13	0.00031	U	0.00031	0.00036	U	0.0003
Methyl acetate	78000	NA NA	22	0.0068	U	0.0068	0.0078	U	0.007
Methylene Chloride	46	230	0.01	0.00073	U	0.00073	0.00084	U	0.0008
MTBE	110	320	0.2	0.00020	U	0.00020	0.00023	U	0.0002
Styrene	90	260	3	0.00044	U	0.00044	0.00050	U	0.0005
TBA	1400	11000	0.3	0.0052	U	0.0052	0.0059	U	0.005
Tetrachloroethene	43	1500	0.005	0.00022	U		0.00035	U	0.0002
Toluene	6300	91000	7	0.00022	U	0.000==	0.00042	U	0.0002
trans-1.2-Dichloroethene	300	720	0.6	0.00037	U	0.00037	0.00042	U	0.0004
trans-1,3-Dichloropropene	NA NA	NA	NA	0.00033	U		0.00044	U	0.0004
Trichloroethene	3	10	0.01	0.00042	U	0.00042	0.00048	U	0.0004

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210993-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Dun Rite Lea	ın Cla	y 06112020	EME Horizon A 1	opso	il 06112020
Lab Sample ID	Residential	Non-Residential	IGW Screening		46	50-210993-1		46	0-210993-2
Sampling Date	Sept_2017	Sept_2017	Nov_2013	06/2	11/20	20 14:00:00	06/1	1/20	20 14:00:00
Matrix						Soil			Soil
Dilution Factor						1			1
Unit	mg/kg	mg/kg	mg/kg			mg/kg			mg/kg
				Result	Q	MDL	Result	Q	MDL
Trichlorofluoromethane	23000	340000	34	0.00064	J	0.00064	0.00073	U	0.00073
Vinyl chloride	0.7	2	0.005	0.00086	U	0.00086	0.00098	U	0.00098
Xylenes, Total	12000	170000	19	0.00027	U	0.00027	0.00031	U	0.00031
Total Conc	NA	NA	NA	0.0			0.0		
Total Estimated Conc. (TICs)	NA	NA	NA	0.0*T			0.0*T		

^{*}T There are no TICs reported for the sample

^{*:} LCS or LCSD is outside acceptance limits.

U : Indicates the analyte was analyzed for but not detected.

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210993-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Dun Rite Lean Clay	y 06112020	Dun Rite Lea	n Clay 061120	20 EME Horizon A 1	opsoil	06112020
Lab Sample ID	Residential	Non-Residential	IGW Screening	46	0-210993-1		460-210993	-1	460	-210993-2
Sampling Date	Sept 2017	Sept 2017	Nov 2013	06/11/202	20 14:00:00	06/1	1/2020 14:00:	06/2	1/2020	0 14:00:00
Matrix	· -	'-	_		Soil	·	Sc	oil		Soil
Dilution Factor					1			1		1
Unit	mg/kg	mg/kg	mg/kg		mg/kg		mg/	kg		mg/kg
	5. 5	<u> </u>	G, G	Result Q	MDL	Result	Q MI	DL Result	Q	MDL
SOIL BY 8270D										
1,1'-Biphenyl	61	240	140	0.0048 U F1	0.0048	NR		0.0048	U	0.0048
1.2.4-Trichlorobenzene	73	820	0.7	0.0094 U F1	0.0094	NR		0.0092	U	0.0092
1.2-Dichlorobenzene	5300	59000	17	0.0062 U F1	0.0062	NR		0.0061	U	0.0061
1,2-Diphenylhydrazine	0.7	2	0.7	0.020 J F1	0.0067	NR		0.0066	U	0.0066
1,3-Dichlorobenzene	5300	59000	19	0.0048 U F1	0.0048	NR		0.0048	U	0.0048
1,4-Dichlorobenzene	5	13	2	0.014 U F1	0.014	NR		0.014	U	0.014
2,4,5-Trichlorophenol	6100	68000	68	0.037 U	0.037	NR		0.037	U	0.037
2,4,6-Trichlorophenol	19	74	0.2	0.047 U	0.047	NR		0.046	U	0.046
2,4-Dichlorophenol	180	2100	0.2	0.023 U F1	0.023	NR		0.023	U	0.023
2,4-Dimethylphenol	1200	14000	1	0.016 U F1	0.016	NR		0.016	U	0.016
2,4-Dinitrophenol	120	1400	0.3	0.18 U F2	0.18	NR		0.18	U	0.18
2,4-Dinitrotoluene	0.7	3	NA	0.039 U F1	0.039	NR		0.039	U	0.039
2,6-Dinitrotoluene	0.7	3	NA	0.026 U F1	0.026	NR		0.026	U	0.026
2-Chloronaphthalene	NA	NA	NA	0.017 U F1	0.017	NR		0.017	U	0.017
2-Chlorophenol	310	2200	0.8	0.013 U F1	0.013	NR		0.013	U	0.013
2-Methylnaphthalene	230	2400	8	0.010 U F1	0.010	NR		0.010	U	0.010
2-Methylphenol	310	3400	NA	0.014 U F1	0.014	NR		0.013	U	0.013
2-Nitroaniline	39	23000	NA	0.014 U	0.014	NR		0.013	U	0.013
2-Nitrophenol	NA	NA	NA	0.036 U F1	0.036	NR		0.036	U	0.036
3.3'-Dichlorobenzidine	1	4	0.2	0.055 F1 *	0.055	NR		0.054	U *	0.054
3-Nitroaniline	NA	NA	NA	0.041 U	0.041	NR		0.040	U	0.040
4,6-Dinitro-2-methylphenol	6	68	0.3	0.059 U	0.059	NR		0.058	U	0.058
4-Bromophenyl phenyl ether	NA	NA	NA	0.015 J F1	0.014	NR		0.014	U	0.014
4-Chloro-3-methylphenol	NA	NA	NA	0.020 U	0.020	NR		0.020	U	0.020
4-Chloroaniline	NA	NA	NA	0.025 U	0.025	NR		0.025	U	0.025
4-Chlorophenyl phenyl ether	NA	NA	NA	0.017 J F1	0.013	NR		0.013	U	0.013
4-Methylphenol	31	340	NA	0.023 U F1	0.023	NR		0.022	U	0.022
4-Nitroaniline	NA	NA	NA	0.042 U	0.042	NR		0.041	U	0.041
4-Nitrophenol	NA	NA	NA	0.059 U	0.059	NR		0.058	U	0.058
Acenaphthene	3400	37000	110	0.026 U F1	0.026	NR		0.026	U	0.026
Acenaphthylene	NA	300000	NA	0.0080 J F1	0.0038	NR		0.0037	U	0.0037
Acetophenone	2	5	3	0.018 F1 *	0.018	NR		0.018	U *	0.018
Anthracene	17000	30000	2400	0.019 J F1	0.011	NR		0.011	U	0.011
Atrazine	210	2400	0.2	0.0092 U F1	0.0092	NR		0.0091	U	0.0091
Benzaldehyde	6100	68000	NA	0.016 U	0.016	NR		0.016	U	0.016
Benzidine	0.7	0.7	0.7	0.036 U F1	0.036	NR		0.036	U	0.036
Benzo[a]anthracene	5	17	0.8	0.013 U F1	0.013	NR		0.013	U	0.013
Benzo[a]pyrene	0.5	2	0.2	0.0097 U F1	0.0097	NR		0.0096	U	0.0096
Benzo[b]fluoranthene	5	17	2	0.0095 J F1	0.0094	NR		0.0093	U	0.0093
Benzo[g,h,i]perylene	380000	30000	NA NA	0.011 U F1	0.011	NR		0.011	U	0.011
Benzo[k]fluoranthene	45	170	25	0.0084 J F1	0.0071	NR		0.0070		0.0070

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210993-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Dun Rite Lean	Clay 0611202	Dun Rite Lea	an Cla	y 06112020	EME Horizon A Top:	oil 06112020
Lab Sample ID	Residential	Non-Residential	IGW Screening		460-210993-	1	46	50-210993-1		160-210993-2
Sampling Date	Sept_2017	Sept_2017	Nov_2013	06/11/	² 2020 14:00:0	06/	11/20	20 14:00:00	06/11/2	020 14:00:00
Matrix			_		So	il		Soil		Soil
Dilution Factor						1		1		1
Unit	mg/kg	mg/kg	mg/kg		mg/k	g		mg/kg		mg/kg
				Result	Q MD	L Result	Q	MDL	Result	Q MDL
bis (2-chloroisopropyl) ether	23	67	5	0.0066 F1	. * 0.006	6 NR			0.0065 U	* 0.0065
Bis(2-chloroethoxy)methane	NA	NA	NA	0.028 U I	F1 0.02	8 NR			0.028	0.028
Bis(2-chloroethyl)ether	0.4	2	0.2	0.013 U I	F1 0.01	NR			0.012	J 0.012
Bis(2-ethylhexyl) phthalate	35	140	1200	0.019 U I	F1 0.01	9 NR			0.019	0.019
Butyl benzyl phthalate	1200	14000	230	0.017 U I	F1 0.01	7 NR			0.017	J 0.017
Caprolactam	31000	340000	12	0.057	U 0.05	7 NR			0.056	0.056
Carbazole	24	96	NA	0.014 U I	F1 0.01	4 NR			0.014	0.014
Chrysene	450	1700	80	0.010 J I	F1 0.006	2 NR			0.0061	0.0061
Dibenz(a,h)anthracene	0.5	2	0.8	0.016 U I	F1 0.01	6 NR			0.016	0.016
Dibenzofuran	NA	NA	NA	0.016 J I	F1 0.005	1 NR			0.0050	0.0050
Diethyl phthalate	49000	550000	88	0.013 J I	F1 0.005	3 NR			0.0052	J 0.0052
Dimethyl phthalate	NA	NA	NA	0.083 U I	F1 0.08	NR			0.082	0.082
Di-n-butyl phthalate	6100	68000	760	0.064 U I		4 NR			0.063	0.063
Di-n-octyl phthalate	2400	27000	3300	0.019 U I	F1 0.01	9 NR			0.019	0.019
Fluoranthene	2300	24000	1300	0.013 U I	F1 0.01	3 NR			0.013	0.013
Fluorene	2300	24000	170	0.014 J I	F1 0.004	9 NR			0.0049	0.0049
Hexachlorobenzene	0.3	1	0.2	0.017 J I		7 NR			0.017	0.00
Hexachlorobutadiene	6	25	0.9	0.0077 U I	F1 0.007	7 NR			0.0076	J 0.0076
Hexachlorocyclopentadiene	45	110	320		U 0.03				0.031	0.00-
Hexachloroethane	12	48	0.2	0.012 U I	F1 0.01	2 NR			0.012	J 0.012
Indeno[1,2,3-cd]pyrene	5	17	7	0.014 U I					0.014	J 0.014
Isophorone	510	2000	0.2	0.11 U I	F1 0.1	1 NR			0.10	J 0.10
Naphthalene	6	17	25	0.0063 U I		3 NR			0.0062	J 0.0062
Nitrobenzene	5	14	0.2	0.0087 U I					0.0086	
N-Nitrosodimethylamine	0.7	0.7	0.7	01001	U 0.03				0.033	0.000
N-Nitrosodi-n-propylamine	0.2	0.3	0.2	0.026 F1					0.026 U	
N-Nitrosodiphenylamine	99	390	0.4	0.012 J I					0.0069	J 0.0069
Pentachlorophenol	0.9	3	0.3		U 0.07				0.074	0.074
Phenanthrene	NA	300000	NA	0.018 J I					0.0063	0.0063
Phenol	18000	210000	8	****	U 0.01				0.000	0.013
Pyrene	1700	18000	840	0.012 J I	F1 0.009				0.0089	0.0089
Total Conc	NA	NA	NA	0.2089		NR			0.0	
Total Estimated Conc. (TICs)	NA	NA	NA	2.3		NR			21.49	
Total Estimated Conc. (TICs)	NA	NA	NA	NR		0.303			NR	

NR: Not Analyzed

^{*:} LCS or LCSD is outside acceptance limits.

F1: MS and/or MSD recovery exceeds control limits.

F2: MS/MSD RPD exceeds control limits

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

Eurofins TestAmerica, Edison

TestAmerica Laboratories, Inc.

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210993-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Dun Rite Lean C	Clay 06112020	Dun Rite Lea	n Clay 06	6112020	EME Horizon A T	opsoil ()6112020
Lab Sample ID	Residential	Non-Residential	IGW Screening		460-210993-1		460-2	10993-1		460-	210993-2
Sampling Date	Sept_2017	Sept_2017	Nov_2013	06/11/2	2020 14:00:00	06/1	.1/2020 1	14:00:00	06/1	1/2020	14:00:00
Matrix					Soil		Soil				Soil
Dilution Factor					1		1				1
Unit	mg/kg	mg/kg	mg/kg		mg/kg			mg/kg			mg/kg
				Result (Q MDL	Result	Q	MDL	Result	Q	MDL

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210993-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	Dun Rite Lea	n Cla	y 06112020	Dun Rite Lea	n Cla	y 06112020	EME Horizon A 1	opso	il 06112020
Lab Sample ID		46	0-210993-1		46	0-210993-1		46	50-210993-2
Sampling Date	06/1	1/20	20 14:00:00	06/1	1/20	20 14:00:00	06/1	1/20	20 14:00:00
Matrix			Soil			Soil			Soil
Dilution Factor			1			1			1
Unit			mg/kg			mg/kg			mg/kg
	Result	Q	RT mm:ss	Result	Q	RT mm:ss	Result	Q	RT mm:ss
SOIL TICS BY 8270D									
Unknown	NR			NR			0.43	J	01:41
Aldol condensation product	NR			NR			1.9	ΑJ	02:57
Aldol condensation product	2.3	ΑJ	03:07	NR			NR		
Benzoic acid	NR			0.27	J	05:26	NR		
n-Octadecane	NR			0.033	JF1	08:39	NR		
Unknown	NR			NR			0.66	J	11:17
2-Pentacosanone	NR			NR			0.74	JN	13:07
1,19-Eicosadiene	NR			NR			0.46	JN	13:45
Unknown	NR			NR			2.1	J	14:01
Unknown	NR			NR			0.99	J	14:07
Unknown	NR			NR			0.48	J	14:09
Vitamin E	NR			NR			0.41	JN	14:17
Unknown	NR			NR			0.40	J	14:51
Unknown	NR			NR			1.5	J	14:55
2,2,4a,6a,8a,9,12b,14a-Octamethyl-	NR			NR			1.1	JN	15:14
1,2,3,4,4a,5,6,6a,6b,7,8,8	INK			INK			1.1	J IV	15.14
Unknown	NR			NR			1.9	J	15:23
Phenanthrene, 1,2,3,4,4a,9,10,10a-	NR			NR			4.2	JN	15:36
octahydro-7-methoxy-1,1,4a	INK			INK			4.2	JIV	15:30
4,4,6a,6b,8a,11,11,14b-Octamethyl-	NR			NR			0.68	JN	15:45
1,4,4a,5,6,6a,6b,7,8,8a,9,	INK			INK			0.08	JIV	15.45
Unknown	NR			NR			1.3	J	15:53
Unknown	NR			NR			0.50	J	16:05
4H-Dibenz[a,kl]anthracene, 5,6-dihydro-	NR			NR			0.77	JN	16:18
Unknown	NR			NR			0.43	J	16:25
Stigmast-4-en-3-one	NR			NR			0.54	JN	16:37

NR: Not Analyzed

RT mm:ss Retention Time in mm:ss format

- A: The tentatively identified compound is a suspected aldol-condensation product.
- F1: MS and/or MSD recovery exceeds control limits.
- J : Indicates an Estimated Value for TICs
- $\label{eq:concentration} \textbf{J}: \textbf{Result} \ is \ less \ than \ the \ \textbf{RL} \ but \ greater \ than \ or \ equal \ to \ the \ \textbf{MDL} \ and \ the \ concentration \ is \ an \ approximate \ value.$
- $\ensuremath{\text{N}}$: This flag indicates the presumptive evidence of a compound.

Lab Contact:

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210993-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	Dun Rite Lean	Cla	y 06112020	Dun Rite Le	n Cla	y 06112020	EME Horizon A 1	opso	oil 06112020
Lab Sample ID		46	0-210993-1		46	50-210993-1		4	60-210993-2
Sampling Date	06/11	./20	20 14:00:00	06/	11/20	20 14:00:00	06/2	11/20	020 14:00:00
Matrix			Soil			Soil			Soil
Dilution Factor			1			1			1
Unit			mg/kg			mg/kg			mg/kg
	Result	Q	RT mm:ss	Result	Q	RT mm:ss	Result	Q	RT mm:ss

Allison Bennett Project Manager I (732)593-2517

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210993-1
Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Dun Rite Lea	n Cla	y 06112020	EME Horizon A T	opsoi	l 06112020
Lab Sample ID	Residential	Non-Residential	IGW Screening		46	0-210993-1		46	0-210993-2
Sampling Date	Sept_2017	Sept_2017	Nov_2013	06/2	11/20	20 14:00:00	06/1	1/20	20 14:00:00
Matrix						Soil			Soil
Dilution Factor						1			1
Unit	mg/kg	mg/kg	mg/kg			mg/kg			mg/kg
				Result	Q	MDL	Result	Q	MDL
SOIL BY 8081B									
4,4'-DDD	3	13	4	0.0013	U	0.0013	0.0012	U	0.0012
4,4'-DDE	2	9	18	0.00087	U	0.00087	0.00086	U	0.00086
4,4'-DDT	2	8	11	0.0014	U	0.0014	0.0013	U	0.0013
Aldrin	0.04	0.2	0.2	0.0011	U	0.0011	0.0011	U	0.0011
alpha-BHC	0.1	0.5	0.002	0.00075	U	0.00075	0.00074	U	0.00074
beta-BHC	0.4	2	0.002	0.00083	U	0.00083	0.00081	U	0.00081
Chlordane (n.o.s.)	NA	NA	0.05	0.018	U	0.018	0.018	U	0.018
Chlordane (technical)	0.2	1	NA	0.018	U	0.018	0.018	U	0.018
cis-Chlordane	NA	NA	NA	0.0012	U	0.0012	0.0012	U	0.0012
delta-BHC	NA	NA	NA	0.00045	U	0.00045	0.00044	U	0.00044
Dieldrin	0.04	0.2	0.003	0.00096	U	0.00096	0.00094	U	0.00094
Endosulfan I	NA	NA	NA	0.0011	U	0.0011	0.0011	U	0.0011
Endosulfan II	NA	NA	NA	0.0019	U	0.0019	0.0019	U	0.0019
Endosulfan sulfate	470	6800	2	0.00092	U	0.00092	0.00091	U	0.00091
Endrin	23	340	1	0.0011	U	0.0011	0.0010	U	0.0010
Endrin aldehyde	NA	NA	NA	0.0017	U	0.0017	0.0017	U	0.0017
Endrin ketone	NA	NA	NA	0.0014	U	0.0014	0.0014	U	0.0014
gamma-BHC (Lindane)	0.4	2	0.002	0.00068	U	0.00068	0.00067	U	0.00067
Heptachlor	0.1	0.7	0.5	0.00087	U	0.00087	0.00086	U	0.00086
Heptachlor epoxide	0.07	0.3	0.01	0.0011	U	0.0011	0.0011	U	0.0011
Methoxychlor	390	5700	160	0.0017	U	0.0017	0.0017	U	0.0017
Toxaphene	0.6	3	0.3	0.027	U	0.027	0.026	U	0.026
trans-Chlordane	NA	NA	NA	0.0013	U	0.0013	0.0013	U	0.0013

U : Indicates the analyte was analyzed for but not detected.

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210993-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Dun Rite Lea	n Cla	y 06112020	EME Horizon A Topsoil 06112020			
Lab Sample ID	Residential	Non-Residential	IGW Screening		4	50-210993-1	460-210993-2			
Sampling Date	Sept_2017	Sept_2017	Nov_2013	06/1	1/20	20 14:00:00	06/11/2020 14:00:00			
Matrix						Soil	Soil			
Dilution Factor					1			1		
Unit	mg/kg	mg/kg	mg/kg		mg/kg		mg/kg			
				Result	Q	MDL	Result	Q	MDL	
SOIL BY 8082A										
Aroclor 1016	NA	NA	NA	0.0098	U	0.0098	0.0097	U	0.0097	
Aroclor 1221	NA	NA	NA	0.0098	U	0.0098	0.0097	U	0.0097	
Aroclor 1232	NA	NA	NA	0.0098	U	0.0098	0.0097	U	0.0097	
Aroclor 1242	NA	NA	NA	0.0098	U	0.0098	0.0097	U	0.0097	
Aroclor 1248	NA	NA	NA	0.0098	U	0.0098	0.0097	U	0.0097	
Aroclor 1254	NA	NA	NA	0.010	U	0.010	0.010	U	0.010	
Aroclor 1260	NA	NA	NA	0.010	U	0.010	0.010	U	0.010	
Aroclor 1262	NA	NA	NA	0.010	U	0.010	0.010	U	0.010	
Aroclor 1268	NA	NA	NA	0.010	U	0.010	0.010	U	0.010	
Total PCBs	0.2	1	0.2	0.010	U	0.010	0.010	U	0.010	

U : Indicates the analyte was analyzed for but not detected.

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210993-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Dun Rite Lean Clay 06112020			EME Horizon A Topsoil 06112020			
Lab Sample ID	Residential	Non-Residential	IGW Screening		50-210993-1	460-210993-2				
Sampling Date	Sept_2017	Sept_2017	Nov_2013	06/1	20 14:00:00	06/11/2020 14:00:00				
Matrix				Soil		Soil				
Unit										
				Result	Q	MDL	Result	Q	MDI	
SOIL BY 6020B(MG/KG)										
Aluminum	78000	NA	6000	5390		7.2	6340		7.1	
Antimony	31	450	6	0.31	U	0.31	0.30	U	0.30	
Arsenic	19	19	19	1.6		0.34	2.7		0.33	
Barium	16000	59000	2100	31.0		0.70	11.1		0.69	
Beryllium	16	140	0.7	0.17	U	0.17	0.17	U	0.17	
Cadmium	78	78	2	0.35	U	0.35	0.35	U	0.35	
Chromium	NA	NA	NA	10.2		0.63	8.3		0.62	
Cobalt	1600	590	90	0.63	U	0.63	0.70	J	0.62	
Copper	3100	45000	11000	5.1		0.60	3.5		0.59	
Lead	400	800	90	7.2		0.20	4.1		0.20	
Manganese	11000	5900	65	5.0		1.3	15.8		1.3	
Nickel	1600	23000	48	1.6	J	0.68	2.3		0.67	
Selenium	390	5700	11	0.30	U	0.30	0.30	U	0.30	
Silver	390	5700	1	0.65	U	0.65	0.64	U	0.64	
Thallium	NA	NA	3	0.13	U	0.13	0.13	U	0.13	
Vanadium	78	1100	NA	15.6		0.60	14.1		0.59	
Zinc	23000	110000	930	5.3	J	4.1	5.1	J	4.0	
SOIL BY 7471B(MG/KG)										
Mercury	23	65	0.1	0.046		0.0042	0.027		0.0043	

Highlighted Concentrations shown in bold type face exceed limits

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

TestAmerica Laboratories, Inc.

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-210993-1 Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

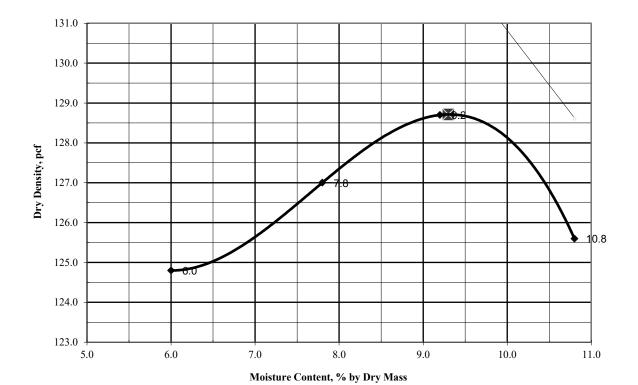
Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Dun Rite Lea	n Cla	y 06112020	EME Horizon A T	opsoi	I 06112020
Lab Sample ID	Residential	Non-Residential	IGW Screening	460-210993-1		460-210993-2			
Sampling Date	Sept_2017	Sept_2017	Nov_2013	06/1	1/20	20 14:00:00	06/11/2020 14:00:00		
Matrix					Soil		So		Soil
				Result	Q	MDL	Result	Q	MDL
SOIL BY 7196A									
Cr (VI) (mg/kg)	NA	NA	NA	0.58	J	0.38	1.1	J	0.39
SOIL BY 9012B									
Cyanide, Total (mg/kg)	47	680	20	0.12	U	0.12	0.13	U	0.13
SOIL BY 9045D									
Corrosivity (su)	NA	NA	NA	4.8	HF	0.1	4.6	HF	0.1
pH (su)	NA	NA	NA	4.8	HF	0.1	4.6	HF	0.1
SOIL BY LLOYD KAHN									
TOC Result 1 (mg/kg)	NA	NA	NA	241		89.5	30500		88.2

HF: Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Lab Contact: Allison Bennett Project Manager I (732)593-2517

 $[\]label{eq:J:Result} \textbf{J}: \textbf{Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.}$


 $[\]ensuremath{\mathsf{U}}$: Indicates the analyte was analyzed for but not detected.

12960 Commerce Lake Drive, A14, Fort Myers, FL 33 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

CLIENT:	Sevenson Envi	ronmental Services Inc.	PROJECT NO.:	200608
PROJECT:	Honeywell Pro	oject Jersey City, NJ	LAB NUMBER:	20-0920B
TEST METHOD:	ASTM D 698 '	ASTM D 698 'Standard Proctor'		
SOIL ID NUMBER:	5			
ITEM:	Common Borre	ow		
SOURCE:	On-Site Existin	ng Material; Open Face Area		
SOIL DESCRIPTION:	Dk Brown Silt	y Sand w/ Nat Gravel: 61% San	d; 22% Gravel; 17% Silt	
DATE SAMPLED:	8/19/2020	SAMPLED BY:	Carson Blake	
DATE TESTED:	8/20/2020	TESTED BY:	Robert Sanborn	

REPORT OF MOISTURE DENSITY RELATIONSHIP

Individual Test Points				
Percent	Dry			
Moisture	Density			
6.0	124.8			
7.8	127.0			
9.2	128.7			
10.8	125.6			

Uncorrected Maximum Dry Density:	128.7	lb/cu. ft.
Uncorrected Optimum Moisture Content:	9.3	%
Specific Gravity of Soils *:	2.65	
Percent Oversize Particles:	2.9	%
Specific Gravity of Oversize*:	2.67	

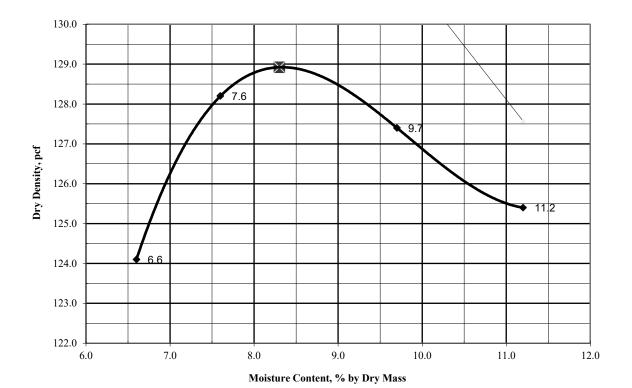
Corrected* Maximum Dry Density:	128.7	lb/cu. ft.
Corrected* Opt. Moisture Content:	9.3	%

^{**}Corrected for oversize, when oversize particles exceed 5% of sample.

Report Reviewed By:

*Specific Gravity of Soils Estimated and Specific Gravity of Oversize Estimated.

This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc.


The results in this report relate only to the items inspected or tested.

12960 Commerce Lake Drive, A14, Fort Myers, FL 33 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

				- , ,			
CLIENT:	Sevenson En	vironmenta	l Services Inc.		PROJECT NO.:		200608
PROJECT:	Honeywell P	Honeywell Project Jersey City, NJ		LAB NUMBER:		20-0920C	
TEST METHOD:	ASTM D 155	ASTM D 1557 'Modified Proctor'		Method: C			
SOIL ID NUMBER:	6						
ITEM:	Common Bo	rrow					
SOURCE:	On-Site Exist	ting Materia	al				
SOIL DESCRIPTION:	Dk Brown Si	lty Sand w/	Nat Gravel: 61% S	Sand;	22% Gravel; 17% S	ilt	
DATE SAMPLED:	8/19/2020		SAMPLED BY:		Carson Blake		
DATE TESTED:	8/20/2020		TESTED BY:		Robert Sanborn		

REPORT OF MOISTURE DENSITY RELATIONSHIP

Individual Test Points				
Percent	Dry			
Moisture	Density			
6.6	124.1			
7.6	128.2			
9.7	127.4			
11.2	125.4			

Uncorrected Maximum Dry Density:	128.9	lb/cu. ft.
Uncorrected Optimum Moisture Content:	8.3	%
Specific Gravity of Soils *:	2.65	
Percent Oversize Particles:	2.9	%
Specific Gravity of Oversize*:	2.67	

Corrected* Maximum Dry Density:	128.9	lb/cu. ft.
Corrected* Opt. Moisture Content:	8.3	%

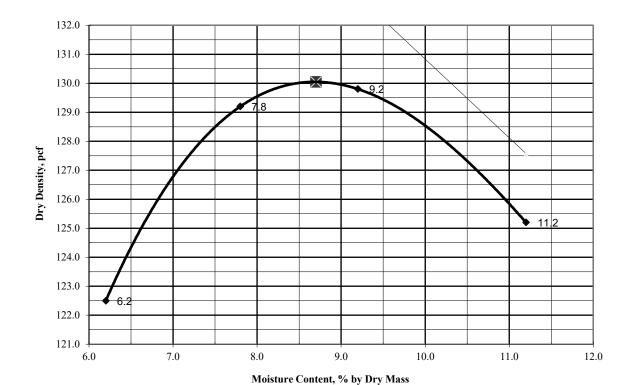
^{**}Corrected for oversize, when oversize particles exceed 5% of sample.

Report Reviewed By:

*Specific Gravity of Soils Estimated and Specific Gravity of Oversize Estimated.

This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc.

The results in this report relate only to the items inspected or tested.


^{**}Sieve Analysis from sample 20-0920B

12960 Commerce Lake Drive, A14, Fort Myers, FL 33 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

CLIENT:	Sevenson Environme	ental Services Inc.	PROJECT NO.:	200608
PROJECT:	Honeywell Project Je	Honeywell Project Jersey City, NJ		20-0920D
TEST METHOD:	ASTM D 698 'Standa	ASTM D 698 'Standard Proctor'		
SOIL ID NUMBER:	7			
ITEM:	Common Borrow			
SOURCE:	On-Site Existing Mat	terial		
SOIL DESCRIPTION:	Dk Brown Silty Sand	l w/ Nat Gravel: 61% San	d; 22% Gravel; 17% Silt	
DATE SAMPLED:	8/19/2020	SAMPLED BY:	Carson Blake	·
DATE TESTED:	2:00:00 AM	TESTED BY:	Steven Bordengo	

REPORT OF MOISTURE DENSITY RELATIONSHIP

Individual Test Points				
Percent	Dry			
Moisture	Density			
6.2	122.5			
7.8	129.2			
9.2	129.8			
11.2	125.2			

Uncorrected Maximum Dry Density:	130.0	lb/cu. ft.
Uncorrected Optimum Moisture Content:	8.7	%
Specific Gravity of Soils *:	2.65	
Percent Oversize Particles:	2.9	%
Specific Gravity of Oversize*:	2.67	

Corrected* Maximum Dry Density:	130.0	lb/cu. ft.
Corrected* Opt. Moisture Content:	8.7	%

^{**}Corrected for oversize, when oversize particles exceed 5% of sample.

Report Reviewed By:

*Specific Gravity of Soils Estimated and Specific Gravity of Oversize Estimated.

This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc.

The results in this report relate only to the items inspected or tested.

12960 Commerce Lake Drive, A14, Fort Myers, FL 33913 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

Client:	Sevenson Environmental Services Inc.	Project:	Honeywell Project Jersey City, NJ
Item:	Common Borrow	Project Number:	200608
Source:	On-Site Existing Material; Open Face Area	Lab Number:	20-0920B
Date Sampled:	8/19/2020	Sampled By:	Carson Blake
Date Tested:	8/20/2020	Tested By:	Steven Bordengo

GRADATION (SIEVE ANALYSIS) OF SOIL OR AGGREGATE
Test Method(s): ASTM D422, C136, C117; AASHTO T88, T27, T11

Lab Number	Sample Type	Sampling Location	Specification
20-0920B	Common Borrow	Stockpile	No Specification

Sieve	Sieve Size		%	Spec. %
mm	Inches	Retained	Passing	Pass
100.0 mm	4"	0.0	100	
75.0 mm	3"	0.0	100	
63.0 mm	2 1/2"	0.0	100	
50.0 mm	2"	0.0	100	
37.5 mm	1 1/2"	0.0	100	
25.0 mm	1"	0.3	100	
19.0 mm	3/4"	2.6	97	
12.5 mm	1/2"	5.9	91	
6.3 mm	1/4"	9.1	82	
4.75 mm	#4	3.8	78	
2.00 mm	#10	17.0	61	
0.850 mm	#20	15.3	46	
0.600 mm	#30	4.4	42	
0.425 mm	#40	4.3	37	
0.150 mm	#100	13.8	24	
0.075 mm	#200	6.8	17	
Pan		16.7		

Comments:

Minus #200 by wash-sieve method.

Report Reviewed By:

This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc. The results in this report relate only to the items inspected or tested.

J. Rodriguez

ANALYTICAL REPORT

Job Number: 460-216412-1

Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc. 2749 Lockport Road Niagara Falls, NY 14305

Attention: Mr. Michael F Marrone

Approved for release Allison L Bennett Project Manager I 8/25/2020 4:01 PM

Allison L Bennett, Project Manager I 777 New Durham Road, Edison, NJ, 08817 (732)593-2517 Allison.Bennett@Eurofinset.com 08/25/2020

Misson Bernet

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Edison Project Manager.

TestAmerica Edison Certifications and Approvals: Connecticut: CTDOH #PH-0200, New Jersey: NJDEP (NELAP) #12028, New York: NYDOH (NELAP) #11452, NYDOH (ELAP) #11452, Pennsylvania: PADEP (NELAP) 68-00522 and Rhode Island: RIDOH LAO00132

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Table of Contents

Cc	over Title Page	1
Da	ata Summaries	4
	Report Narrative	4
	Sample Summary	6
	Detection Summary	7
	Method Summary	8
	Client Sample Results	9
	QC Sample Results	10
	Definitions	11
	QC Association	12
	Chronicle	13
	Certification Summary	14
Inc	organic Sample Data	15
	General Chemistry Data	15
	Gen Chem Cover Page	16
	Gen Chem Sample Data	17
	Gen Chem QC Data	18
	Gen Chem ICV/CCV	18
	Gen Chem Blanks	19
	Gen Chem MS/MSD/PDS	20
	Gen Chem Duplicates	22
	Gen Chem LCS/LCSD	23
	Gen Chem MDL	25
	Gen Chem Preparation Log	29
	Gen Chem Analysis Run Log	30
	Gen Chem Prep Data	33

Table of Contents

Shipping and Receiving Documents	38
Client Chain of Custody	39
Sample Receipt Checklist	11

Page 3 of 41

CASE NARRATIVE

Client: Sevenson Environmental Services, Inc.

Project: 1247 HON SA-6 South Deferred Area

Report Number: 460-216412-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The sample was received on 8/19/2020 4:30 PM; the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.0° C.

Receipt Exceptions

The following sample was received at the laboratory without a sample collection time documented on the chain of custody and was entered from the associated sample container: 1247 EME Horizon A Topsoil (460-216412-1).

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

HEXAVALENT CHROMIUM VI DKQP (TOTAL)

Sample 1247 EME Horizon A Topsoil (460-216412-1) was analyzed for Hexavalent Chromium VI DKQP (Total) in accordance with EPA SW-846 Method 7196A (DKQP). The samples were prepared on 08/21/2020 and analyzed on 08/24/2020.

No difficulties were encountered during the Hexavalent Chromium VI DKQP (Total) analysis.

All quality control parameters were within the acceptance limits.

PERCENT SOLIDS/PERCENT MOISTURE

Sample 1247 EME Horizon A Topsoil (460-216412-1) was analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D) Modified. The samples were analyzed on 08/20/2020.

No difficulties were encountered during the %solids/moisture analysis.

All quality control parameters were within the acceptance limits.

DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

Project Location:1247 HON SA-6 South Deferred AreaProject Number:460-216412-1Laboratory Sample ID(s):460-216412-1Sampling Date(s):08/19/2020

List DKQP Methods Used: 7196A

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the NJDEP Data of Known Quality performance standards?	⊠Yes □No
1A	Were the method specified handling, preservation, and holding time requirements met?	✓Yes □No□ See case narrative
1B	<u>EPH Method:</u> Was the EPH method conducted without significant modifications? (see Section 11.3 of respective DKQ methods)	□Yes □No ☑N/A
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody documents(s)?	✓Yes □No□ See case narrative
3	Were samples received at an appropriate temperature (4±2° C)?	⊠Yes □No □N/A
4	Were all QA/QC performance criteria specified in the NJDEP DKQP standards achieved?	⊠Yes □No
	Were reporting limits specified or referenced on the chain-of-custody or communicated to the laboratory prior to sample receipt?	
5	b) Were these reporting limits met?	✓Yes □No□N/A□ See casenarrative
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the DKQP documents and/or site-specific QAPP?	⊠Yes □No
7	Are project-specific matrix spike and/or laboratory duplicates included in this data set?	□Yes ⊠No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information should be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet requirements for "Data of Known Quality."

Page 5 of 41 08/25/2020

Sample Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received
 Asset ID

 460-216412-1
 1247 EME Horizon A Topsoil
 Solid
 08/19/20 10:24
 08/19/20 16:30
 Asset ID

Detection Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: 1247 EME Horizon A Topsoil Lab Sample ID: 460-216412-1

No Detections.

Method Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Method	Method Description	Protocol	Laboratory
7196A	Chromium, Hexavalent	SW846	TAL EDI
Moisture	Percent Moisture	EPA	TAL EDI
3060A	Alkaline Digestion (Chromium, Hexavalent)	SW846	TAL EDI

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Client Sample Results

Client: Sevenson Environmental Services, Inc.

Job ID: 460-216412-1

Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: 1247 EME Horizon A Topsoil Lab Sample ID: 460-216412-1

Date Collected: 08/19/20 10:24

Date Received: 08/19/20 16:30

Matrix: Solid
Percent Solids: 84.9

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	0.41	U	2.3	0.41	mg/Kg		08/21/20 14:38	08/24/20 13:56	1

QC Sample Results

Client: Sevenson Environmental Services Inc.

Cheff. Gevenson Environmental Gervices, inc.	
Project/Site: 1247 HON SA-6 South Deferred Area	

Lab Sample ID: MB 460-718 Matrix: Solid	8708/1-A						Clie	ent Sam	ple ID: Method	
									Prep Type: To	
Analysis Batch: 719198		мв мв							Prep Batch: 7	10/00
Analyte	Ba	sult Qualifier		RL	MDL Unit			repared	Analyzed	Dil Fac
Cr (VI)		0.35 U		2.0	0.35 mg/K			<u> </u>	8 08/24/20 12:24	1 Tac
Lab Sample ID: LCSI 460-7	18708/3-A					Clier	nt Sai	mple ID	: Lab Control S	
Matrix: Solid									Prep Type: To	
Analysis Batch: 719198									Prep Batch: 7	<mark>'18708</mark>
			Spike		LCSI				%Rec.	
Analyte			Added		Qualifier	Unit	_ D	%Rec	Limits	
Cr (VI)			708	675.7		mg/Kg		95	80 - 120	
Lab Sample ID: LCSSRM 46	60-718708/	'2-A				Clier	nt Sai	mple ID	: Lab Control S	ample
Matrix: Solid									Prep Type: To	
Analysis Batch: 719198									Prep Batch: 7	
, many one Date in 1 10 100			Spike	LCSSRM	LCSSRM				%Rec.	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	
Cr (VI)			15.6	15.10		mg/Kg		97.0	84.2 - 114.	
									5	
Lab Sample ID: 460-216396	-I-1-G MSS	3					CI	ient Saı	mple ID: Matrix	Spike
Matrix: Solid									Prep Type: To	
Analysis Batch: 719198									Prep Batch: 7	
	Sample	Sample	Spike	MSS	MSS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cr (VI)	0.38	U	43.9	45.85		mg/Kg	☆	104	75 - 125	
Lab Sample ID: 460-216396	LI_1_H MSI						CI	iont Sai	mple ID: Matrix	Snike
Matrix: Solid							٠.	ioni oui	Prep Type: To	
Analysis Batch: 719198									Prep Batch: 7	
Analysis Batch. 7 10100	Sample	Sample	Spike	MSI	MSI				%Rec.	10700
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
Cr (VI)	0.38		777	679.3		mg/Kg	☼	87	75 - 125	
Lab Sample ID: 460-216396	I 4 E DII							Client	Sample ID: Du	alicato
Matrix: Solid	טם יו-ו-ו-							Chefft	Prep Type: To	
Analysis Batch: 719198									Prep Batch: 7	
Analysis Datell. / 13130	Sample	Sample		ווח	DU				Piep Dateil: I	RPD
Analyte	•	Qualifier			Qualifier	Unit	D		RPD	
Cr (VI)	0.38			0.38		mg/Kg	_ `		NC	

Definitions/Glossary

Client: Sevenson Environmental Services, Inc. Job ID: 460-216412-1

Project/Site: 1247 HON SA-6 South Deferred Area

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Qualifiers

TEQ

TNTC

General Chemistry Qualifier Qualifier Description

Quaimer	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.

U	Indicates the analyte was analyzed for but not detected.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

QC Association Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

General Chemistry

Analysis Batch: 718356

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-216412-1	1247 EME Horizon A Topsoil	Total/NA	Solid	Moisture	
460-216408-A-5 DU	Duplicate	Total/NA	Solid	Moisture	

Prep Batch: 718708

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-216412-1	1247 EME Horizon A Topsoil	Total/NA	Solid	3060A	
MB 460-718708/1-A	Method Blank	Total/NA	Solid	3060A	
LCSI 460-718708/3-A	Lab Control Sample	Total/NA	Solid	3060A	
LCSSRM 460-718708/2-A	Lab Control Sample	Total/NA	Solid	3060A	
460-216396-I-1-G MSS	Matrix Spike	Total/NA	Solid	3060A	
460-216396-I-1-H MSI	Matrix Spike	Total/NA	Solid	3060A	
460-216396-I-1-F DU	Duplicate	Total/NA	Solid	3060A	

Analysis Batch: 719198

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-216412-1	1247 EME Horizon A Topsoil	Total/NA	Solid	7196A	718708
MB 460-718708/1-A	Method Blank	Total/NA	Solid	7196A	718708
LCSI 460-718708/3-A	Lab Control Sample	Total/NA	Solid	7196A	718708
LCSSRM 460-718708/2-A	Lab Control Sample	Total/NA	Solid	7196A	718708
460-216396-I-1-G MSS	Matrix Spike	Total/NA	Solid	7196A	718708
460-216396-I-1-H MSI	Matrix Spike	Total/NA	Solid	7196A	718708
460-216396-I-1-F DU	Duplicate	Total/NA	Solid	7196A	718708

08/25/2020

Lab Chronicle

Client: Sevenson Environmental Services, Inc. Job ID: 460-216412-1

Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: 1247 EME Horizon A Topsoil

Lab Sample ID: 460-216412-1 Date Collected: 08/19/20 10:24

Matrix: Solid

Date Received: 08/19/20 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	718356	08/20/20 13:53	MMC	TAL EDI

Client Sample ID: 1247 EME Horizon A Topsoil

Lab Sample ID: 460-216412-1 Date Collected: 08/19/20 10:24 **Matrix: Solid**

Date Received: 08/19/20 16:30 Percent Solids: 84.9

	Batch	Batch Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A		·	718708	08/21/20 14:38	MBE	TAL EDI
Total/NA	Analysis	7196A		1	719198	08/24/20 13:56	RPR	TAL EDI

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Laboratory: Eurofins TestAmerica, Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		rogram	Identification Number	Expiration Date
lew Jersey	N	ELAP	12028	06-30-21
	NELA es are included in this report,	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
the agency does not o		Motrix	Analyta	
Analysis Method	Prep Method	Matrix	Analyte	
0 ,		Matrix Solid	Analyte Cr (VI)	
Analysis Method	Prep Method			

GENERAL CHEMISTRY

COVER PAGE GENERAL CHEMISTRY

Lab Name:	Eurofins TestAmerica, Edison	Job Number: 460-216412-1
SDG No.:		
Project:	1247 HON SA-6 South Deferred Area	
	Client Sample ID 1247 EME Horizon A Topsoil	Lab Sample ID 460-216412-1

Comments:

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 1247 EME Horizon A Topsoil Lab Sample ID: 460-216412-1

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-216412-1

SDG ID.:

Matrix: Solid Date Sampled: 08/19/2020 10:24

Reporting Basis: DRY Date Received: 08/19/2020 16:30

% Solids: 84.9

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method	
18540-29-9	Cr (VI)	0.41	2.3	0.41	mg/Kg	U		1	7196A	

2-IN CALIBRATION QUALITY CONTROL GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-216412-1

SDG No.:

Analyst: RPR Batch Start Date: 08/24/2020

Reporting Units: ug/L Analytical Batch No.: 719198

Sample QC Number Type	Time	Analyte	Result	Spike Amount	(%) Recovery	Limits	Qual	Reagent
7 ICV	09:32	Cr (VI)	506.1	500	101	90-110		WThcrIM3_00051
8 ICB	09:32	Cr (VI)	8.1				U	
19 CCV	12:24	Cr (VI)	506.1	500	101	90-110		WThcrIM3_00051
20 CCB	12:24	Cr (VI)	8.1				U	
31 CCV	13:56	Cr (VI)	506.1	500	101	90-110		WThcrIM3_00051
32 CCB	13:56	Cr (VI)	8.1				U	

Note! Calculations are performed before rounding to avoid round-off errors in calculated results.

3-IN METHOD BLANK GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-216412-1

SDG No.: _____

Method	Į.	Lab Sampl	e ID	Analyte			Resi	ılt Qua	al Units		RL	Dil
				08/24/2020	12:24	Prep Batch				14:38	0.0	
7196A		MB 460-71	.8708/1-	-A Cr (VI)			0	35 U	mg/Kg		2.0	1

5-IN POST DIGESTION SPIKE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab	Name:	Eurofins	TestAmerica,	Edison	Job No.:	460-216412-1
SDG	No.:					

Matrix: Solid

Method	Lab Sample ID Analyte	Result C Unit	Spike Pct. RPD Amount Rec. Limits RPD Limit Q
Batch	ID: 719198 Date: 08/24/2020 12:24	Prep Batch: 718708	Date: 08/21/2020 14:38
7196A	460-216396-I- Cr (VI)	0.38 U mg/Kg	
7196A	1-E 460-216396-I- Cr (VI) 1-E PDS	49.11 mg/Kg	43.9 112 85-115

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

5-IN MATRIX SPIKE SOLUBLE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab	Name:	Eurofins	TestAmerica,	Edison	Job	No.:	460-216412-1
SDG	No.:						

Matrix: Solid

Method	Lab Sample ID Analyte	Result C Unit	Spike Pct. RPD Amount Rec. Limits RPD Limit Q
Batch	ID: 719198 Date: 08/24/2020 12:24	Prep Batch: 718708	Date: 08/21/2020 14:38
7196A	460-216396-I- Cr (VI) 1-G	0.38 U mg/Kg	
7196A	460-216396-I- Cr (VI) 1-G MSS	45.85 mg/Kg	43.9 104 75-125
Batch	ID: 719198 Date: 08/24/2020 12:24	Prep Batch: 718708	Date: 08/21/2020 14:38
7196A	460-216396-I- Cr (VI) 1-H	0.38 U mg/Kg	
7196A	460-216396-I- Cr (VI) 1-H MSI	679.3 mg/Kg	777 87 75-125

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

6-IN DUPLICATE GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Edison ____ Job No.: 460-216412-1

SDG No.:

Matrix: Solid

Method	Client Sample ID	Lab Sample ID	Analyte		Result Unit	RPD	RPD Limit	Qual
Batch ID:	719198 Da	te: 08/24/2020 12:24	Prep Batch:	718708	Date: 08/21/2020 14:3	8		
7196A		460-216396-I-1-F	Cr (VI)		0.38 mg/Kg			U
7196A		460-216396-I-1-F DU	Cr (VI)		0.38 mg/Kg	NC	20	U

Calculations are performed before rounding to avoid round-off errors in calculated results.

7A-IN LCS-CERTIFIED REFERENCE MATERIAL GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-216412-1

SDG No.:

Matrix: Solid

Method	Lab Sample ID	Analyte	Result C Unit	Spike Amount	Pct. Rec.	Limits	RPD RPD Limit	Q
Batch	ID: 719198	Date: 08/24/2020 12:24	Prep Batch: 718708	Date:	08/21/	2020 14:3	8	
			LCS So	ource: W	ThcrsL	CS_00104		
7196A	LCSSRM 460-718708/2- A	Cr (VI)	15.10 mg/Kg	15.6	97.0	84.2-11 4.5		

Calculations are performed before rounding to avoid round-off errors in calculated results.

7A-IN LAB CONTROL SAMPLE INSOLUBLE GENERAL CHEMISTRY

Lab	Name:	Eurofins	TestAmerica,	Edison	Job No.:	460-216412-1
SDG	No.:					

Matrix: Solid

Method	Lab Sample ID	Analyte	Result C Unit	Spike Amount	Pct. Rec.	Limits	RPD	RPD Limit	Q
Batch	ID: 719198	Date: 08/24/2020 12:24	±	Date:		2020 14:3	88		
7196A	LCSI 460-718708/3- A	Cr (VI)	675.7 mg/Kg	708		_			

 $\hbox{\it Calculations are performed before rounding to avoid round-off errors in calculated results.}$

9-IN DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Edison Job Number: 460-216412-1

SDG Number:

Matrix: Solid Instrument ID: WetHexSpec

Method: 7196A MDL Date: 10/31/2019 15:04

Prep Method: 3060A

Analyte	Wavelength/	RL	MDL
	Mass	(mg/Kg)	(mg/Kg)
Cr (VI)		2	0.349

9-IN CALIBRATION BLANK DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Edison Job Number: 460-216412-1

SDG Number:

Matrix: Solid Instrument ID: WetHexSpec

Method: 7196A XMDL Date: 10/31/2019 15:06

Analyte	Wavelength/	XRL	XMDL
	Mass	(ug/L)	(ug/L)
Cr (VI)		10	8.14

9-IN DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Edison Job Number: 460-216412-1

SDG Number:

Matrix: Solid Instrument ID: NOEQUIP

Method: Moisture RL Date: 02/15/2007 17:07

Analyte	Wavelength/ Mass	RL (%)	
Percent Moisture		1	
Percent Solids		1	

9-IN CALIBRATION BLANK DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Edison

SDG Number:

Matrix: Solid

Instrument ID: NOEQUIP

Method: Moisture

XRL Date: 01/01/2007 16:49

Analyte	Wavelength/ Mass	XRL (응)	
Percent Moisture		1	
Percent Solids		1	

12-IN PREPARATION LOG GENERAL CHEMISTRY

Lab Name:	Eurofins	TestAmerica,	Edison	Job No.:	460-216412-1
SDG No.:					

Prep Method: 3060A

Lab Sample	Preparation Date	Prep Batch	Initial Weight	Initial Volume	Final Volume
ID			(g)		(mL)
MB 460-718708/1-A	08/21/2020 14:38	718708	2.50		100
LCSSRM 460-718708/2-A	08/21/2020 14:38	718708	2.50		100
LCSI 460-718708/3-A	08/21/2020 14:38	718708	2.50		100
460-216396-I-1-F DU	08/21/2020 14:38	718708	2.50		100
460-216396-I-1-G MSS	08/21/2020 14:38	718708	2.50		100
460-216396-I-1-H MSI	08/21/2020 14:38	718708	2.50		100
460-216412-1	08/21/2020 14:38	718708	2.53		100

13-IN ANALYSIS RUN LOG GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-216412-1

SDG No.:

Instrument ID: WetHexSpec Method: 7196A

Start Date: 08/24/2020 09:32 End Date: 08/24/2020 14:21

							JIIG													_
				Analytes																
Lab Sample	D /	T		C r 6																
ID	F	p e	Time																	
IC 460-719198/1			09:32	Х																T
IC 460-719198/2			09:32	Х																T
IC 460-719198/3			09:32	Х																T
IC 460-719198/4			09:32	Х																T
IC 460-719198/5			09:32	Х																Ī
IC 460-719198/6			09:32	Х																Ī
ICV 460-719198/7	1		09:32	Х																Ī
ICB 460-719198/8	1		09:32	Х																I
MB 460-718708/1-A	1	Т	12:24	Х																I
LCSSRM 460-718708/2-A	1	Т	12:24	Х																ſ
LCSI 460-718708/3-A	50	Т	12:24	Х																
ZZZZZZ			12:24																	Ī
ZZZZZZ			12:24																	I
460-216396-I-1-F DU	1	Т	12:24	Х																I
460-216396-I-1-G MSS	1	Т	12:24	Х																Ī
460-216396-I-1-H MSI	50	Т	12:24	Х																Ī
460-216396-I-1-E PDS	1	Т	12:24	Х																Ī
ZZZZZZ			12:24																	Ī
CCV 460-719198/19	1		12:24	Х																
CCB 460-719198/20	1		12:24	Х																
ZZZZZZ			13:56																	
ZZZZZZ			13:56																	
ZZZZZZ			13:56																	
ZZZZZZ			13:56																	
ZZZZZZ			13:56																	
ZZZZZZ			13:56																	
ZZZZZZ			13:56																	
ZZZZZZ			13:56																	
460-216412-1	1	Т	13:56	X																1
ZZZZZZ			13:56																<u></u>	1
CCV 460-719198/31	1		13:56	Х															<u></u>	1
CCB 460-719198/32	1		13:56	X															<u></u>	1
ZZZZZZ			14:21																<u></u>	1
ZZZZZZ			14:21																<u></u>	1
ZZZZZZ			14:21																<u> </u>	1
ZZZZZZ			14:21																<u></u>	1
ZZZZZZ			14:21																<u></u>	1
ZZZZZZ			14:21																<u></u>	1
ZZZZZZ			14:21																<u></u>	1
ZZZZZZ			14:21																<u></u>	1
CCV 460-719198/41			14:21																	
CCB 460-719198/42			14:21																	

13-IN ANALYSIS RUN LOG GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-216412-1

SDG No.:

Instrument ID: WetHexSpec Method: 7196A

Start Date: 08/24/2020 09:32 End Date: 08/24/2020 14:21

 $\frac{\text{Prep Types}}{\text{T = Total/NA}}$

13-IN ANALYSIS RUN LOG GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-216412-1

SDG No.:

Instrument ID: NOEQUIP Method: Moisture

Start Date: 08/20/2020 13:53 End Date: 08/20/2020 13:53

									А	nal	yt	es				
Lab Sample ID	D / F	T Y p e	Time	% S o 1	M o i s t											
ZZZZZZ			13:53													
ZZZZZZ			13:53													
460-216408-A-5 DU	1	Т	13:53	Х	Х											
ZZZZZZ			13:53													
ZZZZZZ			13:53													
ZZZZZZ			13:53													
ZZZZZZ			13:53													
ZZZZZZ			13:53													
ZZZZZZ			13:53													
ZZZZZZ			13:53													
ZZZZZZ			13:53													
ZZZZZZ			13:53													
ZZZZZZ			13:53													
ZZZZZZ			13:53													
ZZZZZZ			13:53													
460-216412-1	1	Т	13:53	Х	Х											
ZZZZZZ			13:53													
ZZZZZZ			13:53													
ZZZZZZ			13:53													
ZZZZZZ			13:53													
ZZZZZZ			13:53													
ZZZZZZ			13:53													

Prep Types

T = Total/NA

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-216412-1

SDG No.:

Batch Number: 718708 Batch Start Date: 08/21/20 14:38 Batch Analyst: Esteban, Maria

Batch Method: 3060A Batch End Date: 08/22/20 20:00

Lab Sample ID	Client Sample ID	Method	Chain	Basis	InitialAmount	FinalAmount	WThcrIM 00077	WThcrPbCr 00005	WThcrsLCS 00104	
MB 460-718708/1		3060A,	7196A		2.50 g	100 mL				
LCSSRM 460-718708/2		3060A,	7196A		2.50 g	100 mL			5 mL	
LCSI 460-718708/3		3060A,	7196A		2.50 g	100 mL		0.011 g		
460-216396-I-1 DU		3060A,	7196A	Т	2.50 g	100 mL				
460-216396-I-1 MSS		3060A,	7196A	Т	2.50 g	100 mL	1 mL			
460-216396-I-1 MSI		3060A,	7196A	Т	2.50 g	100 mL		0.011 g		
460-216412-A-1	1247 EME Horizon A Topsoil	3060A,	7196A	Т	2.53 g	100 mL				

Batch	Notes
Alkaline Digestion Solution pH	13.21 SU
Alkaline Digestion Solution ID	C 0718-20 exp 9/20/20
Balance ID	86
Buffer Reagent ID	C 0462-20 exp 12/15/20
First End time	08/21/2020 20:00
Magnesium Chloride ID	Across/ A402852
Oven, Bath or Block Temperature 1	94.0 Degrees C
pH Meter Calibration Slope	Lead chromate Acros/BCBL8355V exp. 09/03/20
First Start time	08/21/2020 19:00
Ending Temperature	95.0 Degrees C
Thermometer ID	N2
Temperature - Uncorrected - End	96.0 Degrees C
Uncorrected Temperature	96.0 Degrees C

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

7196A Page 1 of 1

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-216412-1

SDG No.:

Batch Number: 719198 Batch Start Date: 08/24/20 08:08 Batch Analyst: Rana, Riya P

Batch Method: 7196A Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	FinalAmount	ColorBlk	UnCorResp	Initial pH	Final pH	WThcrIM 00077
IC 460-719198/1		7196A		100 mL		0.000	7.99 SU	2.15 SU	
TG 460 710100/0		71067		100 T		Absorbance 0.040	7 05 00	0 00 011	0.057
IC 460-719198/2		7196A		100 mL			7.95 SU	2.00 SU	0.05 mL
TO 460 710100/2		71067		100 7		Absorbance	7.00.077	0 00 077	0.1.7
IC 460-719198/3		7196A		100 mL		0.080	7.98 SU	2.02 SU	0.1 mL
		E4.0.6-		100 -		Absorbance	7.00.00	0.45	
IC 460-719198/4		7196A		100 mL		0.409	7.88 SU	2.17 SU	0.5 mL
						Absorbance			
IC 460-719198/5		7196A		100 mL		0.611	7.92 SU	2.08 SU	0.75 mL
						Absorbance			
IC 460-719198/6		7196A		100 mL		1.008	7.97 SU	2.29 SU	1.25 mL
						Absorbance			
ICV		7196A		100 mL		0.410	7.91 SU	2.07 SU	
460-719198/7						Absorbance			
ICB		7196A		100 mL		0.000	7.90 SU	2.04 SU	
460-719198/8						Absorbance			
MB		7196A		100 mL		0.000	7.93 SU	2.05 SU	
460-718708/1-A						Absorbance			
LCSSRM		7196A		100 mL		0.306	7.80 SU	2.25 SU	
460-718708/2-A						Absorbance			
LCSI		7196A		100 mL		0.274	7.96 SU	2.37 SU	
460-718708/3-A						Absorbance			
460-216396-I-1-		7196A	T	100 mL	0.000	0.003	7.92 SU	2.03 SU	
F DU					Absorbance	Absorbance			
460-216396-I-1-		7196A	T	100 mL	0.000	0.845	7.89 SU	2.20 SU	
G MSS					Absorbance	Absorbance			
460-216396-I-1-		7196A	Т	100 mL	0.000	0.251	7.97 SU	2.29 SU	
H MSI					Absorbance	Absorbance			
460-216396-I-1-		7196A	Т	50 mL	0.000	0.905	7.83 SU	2.01 SU	0.5 mL
E PDS					Absorbance	Absorbance			
CCV		7196A		100 mL		0.410	7.91 SU	2.07 SU	
460-719198/19						Absorbance			
CCB		7196A		100 mL		0.000	7.90 SU	2.04 SU	
460-719198/20						Absorbance			
460-216412-A-1-	1247 EME Horizon	7196A	Т	100 mL	0.024	0.022	7.93 SU	2.11 SU	
A	A Topsoil				Absorbance	Absorbance			
CCV	1	7196A		100 mL		0.410	7.91 SU	2.07 SU	
460-719198/31						Absorbance			
ССВ		7196A		100 mL		0.000	7.90 SU	2.04 SU	
460-719198/32		. *				Absorbance			

Lab Sample ID	Client Sample ID	Method Chain	Basis	WThcrIM3 00051	AnalysisComment			
	l.	L	-			<u> </u>	1	<u> </u>

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

7196A Page 1 of 3

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-216412-1

SDG No.:

Batch Number: 719198 Batch Start Date: 08/24/20 08:08 Batch Analyst: Rana, Riya P

Batch Method: 7196A Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	WTherIM3 00051	AnalysisComment		
IC 460-719198/1		7196A					
IC 460-719198/2		7196A					
IC 460-719198/3		7196A					
IC 460-719198/4		7196A					
IC 460-719198/5		7196A					
IC 460-719198/6		7196A					
ICV 460-719198/7		7196A		0.5 mL			
ICB 460-719198/8		7196A					
MB 460-718708/1-A		7196A					
LCSSRM 460-718708/2-A		7196A					
LCSI 460-718708/3-A		7196A					
460-216396-I-1- F DU		7196A	Т		2.03		
460-216396-I-1- G MSS		7196A	Т		2.05		
460-216396-I-1- H MSI		7196A	Т		2.09		
460-216396-I-1- E PDS		7196A	Т		2.01		
CCV 460-719198/19		7196A		0.5 mL			
CCB 460-719198/20		7196A					
	1247 EME Horizon A Topsoil	7196A	Т		2.09		
CCV 460-719198/31		7196A		0.5 mL			
CCB 460-719198/32		7196A					

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

7196A Page 2 of 3

Lab Name: Eurofins TestAmerica,	Edison Job	No.: 460-2164	12-1			
SDG No.:						
Batch Number: 719198	Bat	ch Start Date:	08/24/20	08:08	Batch Analyst:	Rana, Riya P

Batch Method: 7196A Batch End Date:

Batch Notes								
Acid Used for pH Adjustment ID	10% H2SO4 C-0490-20 exp 12/25/20							
Spectrophotometer Cell Path Length	1 cm							
Color Reagent ID	C-0692-20 exp 09/14/20							
Phosphoric Acid ID	HNO3 (1:1) C-0491-20 exp 12/25/20							

Basis	Basis Description	
Т	Total/NA	

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

7196A Page 3 of 3

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-216412-1

SDG No.:

Batch Number: 718356 Batch Start Date: 08/20/20 13:53 Batch Analyst: Crocco, Michael

Batch Method: Moisture Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	DISH#	DishWeight	SampleMassWet	SampleMassDry	
460-216408-A-5 DU		Moisture	Т	47	1.02 g	6.69 g	6.28 g	
460-216412-A-1	1247 EME Horizon A Topsoil	Moisture	Т	60	1.00 g	6.77 g	5.90 g	

	Batch Notes
Balance ID	104
Date and Time Samples in Desiccator	08/21/2020 06:20
Date and Time Samples out of Desiccator	08/21/2020 07:54
Date samples were placed in the oven	08/20/2020
Oven Temp In	111 Degrees C
Time samples were place in the oven	14:18
Date samples were removed from oven	08/21/2020
Oven Temp Out	112 Degrees C
Time Samples were removed from oven	06:20
Oven ID	1
Thermometer ID	206109
Temperature - Start - Uncorrected	111 Degrees C
Temperature - End - Uncorrected	112 Degrees C

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Moisture Page 1 of 1

Shipping and Receiving Documents

Chain of Custody Record

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Phone (732) 549-3900 Fax (732) 549-3679

Client Information	Sampler: Toni Polk	Lab PM: Bennett, Allison L	Carrier Tracking No(s): Test America/Eurofins Courier	COC No:
	Phone:	E-Mail:	Service	
	716 525 5142	allison.bennett@testamericainc.com		1 of
Company: Sevenson Environmental Services, Inc.		Analysis Requested	quested	1247 216412
Address: 2749 Linkbort Road	Due Date Requested:			8
City: Niagara Falls	TAT Requested (days): 3BD TAT			A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip: NY, 14305				D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
Phone: 716 308 1990	PO#: 1247 MM	(0		
Email: mmarrone@sevenson.com	WO#:	N 10 s	SIG	
Project Name: 1247 HON SA-6 South Deferred Area	Project#.	:e\) e		
Site: Deferred Area Backfill Sampling	SSOW#.	Samp		Other:
Sample Identification	Sample Cacomp, o-Sample Date Time Gardab) er-re	Matrix G (verwater, Sepold, D Cowatton, G Cowatton, G Cowatton, G Cowatton, G C C C C C C C C C C C C C C C C C C	svexəH - Aəer\	Special Instructions/Note:
	Preserva		ZZZZ	
1247 EME Horizon A Topsoil	8/19/20 Amin G	Solid	×	4 oz jar)
230				
Of				
41				
	HS			
	35/2			
	1			
460-216412 Chain of Custody				
Identification		ee may be	assessed if samples are retain	ed longer than 1 month)
Non-Hazard Hammable Skin Imtant Pois Deliverable Requested: I, III, IV, Other (specify)	Poison B Unknown Kadiological	Special Instructions/QC Requirements	posal by Lab	Archive ForIwonins
Empty Kit Relinquished by:	Date:	Time:	Method of Shipment:	
Relinquished by The Delle	Date/Time: O/ 19 10:35 Com		Calculate.	10:28 Company 12
Reinquished by	8/19/20 163c Com	7	2 Date Gliffer of Dr.	120 COMPAGO
		Company Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.:	Ne	Cooler Temperature(s) '9' and Other Remarks.	Remarks:	
				Ver. 01/16/2019

Receipt Temperature and pH Log **Eurofins TestAmerica Edison**

Job Number:

Number of Coolers:	Raw	CORRECTED		IR Gun #	ं डी '	oler Te	Cooler Temperatures	tures			RAW	CORRECTED			
Cooler #1: 3.0	S	30 00		ŭ	Cooler #4:	Ŋ	υ υ		O	Cooler #7:	S	S			
Cooler #2:	2	٧		ŏ	Cooler #5:	S)	8		S	Cooler #8:	۶)	S			
Cooler #3:	S	ပ္		ŭ	Cooler #6:	ပ္	မွ		S	Cooler #9:	b	S			
	Ammonia	COD	Nitrate Nitrite	* Metals	Hardness	Pest	EPH or QAM	Phenols	Sulfide	TKN	T0C	Total Cyanide	Total Phos	Other	Other
TALS Sample Number	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(bH 2-9)	(pH<2)	(pH<2)	(6 <hd)< td=""><td>(pH<2)</td><td>(pH<2)</td><td>(pH>12)</td><td>(pH<2)</td><td></td><td></td></hd)<>	(pH<2)	(pH<2)	(pH>12)	(pH<2)		
If pH adjusted: Sample No(s). adjusted:	If pH adju adjusted:	If pH adjustments are required record the information below:	are requir	ed record	the infor	nation be	elow:								
Preservative Name/Conc.:	ne/Conc.:					Volur	ne of Pres	Volume of Preservative used (ml):	.(Im) pesi						
Lot # of Preservative(s):	rvative(s):							Expirat	Expiration Date:						

The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. * Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis. Expiration Date:

Date:

EDS-WI-038, Rev 4.1 10/22/2019

Initials:

Login Sample Receipt Checklist

Client: Sevenson Environmental Services, Inc.

Login Number: 216412 List Source: Eurofins TestAmerica, Edison

List Number: 1

Creator: Rivera, Kenneth

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	No date or time on COC, logged in per container labels.
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 460-216412-1

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-216412-1

Client Project/Site: 1247 HON SA-6 South Deferred Area

Sevenson Environmental Services, Inc. 2749 Lockport Road Niagara Falls, New York 14305

Attn: Mr. Michael F Marrone

Authorized for release by: 8/25/2020 4:01:14 PM

Allison Bennett, Project Manager I

(732)593-2517

Allison, Bennett@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area Laboratory Job ID: 460-216412-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	6
Lab Chronicle	7
Certification Summary	8
Method Summary	9
Sample Summary	10
Chain of Custody	11
Receipt Checklists	13

5

8

9

Definitions/Glossary

Client: Sevenson Environmental Services, Inc. Job ID: 460-216412-1

Project/Site: 1247 HON SA-6 South Deferred Area

Qualifiers

General Chemistry

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Appreviation	These commonly used appreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Eurofins TestAmerica, Edison

DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

Project Location:1247 HON SA-6 South Deferred AreaProject Number:460-216412-1Laboratory Sample ID(s):460-216412-1Sampling Date(s):08/19/2020

List DKQP Methods Used: 7196A

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the NJDEP Data of Known Quality performance standards?	⊠Yes □No
1A	Were the method specified handling, preservation, and holding time requirements met?	✓Yes □No□ See case narrative
1B	<u>EPH Method:</u> Was the EPH method conducted without significant modifications? (see Section 11.3 of respective DKQ methods)	□Yes □No ☑N/A
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody documents(s)?	✓Yes □No□ See case narrative
3	Were samples received at an appropriate temperature (4±2° C)?	⊠Yes □No □N/A
4	Were all QA/QC performance criteria specified in the NJDEP DKQP standards achieved?	⊠Yes □No
	Were reporting limits specified or referenced on the chain-of-custody or communicated to the laboratory prior to sample receipt?	✓Yes □No□ See case narrative
5	b) Were these reporting limits met?	✓Yes □No□N/A□ See casenarrative
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the DKQP documents and/or site-specific QAPP?	⊠Yes □No
7	Are project-specific matrix spike and/or laboratory duplicates included in this data set?	□Yes ⊠No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information should be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet requirements for "Data of Known Quality."

2

4

6

8

9

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-216412-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

CASE NARRATIVE

Client: Sevenson Environmental Services, Inc.

Project: 1247 HON SA-6 South Deferred Area

Report Number: 460-216412-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The sample was received on 8/19/2020 4:30 PM; the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.0° C.

Receipt Exceptions

The following sample was received at the laboratory without a sample collection time documented on the chain of custody and was entered from the associated sample container: 1247 EME Horizon A Topsoil (460-216412-1).

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

HEXAVALENT CHROMIUM VI DKQP (TOTAL)

Sample 1247 EME Horizon A Topsoil (460-216412-1) was analyzed for Hexavalent Chromium VI DKQP (Total) in accordance with EPA SW-846 Method 7196A (DKQP). The samples were prepared on 08/21/2020 and analyzed on 08/24/2020.

No difficulties were encountered during the Hexavalent Chromium VI DKQP (Total) analysis.

All quality control parameters were within the acceptance limits.

PERCENT SOLIDS/PERCENT MOISTURE

Sample 1247 EME Horizon A Topsoil (460-216412-1) was analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D) Modified. The samples were analyzed on 08/20/2020.

No difficulties were encountered during the %solids/moisture analysis.

All quality control parameters were within the acceptance limits.

Job ID: 460-216412-1

4

i

7

8

10

Eurofins TestAmerica, Edison 8/25/2020

Client Sample Results

Client: Sevenson Environmental Services, Inc.

Job ID: 460-216412-1

Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: 1247 EME Horizon A Topsoil Lab Sample ID: 460-216412-1

Date Collected: 08/19/20 10:24

Matrix: Solid

Date Received: 08/19/20 16:30

General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	15.1	1.0	1.0	%			08/20/20 13:53	1
Percent Solids	84.9	1.0	1.0	%			08/20/20 13:53	1

Client Sample ID: 1247 EME Horizon A Topsoil Lab Sample ID: 460-216412-1

Date Collected: 08/19/20 10:24

Matrix: Solid
Date Received: 08/19/20 16:30

Percent Solids: 84.9

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	0.41	U	2.3	0.41	mg/Kg		08/21/20 14:38	08/24/20 13:56	1

3

5

6

7

Ö

9

Lab Chronicle

Client: Sevenson Environmental Services, Inc. Job ID: 460-216412-1

Project/Site: 1247 HON SA-6 South Deferred Area

Lab Sample ID: 460-216412-1 Client Sample ID: 1247 EME Horizon A Topsoil

Date Collected: 08/19/20 10:24 **Matrix: Solid**

Date Received: 08/19/20 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			718356	08/20/20 13:53	MMC	TAL EDI

Lab Sample ID: 460-216412-1 Client Sample ID: 1247 EME Horizon A Topsoil

Date Collected: 08/19/20 10:24 **Matrix: Solid** Date Received: 08/19/20 16:30 Percent Solids: 84.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			718708	08/21/20 14:38	MBE	TAL EDI
Total/NA	Analysis	7196A		1	719198	08/24/20 13:56	RPR	TAL FDI

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-216412-1

Laboratory: Eurofins TestAmerica, Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	rogram	Identification Number	Expiration Date
New Jersey	NI	ELAP	12028	06-30-21
• ,	•	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
the agency does not o				
the agency does not on the Analysis Method	offer certification. Prep Method	Matrix	Analyte	
0 ,		Matrix Solid	Analyte Cr (VI)	
Analysis Method	Prep Method			

2

3

4

5

7

8

4.6

Method Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-216412-1

Method	Method Description	Protocol	Laboratory
7196A	Chromium, Hexavalent	SW846	TAL EDI
Moisture	Percent Moisture	EPA	TAL EDI
3060A	Alkaline Digestion (Chromium, Hexavalent)	SW846	TAL EDI

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

4

5

8

3

Sample Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-216412-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
460-216412-1	1247 EME Horizon A Topsoil	Solid		08/19/20 16:30	ASSELID

٠

4

0

9

Eurofins TestAmerica, Edison

777 New Durham Road Edison, NJ 08817 Phone (732) 549-3900 Fax (732) 549-3679

Client Information	Sampler: Toni Polk	Lab PM: Bennett, Allison L	ÖF	Carrier Tracking No(s): Test America/Eurofins Courier	S Courier	COC No:	
	Phone:	E-Mail:		Service		Page:	
	716 525 5142	allison.bennett@testamer	ricainc.com			1 of	
Company: Sevenson Environmental Services, Inc.			Analysis Requested	ested		1247 2164	6416
Address: 2749 Locknort Road	Due Date Requested:					õ	les:
City. Niagara Falls	TAT Requested (days): 3BD TAT					A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
							P - Na204S Q - Na2SO3
01	PO#: 1247 MM	(0				D	S - H2SO4 T - TSP Dodecahydrate
Venson.com	WO#:	N 10 8		w	STATE OF THE STATE OF		U - Acetone V - MCAA
Project Name. 1247 HON SA-6 South Deferred Area	Project #:	ie (Ye		hromiu	entaine	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Site: Deferred Area Backfill Sampling	SSOW#.	Samp		J Juelt	oo to	Other:	
Samula Identification	Sample Sample (C=comp. c Sample Date Time G=crab)	Matrix Ge (vivwater, Espoild, Cowaster)		svbx9H - Aðer7	nedmuM lstoT	Special In	Special Instructions/Note:
	Preserva	1000	Z	z	X		V
1247 EME Horizon A Topsoil	8/19/20 2 G				-	4 oz jar	
	H. Ki						
	/S/P						
	33						
			+	#			
460-216412 Chain of Custody							
Identification	:	Sample Dispose	ee may be	essed if samples	are retain	ed longer than 1	month)
Non-Hazard Flammable Skin Imtant Pois Deliverable Requested: I, III, IV, Other (specify)	Poison B Unknown Radiological	Special Instructions/QC	. Requireme	Disposal By Lab	Arci	Archive For	Months
inquished by:	Date:	Time:	4	Method of Shipment:			
Relinquished by Jun. Dow	119 10:35	Company Received by	. }	Day Tiple:	0/2	10:25	Company
1	163c	4		Datedine	dh	120	Company
Relinquished by:	Date/Time: Cor	Company Received by:	,	DateTime	io.	100	Company
Custody Seals Intact: Custody Seal No.:	M	Cooler Tempera	Cooler Temperature(s) S and Other Remarks:	ırks:			
							Ver: 01/16/2019

The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.

Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis.

Date:

Other Other (pH<2) Total Phos Total Cyanide (pH>12) S (pH<2) **TOC** Cooler #7: Cooler #8: Cooler #9: (pH<2) TKN Volume of Preservative used (ml): _ Phenols Sulfide Expiration Date: (6<Hd) (pH<2) Cooler Temperatures (pH<2) EPH or If pH adjustments are required record the information below: S (bH 2-9) Pest Cooler #4: Metals Hardness Cooler #5: Cooler #6: (pH<2) IR Gun # (pH<2) Nitrate Nitrite (pH<2) (pH<2) COD 30 Cooler #1: 3,0 c Sample No(s). adjusted: Preservative Name/Conc.: Lot # of Preservative(s): Ammonia (pH<2) Cooler #2: Cooler #3: TALS Sample Number Number of Coolers:

of

Receipt Temperature and pH Log **Eurofins TestAmerica Edison**

Job Number:

EDS-WI-038, Rev 4.1 10/22/2019

Initials:

Client: Sevenson Environmental Services, Inc.

Job Number: 460-216412-1

Login Number: 216412

List Number: 1

Creator: Rivera, Kenneth

List Source: Eurofins TestAmerica, Edison

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	No date or time on COC, logged in per container labels.
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Laboratories, Inc.

Eurofins TestAmerica, Edison

Lab Job ID: 460-216412-1

Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	1247 EME H	orizo	n A Topsoil
Lab Sample ID	Residential	Non-Residential	IGW Screening		460	0-216412-1
Sampling Date	Sept_2017	Sept_2017	Nov_2013	08/19/2020 10		20 10:24:00
Matrix						Soil
				Result	Q	MDL
SOIL BY 7196A						
Cr (VI) (mg/kg)	NA	NA	NA	0.41	U	0.41

U : Indicates the analyte was analyzed for but not detected.

Lab Contact: Allison Bennett Project Manager I (732)593-2517

12960 Commerce Lake Drive, A14, Fort Myers, FL 33913 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

Client:	Sevenson Environmental	Project:	Honeywell Project Jersey City, NJ
Material:	Horizon A Topsoil	Project Number:	200608
Source:	Eme	Lab Number:	20-0998
Location:	Stockpile	Item Number:	No Specification
Date Sampled:	9/9/2020	Sampled By:	Client
Date Tested:	9/11/2020	Tested By:	Brian Mattioli

	Repo	ort of pH of Soil	
	Test Method:	ASTM D4972 Meth	nod A
pH Test Result:	5.8	(in Di	stilled Water)
_	5.3	(In Ca	alcium Chloride Solution)
Specification			
Comments:			
	\sim		

Report Reviewed By:

This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc. The results in this report relate only to the items inspected or tested.

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-217093-1

Client Project/Site: 1247 HON SA-6 South Deferred Area

Sevenson Environmental Services, Inc. 2749 Lockport Road Niagara Falls, New York 14305

Attn: Mr. Michael F Marrone

Authorized for release by: 9/4/2020 8:00:56 AM

Allison Bennett, Project Manager I (732)593-2517

Allison, Bennett@Eurofinset.com

----- LINKS -----

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area Laboratory Job ID: 460-217093-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	9
Lab Chronicle	19
Certification Summary	
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	26

4

<u>۾</u>

9

Definitions/Glossary

Client: Sevenson Environmental Services, Inc.

Job ID: 460-217093-1

Project/Site: 1247 HON SA-6 South Deferred Area

Qualifiers

GC/MS VOA

* LCS or LCSD is outside acceptance limits.

U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier Qualifier Description

* LCS or LCSD is outside acceptance limits.

U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA TICs

Qualifier Qualifier Description

A The tentatively identified compound is a suspected aldol-condensation product.

J Indicates an Estimated Value for TICs

N This flag indicates the presumptive evidence of a compound.

GC Semi VOA

J Indicates the analyte was analyzed for but not detected.

Metals

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier Qualifier Description

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly	used abbreviations may	or may not be	present in this report.
ADDIEVIALIOII	THESE COMMISSION	y useu abbievialions may	OI IIIAY IIUL DE	present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

Eurofins TestAmerica, Edison

Page 3 of 26 9/4/2020

Definitions/Glossary

Client: Sevenson Environmental Services, Inc. Job ID: 460-217093-1

Project/Site: 1247 HON SA-6 South Deferred Area

Glossary (Continued)

These commonly used abbreviations may or may not be present in this report.
Presumptive
Quality Control
Relative Error Ratio (Radiochemistry)
Reporting Limit or Requested Limit (Radiochemistry)
Relative Percent Difference, a measure of the relative difference between two points
Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)
Too Numerous To Count

DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

Laboratory Name: Eurofins TestAmerica, Edison Client: Sevenson Environmental Services, Inc.

Project Location: 1247 HON SA-6 South Deferred Area Project Number: 460-217093-1 Laboratory Sample ID(s): 460-217093-1, 460-217093-2 Sampling Date(s): 08/27/2020

List DKQP Methods Used: 8260C, 8270D, 8081B, 8082A, 6020B, 7471B, 7196A, 9012B

victii	303 0300. 02000, 02100, 00010, 000211, 00200, 14110, 110011, 00120	
1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the NJDEP Data of Known Quality performance standards?	⊠Yes □No
1A	Were the method specified handling, preservation, and holding time requirements met?	✓Yes □No□ See case narrative
1B	<u>EPH Method:</u> Was the EPH method conducted without significant modifications? (see Section 11.3 of respective DKQ methods)	□Yes □No ☑N/A
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody documents(s)?	✓Yes □No□ See case narrative
3	Were samples received at an appropriate temperature (4±2° C)?	⊠Yes □No □N/A
4	Were all QA/QC performance criteria specified in the NJDEP DKQP standards achieved?	□Yes ⊠No
	Were reporting limits specified or referenced on the chain-of-custody or communicated to the laboratory prior to sample receipt?	✓Yes □No□ See case narrative
5	b) Were these reporting limits met?	✓Yes □No□N/A□ See casenarrative
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the DKQP documents and/or site-specific QAPP?	⊠Yes □No
7	Are project-specific matrix spike and/or laboratory duplicates included in this data set?	□Yes ⊠No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information should be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet requirements for "Data of Known Quality."

Page 5 of 26 9/4/2020

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-217093-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

CASE NARRATIVE

Client: Sevenson Environmental Services, Inc.

Project: 1247 HON SA-6 South Deferred Area

Report Number: 460-217093-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 8/28/2020 4:40 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.2° C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS (GC/MS) DKQP (TOTAL)

Samples EME Horizon B Topsoil (460-217093-1) and EME Horizon C Topsoil (460-217093-2) were analyzed for Volatile Organic Compounds (GC/MS) DKQP (Total) in accordance with EPA SW-846 Method 8260C (DKQP). The samples were prepared on 08/28/2020 and analyzed on 08/30/2020.

The continuing calibration verification (CCV) analyzed in batch 460-720629 was outside the method criteria for the following analytes: Bromoform (biased low) and Bromomethane, Acrolein and Acrylonitrile (biased high). A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analytes is considered estimated.

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 460-720629 recovered outside control limits for the following analytes: Bromoform, Acrolein, Acrylonitrile and Bromomethane. These analytes were not detected in the associated samples; therefore, the data have been reported.

Refer to the QC report for details.

No other difficulties were encountered during the Volatile Organic Compounds (GC/MS) DKQP (Total) analysis.

All quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC/MS) DKQP (TOTAL)

Samples EME Horizon B Topsoil (460-217093-1) and EME Horizon C Topsoil (460-217093-2) were analyzed for Semivolatile Organic

9

Job ID: 460-217093-1

3

4

5

6

Q

9

10

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area Job ID: 460-217093-1

Job ID: 460-217093-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

Compounds (GC/MS) DKQP (Total) in accordance with EPA SW-846 Method 8270D (DKQP). The samples were prepared on 09/01/2020 and analyzed on 09/02/2020.

The continuing calibration verification (CCV) analyzed in batch 460-720914 was outside the method criteria for the following analyte(s): 4,6-Dinitro-2-methylphenol, Hexachlorocyclopentadiene and Benzaldehyde. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

The laboratory control sample (LCS) and/or lab control sample duplicate (LCSD) associated with preparation batch 460-721052 and analytical batch 460-720914 was outside DKQP recovery criteria but with laboratory generated limits for the following analytes: 3,3'-Dichlorobenzidine. The data has been reported.

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 460-721052 and analytical batch 460-720914 recovered outside control limits for the following analytes: Atrazine and Caprolactam. These analytes were biased high in the LCS/LCSD and were not detected in the associated samples; therefore, the data have been reported.

Refer to the QC report for details.

No other difficulties were encountered during the Semivolatile Organic Compounds (GC/MS) DKQP (Total) analysis.

All other quality control parameters were within the acceptance limits.

ORGANOCHLORINE PESTICIDES (GC) DKQP (TOTAL)

Samples EME Horizon B Topsoil (460-217093-1) and EME Horizon C Topsoil (460-217093-2) were analyzed for Organochlorine Pesticides (GC) DKQP (Total) in accordance with EPA SW-846 Method 8081B (DKQP). The samples were prepared on 08/29/2020 and analyzed on 08/31/2020.

No difficulties were encountered during the Organochlorine Pesticides (GC) DKQP (Total) analysis.

All quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS (PCBS) DKQP (TOTAL)

Samples EME Horizon B Topsoil (460-217093-1) and EME Horizon C Topsoil (460-217093-2) were analyzed for Polychlorinated Biphenyls (PCBs) DKQP (Total) in accordance with EPA SW-846 Method 8082A (DKQP). The samples were prepared on 08/29/2020 and analyzed on 08/31/2020.

No difficulties were encountered during the Polychlorinated Biphenyls (PCBs) DKQP (Total) analysis.

All quality control parameters were within the acceptance limits.

METALS DKQP (TOTAL)(ICP/MS)

Samples EME Horizon B Topsoil (460-217093-1) and EME Horizon C Topsoil (460-217093-2) were analyzed for Metals DKQP (Total) (ICP/MS) in accordance with EPA SW-846 Method 6020B (DKQP). The samples were prepared on 08/29/2020 and analyzed on 08/30/2020.

Several analytes failed the recovery criteria low for the MS of sample 460-217089-1 in batch 460-720689. Vanadium failed the recovery criteria high.

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

Refer to the QC report for details.

No other difficulties were encountered during the Metals DKQP (Total)(ICP/MS) analysis.

Eurofins TestAmerica, Edison

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-217093-1

Job ID: 460-217093-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

All other quality control parameters were within the acceptance limits.

MERCURY (HG) DKQP (TOTAL)

Samples EME Horizon B Topsoil (460-217093-1) and EME Horizon C Topsoil (460-217093-2) were analyzed for Mercury (Hg) DKQP (Total) in accordance with EPA SW-846 Method 7471B (DKQP). The samples were prepared and analyzed on 09/02/2020.

No difficulties were encountered during the Mercury (Hg) DKQP (Total) analysis.

All other quality control parameters were within the acceptance limits.

HEXAVALENT CHROMIUM VI DKQP (TOTAL)

Samples EME Horizon B Topsoil (460-217093-1) and EME Horizon C Topsoil (460-217093-2) were analyzed for Hexavalent Chromium VI DKQP (Total) in accordance with EPA SW-846 Method 7196A (DKQP). The samples were prepared and analyzed on 09/01/2020.

Cr (VI) exceeded the RPD limit for the duplicate of sample 460-216731-1.

Refer to the QC report for details.

No other difficulties were encountered during the Hexavalent Chromium VI DKQP (Total) analysis.

All other quality control parameters were within the acceptance limits.

CYANIDE (CN) DKQP (TOTAL)

Samples EME Horizon B Topsoil (460-217093-1) and EME Horizon C Topsoil (460-217093-2) were analyzed for Cyanide (CN) DKQP (Total) in accordance with EPA SW-846 Method 9012B (DKQP). The samples were prepared and analyzed on 09/02/2020.

No difficulties were encountered during the Cyanide (CN) DKQP (Total) analysis.

All quality control parameters were within the acceptance limits.

CORROSIVITY (PH)

Samples EME Horizon B Topsoil (460-217093-1) and EME Horizon C Topsoil (460-217093-2) were analyzed for corrosivity (pH) in accordance with EPA SW-846 Method 9045D. The samples were analyzed on 08/31/2020.

No difficulties were encountered during the corrosivity (pH) analysis.

All other quality control parameters were within the acceptance limits.

LLOYD KAHN METHOD (TOTAL ORGANIC CARBON)

Samples EME Horizon B Topsoil (460-217093-1) and EME Horizon C Topsoil (460-217093-2) were analyzed for Lloyd Kahn Method (total organic carbon) in accordance with Lloyd Kahn Method. The samples were analyzed on 09/03/2020.

No difficulties were encountered during the TOC analysis.

All quality control parameters were within the acceptance limits.

PERCENT SOLIDS/PERCENT MOISTURE

Samples EME Horizon B Topsoil (460-217093-1) and EME Horizon C Topsoil (460-217093-2) were analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D) Modified. The samples were analyzed on 09/01/2020.

No difficulties were encountered during the %solids/moisture analysis.

All quality control parameters were within the acceptance limits.

4

4

5

6

Job ID: 460-217093-1

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: EME Horizon B Topsoil

Lab Sample ID: 460-217093-1 Date Collected: 08/27/20 11:00 **Matrix: Solid** Date Received: 08/28/20 16:40 Percent Solids: 91.6

Analyte	Result	Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	0.00032	U	0.0014		0.00032	mg/Kg		08/28/20 23:40	08/30/20 13:58	
1,1,2,2-Tetrachloroethane	0.00029	U	0.0014		0.00029	mg/Kg	₩	08/28/20 23:40	08/30/20 13:58	
1,1,2-Trichloroethane	0.00024	U	0.0014		0.00024	mg/Kg	≎	08/28/20 23:40	08/30/20 13:58	
1,1-Dichloroethane	0.00028	U	0.0014		0.00028	mg/Kg	₩	08/28/20 23:40	08/30/20 13:58	
1,1-Dichloroethene	0.00031	U	0.0014		0.00031	mg/Kg	₩	08/28/20 23:40	08/30/20 13:58	
1,2-Dibromo-3-Chloropropane	0.00063	U	0.0014		0.00063	mg/Kg	₩	08/28/20 23:40	08/30/20 13:58	
1,2-Dibromoethane	0.00025	U	0.0014		0.00025	mg/Kg	₩	08/28/20 23:40	08/30/20 13:58	
1,2-Dichloroethane	0.00040	U	0.0014		0.00040	mg/Kg	₩	08/28/20 23:40	08/30/20 13:58	
1,2-Dichloropropane	0.00058	U	0.0014		0.00058	mg/Kg	₩	08/28/20 23:40	08/30/20 13:58	
2-Butanone	0.0037	U	0.0068		0.0037	mg/Kg		08/28/20 23:40	08/30/20 13:58	
2-Chloroethyl vinyl ether	0.0022	U	0.0027			mg/Kg	☼	08/28/20 23:40	08/30/20 13:58	
2-Hexanone	0.0023	U	0.0068			mg/Kg	☼	08/28/20 23:40	08/30/20 13:58	
4-Methyl-2-pentanone	0.0021		0.0068			mg/Kg	∴		08/30/20 13:58	
Acetone	0.0078		0.0082			mg/Kg	₩		08/30/20 13:58	
Acrolein	0.038		0.14			mg/Kg	☼		08/30/20 13:58	
Acrylonitrile	0.0022		0.014			mg/Kg			08/30/20 13:58	
Benzene	0.00035		0.0014		0.00035				08/30/20 13:58	
Bromodichloromethane	0.00035		0.0014		0.00035				08/30/20 13:58	
Bromoform	0.00058		0.0014		0.00058		. T		08/30/20 13:58	
Bromomethane	0.00065		0.0014		0.00065	0 0	~ ☆		08/30/20 13:58	
Carbon disulfide	0.00036		0.0014		0.00036		~ ☆		08/30/20 13:58	
Carbon tetrachloride	0.00053		0.0014		0.00053				08/30/20 13:58	
Chlorobenzene	0.00033		0.0014		0.00033		₩		08/30/20 13:58	
Chloroethane	0.00024		0.0014		0.00024		₩ ₩		08/30/20 13:58	
Chloroform	0.00071		0.0014		0.00071		.∵		08/30/20 13:58	
Chloromethane	0.0021	11	0.0014		0.00059		₩		08/30/20 13:58	
cis-1,2-Dichloroethene	0.00039		0.0014		0.00039		₩		08/30/20 13:58	
					0.00021				08/30/20 13:58	
cis-1,3-Dichloropropene	0.00037		0.0014		0.00037		₩			
Dibromochloromethane	0.00026		0.0014				‡		08/30/20 13:58	
Dichlorodifluoromethane	0.00046		0.0014		0.00046				08/30/20 13:58	
Ethylbenzene	0.00027		0.0014		0.00027	0 0	₩.		08/30/20 13:58	
Methyl acetate	0.0059	U	0.0068			mg/Kg	☆		08/30/20 13:58	
Methylene Chloride	0.00063		0.0014		0.00063				08/30/20 13:58	
MTBE	0.00017		0.0014		0.00017		₽		08/30/20 13:58	
Styrene	0.00038		0.0014		0.00038	0 0	₩.		08/30/20 13:58	
TBA 	0.0045		0.014		0.0045				08/30/20 13:58	
Tetrachloroethene	0.00019		0.0014		0.00019		☼	08/28/20 23:40		
Toluene	0.00032		0.0014		0.00032		₩		08/30/20 13:58	
trans-1,2-Dichloroethene	0.00033		0.0014		0.00033				08/30/20 13:58	
trans-1,3-Dichloropropene	0.00036		0.0014		0.00036		₩		08/30/20 13:58	
Trichloroethene	0.00020		0.0014		0.00020		₩		08/30/20 13:58	
Trichlorofluoromethane	0.00055		0.0014		0.00055				08/30/20 13:58	
Vinyl chloride	0.00074		0.0014		0.00074		₩		08/30/20 13:58	
Xylenes, Total	0.00024	U	0.0014		0.00024	mg/Kg	₩	08/28/20 23:40	08/30/20 13:58	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		mg/Kg	₩				08/28/20 23:40	08/30/20 13:58	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa

Eurofins TestAmerica, Edison

Page 9 of 26 9/4/2020

Client Sample Results

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: EME Horizon B Topsoil Lab Sample ID: 460-217093-1

Date Collected: 08/27/20 11:00

Matrix: Solid

Date Received: 08/28/20 16:40

Percent Solids: 91.6

Method: 8260C - Volatile Organic	Compounds by	GC/MS (Continued)
----------------------------------	--------------	-------------------

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Bromofluorobenzene	111	70 - 130	08/28/20 23:40	08/30/20 13:58	1
Dibromofluoromethane (Surr)	106	70 - 130	08/28/20 23:40	08/30/20 13:58	1
Toluene-d8 (Surr)	112	70 - 130	08/28/20 23:40	08/30/20 13:58	1

Toluerie-ao (Surr)	112		70 - 130				06/26/20 23.40	06/30/20 13.56	,
Method: 8270D - Semivolatil			•			_			
Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	0.0048		0.36	0.0048	mg/Kg	☼	09/01/20 09:15	09/02/20 04:37	1
1,2,4-Trichlorobenzene	0.0093		0.036	0.0093		☼	09/01/20 09:15	09/02/20 04:37	1
1,2-Dichlorobenzene	0.0062		0.36	0.0062			09/01/20 09:15	09/02/20 04:37	1
1,2-Diphenylhydrazine	0.0066		0.36	0.0066		☼	09/01/20 09:15	09/02/20 04:37	1
1,3-Dichlorobenzene	0.0048	U	0.36	0.0048	mg/Kg	☼	09/01/20 09:15	09/02/20 04:37	1
1,4-Dichlorobenzene	0.014	U	0.36	0.014	mg/Kg		09/01/20 09:15	09/02/20 04:37	1
2,4,5-Trichlorophenol	0.037	U	0.36	0.037	mg/Kg	₩	09/01/20 09:15	09/02/20 04:37	1
2,4,6-Trichlorophenol	0.046	U	0.15	0.046	mg/Kg	☼	09/01/20 09:15	09/02/20 04:37	1
2,4-Dichlorophenol	0.023	U	0.15	0.023	mg/Kg	☼	09/01/20 09:15	09/02/20 04:37	1
2,4-Dimethylphenol	0.016	U	0.36	0.016	mg/Kg	☼	09/01/20 09:15	09/02/20 04:37	1
2,4-Dinitrophenol	0.18	U	0.29	0.18	mg/Kg	≎	09/01/20 09:15	09/02/20 04:37	1
2,4-Dinitrotoluene	0.039	U	0.073	0.039	mg/Kg	₽	09/01/20 09:15	09/02/20 04:37	1
2,6-Dinitrotoluene	0.026	U	0.073	0.026	mg/Kg	₩	09/01/20 09:15	09/02/20 04:37	1
2-Chloronaphthalene	0.017	U	0.36	0.017	mg/Kg	☼	09/01/20 09:15	09/02/20 04:37	1
2-Chlorophenol	0.013	U	0.36	0.013	mg/Kg	☼	09/01/20 09:15	09/02/20 04:37	1
2-Methylnaphthalene	0.010	U	0.36	0.010	mg/Kg	₩	09/01/20 09:15	09/02/20 04:37	1
2-Methylphenol	0.013	U	0.36	0.013	mg/Kg	₽	09/01/20 09:15	09/02/20 04:37	1
2-Nitroaniline	0.013	U	0.36		mg/Kg	☼	09/01/20 09:15	09/02/20 04:37	1
2-Nitrophenol	0.036		0.36		mg/Kg		09/01/20 09:15	09/02/20 04:37	1
3,3'-Dichlorobenzidine	0.055		0.15		mg/Kg	☼	09/01/20 09:15	09/02/20 04:37	1
3-Nitroaniline	0.041	U	0.36	0.041	mg/Kg	₩	09/01/20 09:15	09/02/20 04:37	1
4,6-Dinitro-2-methylphenol	0.059		0.29		mg/Kg	∴	09/01/20 09:15	09/02/20 04:37	1
4-Bromophenyl phenyl ether	0.014	U	0.36		mg/Kg	₩	09/01/20 09:15	09/02/20 04:37	1
4-Chloro-3-methylphenol	0.020		0.36		mg/Kg	₩	09/01/20 09:15	09/02/20 04:37	1
4-Chloroaniline	0.025		0.36		mg/Kg			09/02/20 04:37	1
4-Chlorophenyl phenyl ether	0.013		0.36		mg/Kg		09/01/20 09:15	09/02/20 04:37	1
4-Methylphenol	0.023		0.36		mg/Kg	÷	09/01/20 09:15	09/02/20 04:37	1
4-Nitroaniline	0.041		0.36		mg/Kg		09/01/20 09:15	09/02/20 04:37	1
4-Nitrophenol	0.059		0.73			₩	09/01/20 09:15	09/02/20 04:37	1
Acenaphthene	0.026		0.36		mg/Kg		09/01/20 09:15	09/02/20 04:37	1
Acenaphthylene	0.0037		0.36	0.0037		 ☆	09/01/20 09:15	09/02/20 04:37	
Acetophenone	0.018		0.36		mg/Kg	~ ☆	09/01/20 09:15	09/02/20 04:37	1
Anthracene	0.011		0.36	0.011	mg/Kg	~ ☆	09/01/20 09:15	09/02/20 04:37	1
Atrazine	0.0091		0.30	0.0091	mg/Kg		09/01/20 09:15	09/02/20 04:37	
	0.016		0.13		mg/Kg	₩	09/01/20 09:15	09/02/20 04:37	1
Benzaldehyde					0 0				
Benzidine Benzidine	0.036		0.36		mg/Kg	· · · · ·		09/02/20 04:37	
Benzo[a]anthracene	0.013		0.036		mg/Kg	±.	09/01/20 09:15		1
Benzo[a]pyrene	0.0096		0.036	0.0096		☆		09/02/20 04:37	1
Benzo[b]fluoranthene	0.0093		0.036	0.0093		<u>.</u> .		09/02/20 04:37	1
Benzo[g,h,i]perylene	0.011		0.36		mg/Kg	₩		09/02/20 04:37	1
Benzo[k]fluoranthene	0.0071		0.036	0.0071		☼		09/02/20 04:37	1
bis (2-chloroisopropyl) ether	0.0065		0.36	0.0065				09/02/20 04:37	1
Bis(2-chloroethoxy)methane	0.028	U	0.36	0.028	mg/Kg	☼	09/01/20 09:15	09/02/20 04:37	1

Eurofins TestAmerica, Edison

9/4/2020

Job ID: 460-217093-1

3

6

8

10

Job ID: 460-217093-1

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: EME Horizon B Topsoil

Lab Sample ID: 460-217093-1 Date Collected: 08/27/20 11:00 **Matrix: Solid** Date Received: 08/28/20 16:40

Percent Solids: 91.6

Method: 8270D - Semivolatile Analyte		Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-chloroethyl)ether	0.013	U	0.036		0.013	mg/Kg	 	09/01/20 09:15	09/02/20 04:37	1
Bis(2-ethylhexyl) phthalate	0.019	U	0.36		0.019	mg/Kg	₩	09/01/20 09:15	09/02/20 04:37	1
Butyl benzyl phthalate	0.017	U	0.36		0.017	mg/Kg		09/01/20 09:15	09/02/20 04:37	1
Caprolactam	0.056	U *	0.36		0.056	mg/Kg	₩	09/01/20 09:15	09/02/20 04:37	1
Carbazole	0.014	U	0.36		0.014	mg/Kg	₩	09/01/20 09:15	09/02/20 04:37	1
Chrysene	0.0061	U	0.36		0.0061			09/01/20 09:15	09/02/20 04:37	1
Dibenz(a,h)anthracene	0.016	U	0.036		0.016	mg/Kg	₽	09/01/20 09:15	09/02/20 04:37	1
Dibenzofuran	0.0051	U	0.36		0.0051	mg/Kg	₩	09/01/20 09:15	09/02/20 04:37	1
Diethyl phthalate	0.0052	U	0.36		0.0052	mg/Kg		09/01/20 09:15	09/02/20 04:37	1
Dimethyl phthalate	0.082	U	0.36			mg/Kg	₩	09/01/20 09:15	09/02/20 04:37	1
Di-n-butyl phthalate	0.064	U	0.36			mg/Kg	₩	09/01/20 09:15	09/02/20 04:37	1
Di-n-octyl phthalate	0.019		0.36			mg/Kg			09/02/20 04:37	1
Fluoranthene	0.013		0.36			mg/Kg		09/01/20 09:15		1
Fluorene	0.0049		0.36		0.0049		*	09/01/20 09:15		1
Hexachlorobenzene	0.017		0.036			mg/Kg			09/02/20 04:37	
Hexachlorobutadiene	0.0077		0.073		0.0077				09/02/20 04:37	1
Hexachlorocyclopentadiene	0.032		0.36			mg/Kg	~ ⇔	09/01/20 09:15		1
Hexachloroethane	0.032		0.036			mg/Kg			09/02/20 04:37	
Indeno[1,2,3-cd]pyrene	0.012		0.036			mg/Kg	₩	09/01/20 09:15	09/02/20 04:37	1
Isophorone	0.014		0.030			mg/Kg	₩	09/01/20 09:15	09/02/20 04:37	1
Naphthalene	0.0062		0.36		0.0062			09/01/20 09:15		
Nitrobenzene	0.0002		0.036		0.0002			09/01/20 09:15		1
N-Nitrosodimethylamine	0.0087		0.036			mg/Kg	₽	09/01/20 09:15		1
N-Nitrosodi-n-propylamine	0.026		0.036			mg/Kg	₽	09/01/20 09:15		1
N-Nitrosodiphenylamine	0.0069		0.36		0.0069		**	09/01/20 09:15		1
Pentachlorophenol	0.074		0.29			mg/Kg			09/02/20 04:37	1
Phenanthrene	0.0063		0.36		0.0063		₽	09/01/20 09:15		1
Phenol	0.013		0.36			mg/Kg	*		09/02/20 04:37	1
Pyrene	0.0090	U	0.36		0.0090	mg/Kg	₽	09/01/20 09:15	09/02/20 04:37	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Aldol condensation product	1.0	A J	mg/Kg	-	2.	76		09/01/20 09:15	09/02/20 04:37	1
Unknown	1.6	J	mg/Kg	☼	15.	.38		09/01/20 09:15	09/02/20 04:37	1
Unknown	0.60	J	mg/Kg	₩	15.	79		09/01/20 09:15	09/02/20 04:37	1
Unknown	0.38	J	mg/Kg		16.	14		09/01/20 09:15	09/02/20 04:37	1
Unknown	0.49	J	mg/Kg	₩		.30		09/01/20 09:15	09/02/20 04:37	1
Unknown	0.79	J	mg/Kg	₽	17.	21		09/01/20 09:15	09/02/20 04:37	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	62		30 - 130						09/02/20 04:37	1
2-Fluorobiphenyl	59		30 - 130					09/01/20 09:15	09/02/20 04:37	1
2-Fluorophenol	56		30 - 130					09/01/20 09:15	09/02/20 04:37	1
Nitrobenzene-d5	60		30 - 130					09/01/20 09:15	09/02/20 04:37	1
Phenol-d5	55		30 - 130					09/01/20 09:15	09/02/20 04:37	1
Terphenyl-d14	69		30 - 130					09/01/20 09:15	09/02/20 04:37	1
Method: 8081B - Organochlo	rine Pesticio	les (GC)								
Analyte		Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.0012	U	0.0073		0.0012	mg/Kg		08/29/20 19:54		1
4,4'-DDE	0.00086		0.0073			mg/Kg		08/29/20 19:54	00/04/00 44.05	1

Eurofins TestAmerica, Edison

9/4/2020

Job ID: 460-217093-1

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: EME Horizon B Topsoil

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Analyte

Aluminum

Method: 6020B - Metals (ICP/MS)

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Date Collected: 08/27/20 11:00 Date Received: 08/28/20 16:40

Lab Sample ID: 460-217093-1 **Matrix: Solid**

Percent Solids: 91.6

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDT	0.0013		0.0073		mg/Kg		08/29/20 19:54		1
Aldrin	0.0011	U	0.0073		mg/Kg	₩	08/29/20 19:54	08/31/20 11:25	1
alpha-BHC	0.00074	U	0.0022	0.00074		₩	08/29/20 19:54	08/31/20 11:25	1
beta-BHC	0.00082	U	0.0022	0.00082		*	08/29/20 19:54	08/31/20 11:25	1
Chlordane (n.o.s.)	0.018	U	0.073	0.018	mg/Kg	₩	08/29/20 19:54	08/31/20 11:25	1
Chlordane (technical)	0.018	U	0.073	0.018	mg/Kg	₩	08/29/20 19:54	08/31/20 11:25	1
cis-Chlordane	0.0012	U	0.0073	0.0012	0 0	*	08/29/20 19:54	08/31/20 11:25	1
delta-BHC	0.00045	U	0.0022	0.00045	mg/Kg	₩	08/29/20 19:54	08/31/20 11:25	1
Dieldrin	0.00095	U	0.0022	0.00095	0 0	₽	08/29/20 19:54	08/31/20 11:25	1
Endosulfan I	0.0011	U	0.0073	0.0011	mg/Kg	₽	08/29/20 19:54	08/31/20 11:25	1
Endosulfan II	0.0019	U	0.0073		mg/Kg	₩	08/29/20 19:54	08/31/20 11:25	1
Endosulfan sulfate	0.00092	U	0.0073	0.00092		₩	08/29/20 19:54	08/31/20 11:25	1
Endrin	0.0010	U	0.0073	0.0010	mg/Kg	₩	08/29/20 19:54	08/31/20 11:25	1
Endrin aldehyde	0.0017	U	0.0073		mg/Kg	₩	08/29/20 19:54	08/31/20 11:25	1
Endrin ketone	0.0014	U	0.0073	0.0014		₩	08/29/20 19:54	08/31/20 11:25	1
gamma-BHC (Lindane)	0.00068	U	0.0022	0.00068		₩	08/29/20 19:54	08/31/20 11:25	1
Heptachlor	0.00086	U	0.0073	0.00086			08/29/20 19:54	08/31/20 11:25	1
Heptachlor epoxide	0.0011	U	0.0073			₩	08/29/20 19:54	08/31/20 11:25	1
Methoxychlor	0.0017	U	0.0073		mg/Kg	₽	08/29/20 19:54	08/31/20 11:25	1
Toxaphene	0.026		0.073						1
trans-Chlordane	0.0013		0.0073	0.0013	0 0	₽		08/31/20 11:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	70		30 - 150				08/29/20 19:54		1
DCB Decachlorobiphenyl	76		30 - 150				08/29/20 19:54	08/31/20 11:25	1
Tetrachloro-m-xylene	68		30 - 150						
Totrachlara m vylena							08/29/20 19:54	08/31/20 11:25	1
Tetrachloro-m-xylene	64		30 - 150					08/31/20 11:25 08/31/20 11:25	
Tetracnioro-m-xylene 			30 - 150	omatogr	aphv				
Method: 8082A - Polychlorir Analyte	nated Bipheny Result	yls (PCBs) Qualifier	30 - 150 by Gas Chr	MDL	Unit	<u>D</u>	08/29/20 19:54 Prepared	08/31/20 11:25 Analyzed	1 Dil Fac
•	nated Bipheny Result 0.0097	yls (PCBs) Qualifier	30 - 150 by Gas Chro RL 0.073	MDL 0.0097	Unit mg/Kg	<u>D</u>	08/29/20 19:54 Prepared 08/29/20 19:51	08/31/20 11:25 Analyzed 08/31/20 11:43	1
Method: 8082A - Polychlorir Analyte Aroclor 1016	nated Bipheny Result	yls (PCBs) Qualifier	30 - 150 by Gas Chr	MDL 0.0097	Unit		08/29/20 19:54 Prepared	08/31/20 11:25 Analyzed 08/31/20 11:43	Dil Fac
Method: 8082A - Polychlorir Analyte Aroclor 1016 Aroclor 1221	nated Bipheny Result 0.0097	yls (PCBs) Qualifier U	30 - 150 by Gas Chro RL 0.073	0.0097 0.0097 0.0097	Unit mg/Kg mg/Kg mg/Kg	— -	08/29/20 19:54 Prepared 08/29/20 19:51	08/31/20 11:25 Analyzed 08/31/20 11:43 08/31/20 11:43	Dil Fac
Method: 8082A - Polychlorir Analyte	nated Bipheny Result 0.0097 0.0097	yls (PCBs) Qualifier U U U	30 - 150 by Gas Chro RL 0.073 0.073	MDL 0.0097 0.0097 0.0097 0.0097	mg/Kg mg/Kg mg/Kg mg/Kg	— <u> </u>	08/29/20 19:54 Prepared 08/29/20 19:51 08/29/20 19:51	08/31/20 11:25 Analyzed 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43	Dil Fac
Method: 8082A - Polychlorir Analyte Aroclor 1016 Aroclor 1221 Aroclor 1232	nated Bipheny Result 0.0097 0.0097 0.0097	yls (PCBs) Qualifier U U U U	30 - 150 by Gas Chro RL 0.073 0.073 0.073	MDL 0.0097 0.0097 0.0097 0.0097	Unit mg/Kg mg/Kg mg/Kg	# # #	08/29/20 19:54 Prepared 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51	08/31/20 11:25 Analyzed 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43	Dil Fac
Method: 8082A - Polychlorin Analyte Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242	nated Bipheny Result 0.0097 0.0097 0.0097	yls (PCBs) Qualifier U U U U U	30 - 150 by Gas Chro RL 0.073 0.073 0.073 0.073	0.0097 0.0097 0.0097 0.0097 0.0097	mg/Kg mg/Kg mg/Kg mg/Kg	# # # #	Prepared 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51	Analyzed 08/31/20 11:25 Analyzed 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43	Dil Fac 1 1 1
Method: 8082A - Polychlorin Analyte Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	nated Bipheny Result 0.0097 0.0097 0.0097 0.0097	yls (PCBs) Qualifier U U U U U U	30 - 150 by Gas Chro RL 0.073 0.073 0.073 0.073 0.073 0.073	0.0097 0.0097 0.0097 0.0097 0.0097 0.010	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * *	Prepared 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51	Analyzed 08/31/20 11:25 Analyzed 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43	Dil Fac 1 1 1 1 1
Method: 8082A - Polychlorin Analyte Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	nated Bipheny Result 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.010	yls (PCBs) Qualifier U U U U U U U U	30 - 150 by Gas Chro RL 0.073 0.073 0.073 0.073 0.073 0.073 0.073	0.0097 0.0097 0.0097 0.0097 0.0097 0.010 0.010	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * *	Prepared 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51	Analyzed 08/31/20 11:25 Analyzed 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43	Dil Fac 1 1 1 1 1 1 1
Method: 8082A - Polychlorin Analyte Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	nated Bipheny Result 0.0097 0.0097 0.0097 0.0097 0.0097 0.010 0.010	yls (PCBs) Qualifier U U U U U U U U U U	30 - 150 by Gas Chro RL 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073	0.0097 0.0097 0.0097 0.0097 0.0097 0.010 0.010 0.010	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	Prepared 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51	Analyzed 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43	Dil Fac 1 1 1 1 1 1 1 1 1
Method: 8082A - Polychlorin Analyte Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1262	nated Bipheny Result 0.0097 0.0097 0.0097 0.0097 0.0097 0.010 0.010 0.010	yls (PCBs) Qualifier U U U U U U U U U U U U U U U	30 - 150 by Gas Chro RL 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073	0.0097 0.0097 0.0097 0.0097 0.0097 0.010 0.010 0.010	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * * *	Prepared 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51	Analyzed 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Method: 8082A - Polychlorin Analyte Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Polychlorinated biphenyls, Total	nated Bipheny Result 0.0097 0.0097 0.0097 0.0097 0.0097 0.0010 0.010 0.010 0.010	yls (PCBs) Qualifier U U U U U U U U U U U U U U U U U U U	30 - 150 by Gas Chronic RL 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073	0.0097 0.0097 0.0097 0.0097 0.0097 0.010 0.010 0.010	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * * *	Prepared 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51	Analyzed 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43	Dil Fac 1 1 1 1 1 1 1 1 1 1
Method: 8082A - Polychlorin Analyte Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262	nated Bipheny Result 0.0097 0.0097 0.0097 0.0097 0.0097 0.010 0.010 0.010 0.010 0.010	yls (PCBs) Qualifier U U U U U U U U U U U U U U U U U U U	30 - 150 by Gas Chronic RL 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073	0.0097 0.0097 0.0097 0.0097 0.0097 0.010 0.010 0.010	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * * *	Prepared 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51	Analyzed 08/31/20 11:25 Analyzed 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 Analyzed	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1
Method: 8082A - Polychlorin Analyte Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Polychlorinated biphenyls, Total	nated Bipheny Result 0.0097 0.0097 0.0097 0.0097 0.0097 0.010 0.010 0.010 0.010 0.010	yls (PCBs) Qualifier U U U U U U U U U U U U U U U U U U U	30 - 150 by Gas Chronic RL	0.0097 0.0097 0.0097 0.0097 0.0097 0.010 0.010 0.010	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * * *	Prepared 08/29/20 19:54 Prepared 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 08/29/20 19:51 Prepared 08/29/20 19:51	Analyzed 08/31/20 11:25 Analyzed 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 08/31/20 11:43 Analyzed	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1

Eurofins TestAmerica, Edison

Analyzed

Dil Fac

9/4/2020

08/29/20 19:51 08/31/20 11:43

08/29/20 19:51 08/31/20 11:43

08/29/20 16:35 08/30/20 16:19

Prepared

Page 12 of 26

RL

19.0

MDL Unit

2.5 mg/Kg

30 - 150

30 - 150

115

115

6090

Result Qualifier

Client: Sevenson Environmental Services, Inc. Job ID: 460-217093-1 Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: EME Horizon B Topsoil

Lab Sample ID: 460-217093-1

Matrix: Solid Percent Solids: 91.6

Date Collected: 08/27/20 11:00 Date Received: 08/28/20 16:40

Method: 6020B - Metal	s (ICP/MS) (Continu	ued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.14	U	0.95	0.14	mg/Kg	-	08/29/20 16:35	08/30/20 16:19	1
Arsenic	2.8		0.95	0.095	mg/Kg	₽	08/29/20 16:35	08/30/20 16:19	•
Barium	10.7		1.9	0.14	mg/Kg	₽	08/29/20 16:35	08/30/20 16:19	
Beryllium	0.10	J	0.38	0.054	mg/Kg	₽	08/29/20 16:35	08/30/20 16:19	1
Cadmium	0.11	U	0.95	0.11	mg/Kg	₽	08/29/20 16:35	08/30/20 16:19	1
Chromium	8.2		1.9	0.17	mg/Kg	₽	08/29/20 16:35	08/30/20 16:19	1
Cobalt	0.68	J	1.9	0.14	mg/Kg	☼	08/29/20 16:35	08/30/20 16:19	1
Copper	4.4		1.9	0.21	mg/Kg	₽	08/29/20 16:35	08/30/20 16:19	1
Lead	4.4		0.57	0.19	mg/Kg	₩	08/29/20 16:35	08/30/20 16:19	1
Manganese	41.6		3.8	0.38	mg/Kg	₽	08/29/20 16:35	08/30/20 16:19	1
Nickel	2.1		1.9	0.18	mg/Kg	☼	08/29/20 16:35	08/30/20 16:19	1
Selenium	0.13	J	1.2	0.11	mg/Kg	₽	08/29/20 16:35	08/30/20 16:19	1
Silver	0.085	U	0.95	0.085	mg/Kg	₽	08/29/20 16:35	08/30/20 16:19	1
Thallium	0.039	U	0.38	0.039	mg/Kg	☼	08/29/20 16:35	08/30/20 16:19	1
Vanadium	12.9		1.9	0.20	mg/Kg	₽	08/29/20 16:35	08/30/20 16:19	1
Zinc	6.7	J	7.6	2.2	mg/Kg	₩	08/29/20 16:35	08/30/20 16:19	1

Method: 7471B - Mercury (CVAA)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0096	J	0.017	0.0040	mg/Kg		09/02/20 03:14	09/02/20 08:49	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	0.38	U	2.2	0.38	mg/Kg	☆	09/01/20 09:10	09/01/20 15:11	1
Cyanide, Total	0.15	J	0.25	0.13	mg/Kg	₩	09/02/20 09:08	09/02/20 12:30	1
pH	7.5	HF	0.1	0.1	SU			08/31/20 14:20	1
Temperature	21.7	HF	0.1	0.1	Degrees C			08/31/20 14:20	1
Corrosivity	7.5	HF	0.1	0.1	SU			08/31/20 14:20	1
TOC Result 1	10100		109	88.8	mg/Kg	₽		09/03/20 10:34	1
Percent Moisture	8.4		1.0	1.0	%			09/01/20 07:48	1
Percent Solids	91.6		1.0	1.0	%			09/01/20 07:48	1

Client Sample ID: EME Horizon C Topsoil

Lab Sample ID: 460-217093-2 Date Collected: 08/27/20 11:30 **Matrix: Solid** Date Received: 08/28/20 16:40 Percent Solids: 95.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.00039	U	0.0017	0.00039	mg/Kg	<u></u>	08/28/20 23:39	08/30/20 14:25	1
1,1,2,2-Tetrachloroethane	0.00036	U	0.0017	0.00036	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
1,1,2-Trichloroethane	0.00030	U	0.0017	0.00030	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
1,1-Dichloroethane	0.00035	U	0.0017	0.00035	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
1,1-Dichloroethene	0.00038	U	0.0017	0.00038	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
1,2-Dibromo-3-Chloropropane	0.00077	U	0.0017	0.00077	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
1,2-Dibromoethane	0.00030	U	0.0017	0.00030	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
1,2-Dichloroethane	0.00050	U	0.0017	0.00050	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
1,2-Dichloropropane	0.00071	U	0.0017	0.00071	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
2-Butanone	0.0045	U	0.0084	0.0045	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
2-Chloroethyl vinyl ether	0.0027	U	0.0034	0.0027	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
2-Hexanone	0.0029	U	0.0084	0.0029	mg/Kg	☆	08/28/20 23:39	08/30/20 14:25	1

Eurofins TestAmerica, Edison

9/4/2020

Job ID: 460-217093-1

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: EME Horizon C Topsoil

Lab Sample ID: 460-217093-2 Date Collected: 08/27/20 11:30 **Matrix: Solid**

Date Received: 08/28/20 16:40 Percent Solids: 95.3

Analyte	Result	Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone	0.0026	U	0.0084	0.0026	mg/Kg	*	08/28/20 23:39	08/30/20 14:25	1
Acetone	0.0096	U	0.010	0.0096	mg/Kg	₽	08/28/20 23:39	08/30/20 14:25	1
Acrolein	0.047	U *	0.17	0.047	mg/Kg	☼	08/28/20 23:39	08/30/20 14:25	1
Acrylonitrile	0.0027	U *	0.017	0.0027	mg/Kg	₽	08/28/20 23:39	08/30/20 14:25	1
Benzene	0.00043	U	0.0017	0.00043	mg/Kg	₽	08/28/20 23:39	08/30/20 14:25	1
Bromodichloromethane	0.00043	U	0.0017	0.00043	mg/Kg	₽	08/28/20 23:39	08/30/20 14:25	1
Bromoform	0.00071	U *	0.0017	0.0007	mg/Kg	₽	08/28/20 23:39	08/30/20 14:25	1
Bromomethane	0.00079	U *	0.0017	0.00079	mg/Kg	☼	08/28/20 23:39	08/30/20 14:25	1
Carbon disulfide	0.00045	U	0.0017	0.00045	mg/Kg	₽	08/28/20 23:39	08/30/20 14:25	1
Carbon tetrachloride	0.00065	U	0.0017	0.00068	mg/Kg	₽	08/28/20 23:39	08/30/20 14:25	1
Chlorobenzene	0.00030	U	0.0017	0.00030	mg/Kg	₽	08/28/20 23:39	08/30/20 14:25	1
Chloroethane	0.00087	U	0.0017	0.00087	mg/Kg	₽	08/28/20 23:39	08/30/20 14:25	1
Chloroform	0.00053	U	0.0017	0.00053	mg/Kg	₽	08/28/20 23:39	08/30/20 14:25	1
Chloromethane	0.00073	U	0.0017	0.00073	mg/Kg	₽	08/28/20 23:39	08/30/20 14:25	1
cis-1,2-Dichloroethene	0.00025	U	0.0017	0.00025	mg/Kg	₽	08/28/20 23:39	08/30/20 14:25	1
cis-1,3-Dichloropropene	0.00046	U	0.0017	0.00046	mg/Kg	₽	08/28/20 23:39	08/30/20 14:25	1
Dibromochloromethane	0.00033	U	0.0017	0.00033	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
Dichlorodifluoromethane	0.00057	U	0.0017	0.00057	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
Ethylbenzene	0.00033	U	0.0017	0.00033	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
Methyl acetate	0.0072	U	0.0084	0.0072	2 mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
Methylene Chloride	0.00078	U	0.0017	0.00078	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
MTBE	0.00021	U	0.0017	0.0002	mg/Kg	₽	08/28/20 23:39	08/30/20 14:25	1
Styrene	0.00047	U	0.0017	0.00047	mg/Kg	₽	08/28/20 23:39	08/30/20 14:25	1
TBA	0.0055	U	0.017	0.005	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
Tetrachloroethene	0.00024	U	0.0017	0.00024	mg/Kg	₽	08/28/20 23:39	08/30/20 14:25	1
Toluene	0.00039	U	0.0017	0.00039	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
trans-1,2-Dichloroethene	0.00041	U	0.0017	0.0004	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
trans-1,3-Dichloropropene	0.00045	U	0.0017	0.00045	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
Trichloroethene	0.00024	U	0.0017	0.00024	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
Trichlorofluoromethane	0.00068	U	0.0017	0.00068	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
Vinyl chloride	0.00092	U	0.0017	0.00092	2 mg/Kg		08/28/20 23:39	08/30/20 14:25	1
Xylenes, Total	0.00029	U	0.0017	0.00029	mg/Kg	₩	08/28/20 23:39	08/30/20 14:25	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		mg/Kg	*			08/28/20 23:39	08/30/20 14:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	_	70 - 130				08/28/20 23:39	08/30/20 14:25	1
Bromofluorobenzene	104		70 - 130				08/28/20 23:39	08/30/20 14:25	1
Dibromofluoromethane (Surr)	103		70 - 130				08/28/20 23:39	08/30/20 14:25	1
Toluene-d8 (Surr)	109		70 - 130				08/28/20 23:39	08/30/20 14:25	

Method: 8270D - Semivolatile	Organic Compounds ((GC/MS)
	D 1/ O 1/0	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	0.0046	U	0.35	0.0046	mg/Kg	*	09/01/20 09:15	09/02/20 02:24	1
1,2,4-Trichlorobenzene	0.0089	U	0.035	0.0089	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	1
1,2-Dichlorobenzene	0.0059	U	0.35	0.0059	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	1
1,2-Diphenylhydrazine	0.0063	U	0.35	0.0063	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	1
1,3-Dichlorobenzene	0.0046	U	0.35	0.0046	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	1
1,4-Dichlorobenzene	0.013	U	0.35	0.013	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	1

Eurofins TestAmerica, Edison

Page 14 of 26

Client Sample Results

Client: Sevenson Environmental Services, Inc.
Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: EME Horizon C Topsoil

Date Collected: 08/27/20 11:30 Date Received: 08/28/20 16:40 Lab Sample ID: 460-217093-2

Matrix: Solid

Percent Solids: 95.3

Job ID: 460-217093-1

2.4.S.Trichlorophenol 0.035 U 0.35 mg/Kg 0 001120 09:15 000220 0 2.4.B.Trichlorophenol 0.045 U 0.14 0.045 mg/Kg 0 0901120 09:15 090220 0 2.4-Dichlorophenol 0.015 U 0.14 0.022 mg/Kg 0 0901120 09:15 090220 0 2.4-Dinitrophenol 0.17 U 0.28 0.17 mg/Kg 0 0901220 09:15 090220 0 2.4-Dinitrotoluene 0.037 U 0.070 0.037 mg/Kg 0 0901220 09:15 090220 0 2.4-Dinitrotoluene 0.016 U 0.35 0.018 mg/Kg 0 0901220 09:15 090220 0 2.4-Chloropathitalene 0.012 U 0.35 0.013 mg/Kg 0 0901220 09:15 090220 0 2.Methyliphenol 0.013 U 0.35 0.013 mg/Kg 0 0901220 09:15 0902220 0 2.Mitrophenol 0.031 U 0.35 0.013	Method: 8270D - Semivolatile Analyte	_	Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fa
2.4.6-Inchlorophenol 0.045 U 0.14 0.046 mg/Kg c 000120 00:15 0000220 0 2.4-Dindhorophenol 0.052 U 0.14 0.022 mg/Kg c 090120 00:15 090220 0 2.4-Dindhorophenol 0.016 U 0.35 0.015 mg/Kg c 090120 00:15 090220 0 2.4-Dindhorophenol 0.071 U 0.28 0.17 mg/Kg c 090120 00:15 090220 0 2.4-Dindhorophenol 0.071 U 0.28 0.17 mg/Kg c 090120 00:15 090220 0 2.4-Dindhorophenol 0.071 U 0.28 0.17 mg/Kg c 090120 00:15 090220 0 2.6-Dindhorophenol 0.072 U 0.070 0.025 mg/Kg c 090120 00:15 090220 0 2.6-Dindhorophenol 0.072 U 0.035 mg/Kg c 090120 00:15 090220 0 2.6-Dindhorophenol 0.012 U 0.35 0.016 mg/Kg c 090120 00:15 090220 0 2.6-Dindhorophenol 0.012 U 0.35 0.016 mg/Kg c 090120 00:15 090220 0 2.4-Dindhorophenol 0.013 U 0.35 0.012 mg/Kg c 090120 00:15 090220 0 2.4-Dindhorophenol 0.013 U 0.35 0.013 mg/Kg c 090120 00:15 090220 0 2.4-Dindhorophenol 0.013 U 0.35 0.013 mg/Kg c 090120 00:15 090220 0 2.4-Dindhorophenol 0.035 U 0.35 mg/Kg c 090120 00:15 090220 0 2.4-Dindhorophenol 0.035 U 0.35 mg/Kg c 090120 00:15 090220 0 2.4-Dindhorophenol 0.035 U 0.35 mg/Kg c 090120 00:15 090220 0 3.3-Dindhorobenzidine 0.052 U 0.14 0.052 mg/Kg c 090120 00:15 090220 0 3.3-Dindhorobenzidine 0.052 U 0.14 0.052 mg/Kg c 090120 00:15 090220 0 3.3-Dindhorobenzidine 0.052 U 0.14 0.052 mg/Kg c 090120 00:15 090220 0 4.5-Dindhorophenyl phenyl ether 0.014 U 0.35 0.019 mg/Kg c 090120 00:15 090220 0 4.5-Dindhorophenyl phenyl ether 0.014 U 0.35 0.019 mg/Kg c 090120 00:15 090220 0 4.5-Dindhorophenyl phenyl ether 0.012 U 0.35 0.012 mg/Kg c 090120 00:15 090220 0 4.5-Dindhorophenyl phenyl ether 0.015 U 0.35 0.022 mg/Kg c 090120 00:15 090220 0 4.5-Dindhorophenyl phenyl ether 0.005 U 0.35 0.022 mg/Kg c 090120 00:15 090220 0 4.5-Dindhorophenyl phenyl ether 0.006 U 0.35 0.022 mg/Kg c 090120 00:15 090220 0 4.5-Dindhorophenyl phenyl ether 0.006 U 0.35 0.022 mg/Kg c 090120 00:15 090220 0 4.5-Dindhorophenyl phenyl ether 0.006 U 0.35 0.022 mg/Kg c 090120 00:15 090220 0 4.5-Dindhorophenyl phenyl ether 0.006 U 0.35 0.022 mg/Kg c 090120 00:15 090220 0 0.006 mg/Kg c 090120 00:15 090220 0 0.								<u>-</u>		- Біі Га
2.4-Dinktohrophenol 0.022 U 0.14 0.022 mg/kg 0 0901/20 09.15 090/220 0 2.4-Dinktohrophenol 0.15 U 0.35 0.015 mg/kg 0 0901/20 09.15 090/220 0 2.4-Dinktrophenol 0.17 U 0.28 0.17 mg/kg 0 0901/20 09.15 090/220 0 2.4-Dinktrotoluene 0.037 U 0.070 0.037 mg/kg 0 0901/20 09.15 090/220 0 2.4-Dinktrotoluene 0.025 U 0.070 0.025 mg/kg 0 0901/20 09.15 090/220 0 2.4-Chiorophenol 0.016 U 0.35 0.016 mg/kg 0 0901/20 09.15 090/220 0 2.4-Chiorophenol 0.012 U 0.35 0.016 mg/kg 0 0901/20 09.15 090/220 0 2.4-Chiorophenol 0.012 U 0.35 0.018 mg/kg 0 0901/20 09.15 090/220 0 2.4-Chiorophenol 0.013 U 0.35 0.018 mg/kg 0 0901/20 09.15 090/220 0 2.4-Methyfnaphenol 0.031 U 0.35 0.0037 mg/kg 0 0901/20 09.15 090/220 0 2.4-Methyfnaphenol 0.031 U 0.35 0.0037 mg/kg 0 0901/20 09.15 090/220 0 2.4-Methyfnaphenol 0.035 U 0.35 0.033 mg/kg 0 0901/20 09.15 090/220 0 2.4-Nitrophenol 0.035 U 0.35 0.033 mg/kg 0 0901/20 09.15 090/220 0 2.4-Nitrophenol 0.035 U 0.35 0.035 mg/kg 0 0901/20 09.15 090/220 0 2.4-Nitrophenol 0.035 U 0.35 0.039 mg/kg 0 0901/20 09.15 090/220 0 2.4-Nitrophenol 0.055 U 0.35 0.039 mg/kg 0 0901/20 09.15 090/220 0 4.5-Dinktro-2-methylphenol 0.056 U 0.28 0.056 mg/kg 0 0901/20 09.15 090/220 0 4.5-Dinktro-2-methylphenol 0.056 U 0.35 0.039 mg/kg 0 0901/20 09.15 090/220 0 4.5-Dinktro-2-methylphenol 0.059 U 0.35 0.009 mg/kg 0 0901/20 09.15 090/220 0 4.5-Dinktro-2-methylphenol 0.010 U 0.35 0.009 mg/kg 0 0901/20 09.15 090/220 0 4.5-Dinktro-2-methylphenol 0.095 U 0.35 0.009 mg/kg 0 0901/20 09.15 090/220 0 4.5-Dinktro-2-methylphenol 0.095 U 0.35 0.009 mg/kg 0 0901/20 09.15 090/220 0 4.5-Dinktro-2-methylphenol 0.095 U 0.35 0.009 mg/kg 0 0901/20 09.15 090/220 0 4.5-Dinktro-2-methylphenol 0.095 U 0.35 0.009 mg/kg 0 0901/20 09.15 090/220 0 4.5-Dinktro-2-methylphenol 0.095 U 0.35 0.009 mg/kg 0 0901/20 09.15 090/220 0 4.5-Dinktro-2-methylphenol 0.095 U 0.35 0.009 mg/kg 0 0901/20 09.15 090/220 0 4.5-Dinktro-2-methylphenol 0.095 U 0.35 0.009 mg/kg 0 0901/20 09.15 090/220 0 4.5-Dinktro-2-methylphenol 0.095 U 0.35 0.009 mg/kg 0 0901/20 09.15 090/220 0 4.5-Dink										
2.4-Dinitrophenol 0.15 U 0.35 0.015 mg/kg 0.0901/20.09.15 090/22/0 0.22-0 0.24-Dinitrophenol 0.17 U 0.28 0.17 mg/kg 0.0901/20.09.15 090/22/0 0.22-0 0.25-Dinitrololuene 0.037 U 0.070 0.037 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.025 U 0.070 0.035 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.026 U 0.070 0.035 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.016 U 0.35 0.016 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.016 U 0.35 0.016 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.016 U 0.35 0.016 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.0037 U 0.35 0.013 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.0037 U 0.35 0.0037 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.033 U 0.35 0.013 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.035 U 0.35 0.013 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.052 U 0.14 0.052 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.052 U 0.14 0.052 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.052 U 0.14 0.052 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.055 U 0.28 0.056 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.055 U 0.28 0.056 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.055 U 0.28 0.056 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.025 U 0.35 0.004 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.035 U 0.035 0.004 mg/kg 0.0901/20.09.15 090/22/0 0.25-Dinitrololuene 0.035 U 0.035 0.004 mg/kg 0.0901/20.09.15 090/22/0	•								09/02/20 02:24	
2.4-Dintrolotuene 0.037 U 0.28 0.17 mg/kg 0 9901/20 09:15 090/22/0 0 2.4-Dintrolotuene 0.037 U 0.070 0.037 mg/kg 0 0901/20 09:15 090/22/0 0 2.4-Dintrolotuene 0.025 U 0.070 0.035 mg/kg 0 0901/20 09:15 090/22/0 0 2.5-Chioropaphthalene 0.016 U 0.35 0.016 mg/kg 0 0901/20 09:15 090/22/0 0 2.5-Chioropaphthalene 0.016 U 0.35 0.012 mg/kg 0 0901/20 09:15 090/22/0 0 2.4-Methylnaphthalene 0.0097 U 0.35 0.013 mg/kg 0 0901/20 09:15 090/22/0 0 2.4-Methylnaphthalene 0.013 U 0.35 0.013 mg/kg 0 0901/20 09:15 090/22/0 0 2.4-Methylnaphthalene 0.013 U 0.35 0.013 mg/kg 0 0901/20 09:15 090/22/0 0 2.4-Methylnaphthalene 0.013 U 0.35 0.013 mg/kg 0 0901/20 09:15 090/22/0 0 2.4-Methylnaphthalene 0.031 U 0.35 0.013 mg/kg 0 0901/20 09:15 090/22/0 0 2.4-Methylnaphthalene 0.035 U 0.35 0.013 mg/kg 0 0901/20 09:15 090/22/0 0 2.4-Mitroaniline 0.035 U 0.35 0.035 mg/kg 0 0901/20 09:15 090/22/0 0 2.4-Mitroaniline 0.035 U 0.35 0.035 mg/kg 0 0901/20 09:15 090/22/0 0 2.4-Methylnaphthalene 0.039 U 0.35 0.039 mg/kg 0 0901/20 09:15 090/22/0 0 2.4-Methylnaphthalene 0.014 U 0.35 0.014 mg/kg 0 0901/20 09:15 090/22/0 0 2.5-Chiorophenol 0.056 U 0.28 0.056 mg/kg 0 0901/20 09:15 090/22/0 0 2.5-Chiorophenol 0.056 U 0.28 0.056 mg/kg 0 0901/20 09:15 090/22/0 0 2.5-Chiorophenol 0.056 U 0.35 0.014 mg/kg 0 0901/20 09:15 090/22/0 0 2.5-Chiorophenol 0.056 U 0.35 0.014 mg/kg 0 0901/20 09:15 090/22/0 0 2.5-Chiorophenol 0.056 U 0.35 0.004 mg/kg 0 0901/20 09:15 090/22/0 0 2.5-Chiorophenol 0.057 U 0.35 0.004 mg/kg 0 0901/20 09:15 090/22/0 0 2.5-Chiorophenol 0.057 U 0.35 0.005 mg/kg 0 0901/20 09:15 090/22/0 0 2.5-Chiorophenol 0.057 U 0.35 0.005 mg/kg 0 0901/20 09:15 090/22/0 0 2.5-Chiorophenol 0.057 U 0.35 0.006 mg/kg 0 0901/20 09:15 090/22/0 0 2.5-Chiorophenol 0.057 U 0.35 0.006 mg/kg 0 0901/20 09:15 090/22/0 0 2.5-Chiorophenol 0.057 U 0.35 0.006 mg/kg 0 0901/20 09:15 090/22/0 0 2.5-Chiorophenol 0.057 U 0.35 0.006 mg/kg 0 0901/20 09:15 090/22/0 0 2.5-Chiorophenol 0.057 U 0.35 0.006 mg/kg 0 0901/20 09:15 090/22/0 0 2.5-Chiorophenol 0.058 U 0.035 0.006 mg/kg 0 0901/20 09:15										
2.4-Dinitrotoluene 0.037 U 0.070 0.037 mg/Kg 0 09/01/20 09:15 09/02/20 0 2.6-Dinitrotoluene 0.025 U 0.070 0.025 mg/Kg 0 09/01/20 09:15 09/02/20 0 2-Chlorophenol 0.016 U 0.35 0.016 mg/Kg 0 09/01/20 09:15 09/02/20 0 2-Methylaphthalene 0.0097 U 0.35 0.0097 mg/Kg 0 09/01/20 09:15 09/02/20 0 2-Methylaphthalene 0.013 U 0.35 0.013 mg/Kg 0 09/01/20 09:15 09/02/20 0 2-Mitrophenol 0.035 U 0.35 0.013 mg/Kg 0 09/01/20 09:15 09/02/20 0 2-Nitrophenol 0.056 U 0.35 0.036 mg/Kg 0 09/01/20 09:15 09/02/20 0 3-Nitroaniline 0.056 U 0.28 0.056 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Bromophenyl phenyl ether 0.014 U <td< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	•									
2,6-Dinitrotoluene	•									
2-Chloropaphthalene										
2-Chlorophenol 0.012 U 0.35 0.012 mg/Kg 0 09/01/20 09:15 09/02/20 0 2-Methy/phaphthalene 0.0097 U 0.35 0.0097 mg/Kg 0 09/01/20 09:15 09/02/20 0 2-Methy/phaphthalene 0.013 U 0.35 0.013 mg/Kg 0 09/01/20 09:15 09/02/20 0 2-Nitrophenol 0.035 U 0.35 0.013 mg/Kg 0 09/01/20 09:15 09/02/20 0 2-Nitrophenol 0.035 U 0.35 0.035 mg/Kg 0 09/01/20 09:15 09/02/20 0 3-Nitroaniline 0.035 U 0.35 0.035 mg/Kg 0 09/01/20 09:15 09/02/20 0 3-Nitroaniline 0.039 U 0.35 0.036 mg/Kg 0 09/01/20 09:15 09/02/20 0 3-Nitroaniline 0.039 U 0.35 0.036 mg/Kg 0 09/01/20 09:15 09/02/20 0 3-Nitroaniline 0.039 U 0.35 0.036 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-6-Dinitro-2-methylphenol 0.056 U 0.28 0.056 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-6-Dinitro-2-methylphenol 0.019 U 0.35 0.014 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-C-Dinor-3-methylphenol 0.019 U 0.35 0.014 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-C-Dinor-3-methylphenol 0.019 U 0.35 0.012 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-C-Dinor-3-methylphenol 0.019 U 0.35 0.012 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-C-Dinor-3-methylphenol 0.022 U 0.35 0.022 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Methylphenol 0.022 U 0.35 0.022 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Methylphenol 0.025 U 0.35 0.022 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Methylphenol 0.057 U 0.70 0.057 mg/Kg 0 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.025 U 0.35 0.025 mg/Kg 0 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.036 U 0.35 0.036 mg/Kg 0 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.036 U 0.35 0.036 mg/Kg 0 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.036 U 0.35 0.008 mg/Kg 0 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.036 U 0.35 0.008 mg/Kg 0 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.036 U 0.35 0.008 mg/Kg 0 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.036 U 0.35 0.008 mg/Kg 0 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.036 U 0.35 0.008 mg/Kg 0 09/01/20 09:15 09/02/20 0 Benzo(ajh)rene 0.008 U 0.35 0.008 mg/Kg 0 09/01/20 09:15 09/02/20 0 Benzo(ajh)rene 0.009 U 0.35 0.008 mg/Kg 0 09/01/20 09:15 09/02/20 0 Benzo(ajh)rene 0.009 U 0.35 0.008 mg/Kg 0 09/01/20 09:15 09/02/20	,									
2-Methylinaphthalene	·					0 0				
2-Methylphenol 0.013 U 0.35 0.013 mg/Kg 0 09/01/20 09:15 09/02/20 0 2-Nitroanlline 0.013 U 0.35 0.013 mg/Kg 0 09/01/20 09:15 09/02/20 0 3-Nitroanlline 0.035 U 0.35 mg/Kg 0 09/01/20 09:15 09/02/20 0 3-Nitroanlline 0.052 U* 0.14 0.052 mg/Kg 0 09/01/20 09:15 09/02/20 0 3-Nitroanlline 0.039 U 0.35 0.038 mg/Kg 0 09/01/20 09:15 09/02/20 0 3-Nitroanlline 0.039 U 0.35 0.039 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Ricmophenyl phenyl ether 0.014 U 0.35 0.016 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Ricmophenyl phenyl ether 0.014 U 0.35 0.014 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Chloro-3-methylphenol 0.019 U 0.35 0.014 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Chloro-3-methylphenol 0.024 U 0.35 0.024 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Chlorophenyl phenyl ether 0.012 U 0.35 0.024 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Chlorophenyl phenyl ether 0.012 U 0.35 0.024 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Chlorophenyl phenyl ether 0.012 U 0.35 0.024 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Chlorophenyl phenyl ether 0.012 U 0.35 0.025 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Methylphenol 0.025 U 0.35 0.0025 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Nitrophenol 0.057 U 0.70 0.057 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Nitrophenol 0.057 U 0.70 0.057 mg/Kg 0 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0036 U 0.35 0.0036 mg/Kg 0 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0036 U 0.35 0.0036 mg/Kg 0 09/01/20 09:15 09/02/20 0 Acetophenone 0.017 U 0.35 0.017 mg/Kg 0 09/01/20 09:15 09/02/20 0 Acetophenone 0.017 U 0.35 0.018 mg/Kg 0 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.0036 mg/Kg 0 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.0036 mg/Kg 0 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.0036 mg/Kg 0 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.0036 mg/Kg 0 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.0036 U 0.35 0.0036 mg/Kg 0 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.0036 U 0.35 0.0036 mg/Kg 0 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.0036 U 0.35 0.0036 mg/Kg 0 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.0036 U 0.35 0.0036 mg/Kg 0 09/01/20 09:15										
2-Nitroaniline	•									
2-Nitrophenol 0.035 U 0.35 mg/Kg 0 09/01/20 09:15 09/02/20 0 3.3-'Dichlorobenzidine 0.052 U* 0.14 0.052 mg/Kg 0 09/01/20 09:15 09/02/20 0 3.3-'Dichlorobenzidine 0.056 U 0.35 0.039 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.6-Dinitro-2-methylphenol 0.056 U 0.28 0.056 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.6-Chinitro-2-methylphenol 0.056 U 0.28 0.056 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.6-Rromophenyl phenyl ether 0.014 U 0.35 0.014 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Chloro-3-methylphenol 0.019 U 0.35 0.014 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Chlorophenyl phenyl ether 0.012 U 0.35 0.022 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Chlorophenyl phenyl ether 0.012 U 0.35 0.022 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Chlorophenyl phenyl ether 0.012 U 0.35 0.022 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Nitrophenol 0.022 U 0.35 0.022 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Nitrophenol 0.057 U 0.35 0.022 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Nitrophenol 0.057 U 0.70 0.057 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Cenaphthylene 0.0036 U 0.35 0.025 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Cenaphthylene 0.0036 U 0.35 0.005 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Cenaphthylene 0.0036 U 0.35 0.005 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Cenaphthylene 0.0036 U 0.35 0.005 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Cenaphthylene 0.0036 U 0.35 0.007 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Cenaphthylene 0.008 U 0.35 0.007 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Cenaphthylene 0.008 U 0.35 0.007 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Cenaphthylene 0.008 U 0.35 0.008 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Cenaphthylene 0.008 U 0.35 0.001 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Cenaphthylene 0.008 U 0.35 0.001 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Cenaphthylene 0.008 U 0.35 0.001 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Cenaphthylene 0.008 U 0.35 0.001 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Cenaphthylene 0.008 U 0.35 0.001 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Cenaphthylene 0.006 U 0.35 0.004 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Cenaphthylene 0.006 U 0.35 0.004 mg/Kg 0 09/01/20 09:15 09/02/20 0 4.Cenaphthylene 0.006 U 0.35	* .									
3,3'-Dichlorobenzidine										
3-Nitroaniline	•								09/02/20 02:24	
4.6-Dinitro-2-methylphenol 0.056 U 0.28 0.056 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Bromophenyl phenyl ether 0.014 U 0.35 0.014 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Chloros-methylphenol 0.019 U 0.35 0.019 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Chloros-methylphenol 0.024 U 0.35 0.024 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Chlorophenyl phenyl ether 0.012 U 0.35 0.022 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Chlorophenyl phenyl ether 0.012 U 0.35 0.012 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Methylphenol 0.022 U 0.35 0.022 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Methylphenol 0.057 U 0.70 0.057 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Nitrophenol 0.057 U 0.70 0.057 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Nitrophenol 0.057 U 0.70 0.057 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.035 0.035 mg/Kg 0.09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0036 U 0.35 0.025 mg/Kg 0.09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0036 U 0.35 0.0036 mg/Kg 0.09/01/20 09:15 09/02/20 0 Acetophenone 0.017 U 0.35 0.011 mg/Kg 0.09/01/20 09:15 09/02/20 0 Attrazine 0.0088 U* 0.14 0.038 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.011 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.015 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.015 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzaldine 0.034 U 0.35 0.015 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzaldiphyrene 0.0092 U 0.035 0.019 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzalgipyrene 0.0092 U 0.035 0.009 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzalgipyrene 0.0092 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzalgipyrene 0.0008 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzalgipyrene 0.0008 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzalgipyrene 0.0008 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzalgipyrene 0.0008 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzalgipyrene 0.0008 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzalgipyrene 0.0009 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzalgipyrene 0.0009 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzal	,					0 0			09/02/20 02:24	
4-Bromophenyl phenyl ether 0.014 U 0.35 0.014 mg/kg 09/01/20 09:15 09/02/20 0 4-Chloro-3-methylphenol 0.019 U 0.35 0.019 mg/kg 09/01/20 09:15 09/02/20 0 4-Chlorophenyl phenyl ether 0.012 U 0.35 0.024 mg/kg 09/01/20 09:15 09/02/20 0 4-Chlorophenyl phenyl ether 0.012 U 0.35 0.012 mg/kg 09/01/20 09:15 09/02/20 0 4-Methylphenol 0.022 U 0.35 0.012 mg/kg 09/01/20 09:15 09/02/20 0 4-Methylphenol 0.025 U 0.35 0.002 mg/kg 09/01/20 09:15 09/02/20 0 4-Nitrophenol 0.057 U 0.35 0.004 mg/kg 09/01/20 09:15 09/02/20 0 4-Nitrophenol 0.0557 U 0.70 0.057 mg/kg 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0036 U 0.35 0.005 mg/kg 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0036 U 0.35 0.003 mg/kg 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0036 U 0.35 0.003 mg/kg 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0036 U 0.35 0.003 mg/kg 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0011 U 0.35 0.001 mg/kg 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0015 U 0.35 0.001 mg/kg 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0014 U 0.35 0.001 mg/kg 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0014 U 0.35 0.001 mg/kg 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0018 U* 0.14 0.008 mg/kg 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.008 U* 0.35 0.001 mg/kg 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.001 mg/kg 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.002 mg/kg 09/01/20 09:15 09/02/20 0 Benzalgipyrene 0.0092 U 0.035 0.002 mg/kg 09/01/20 09:15 09/02/20 0 Benzalgipyrene 0.0090 U 0.035 0.0090 mg/kg 09/01/20 09:15 09/02/20 0 Benzalgipyrene 0.0010 U 0.35 0.0008 mg/kg 09/01/20 09:15 09/02/20 0 Benzalgifluoranthene 0.0068 U 0.35 0.0008 mg/kg 09/01/20 09:15 09/02/20 0 Benzalgifluoranthene 0.0068 U 0.35 0.0008 mg/kg 09/01/20 09:15 09/02/20 0 Benzalgifluoranthene 0.0069 U 0.35 0.0008 mg/kg 09/01/20 09:15 09/02/20 0 Benzalgifluoranthene 0.0069 U 0.35 0.0008 mg/kg 09/01/20 09:15 09/02/20 0 Benzalgifluoranthene 0.0069 U 0.35 0.0009 mg/kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethy)ether 0.0063 U 0.35 0.0009 mg/kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethy)ether							.		09/02/20 02:24	
4-Chloro-3-methylphenol 0.019 U 0.35 0.019 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Chlorophenyl phenyl ether 0.012 U 0.35 0.012 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Methylphenol 0.0022 U 0.35 0.012 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Mitrophenyl phenyl ether 0.012 U 0.35 0.022 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Mitrophenyl phenyl ether 0.040 U 0.35 0.040 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Nitrophenol 0.057 U 0.70 0.057 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Nitrophenol 0.057 U 0.70 0.057 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Nitrophenol 0.057 U 0.70 0.057 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Nitrophenol 0.057 U 0.35 0.003 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Nacenaphthylene 0.0036 U 0.35 0.0036 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Recaphthylene 0.0036 U 0.35 0.0036 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Recaphthylene 0.0011 U 0.35 0.0036 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Retrazine 0.011 U 0.35 0.011 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0015 U 0.35 0.011 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0015 U 0.35 0.011 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0015 U 0.35 0.012 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0015 U 0.035 0.012 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0015 U 0.035 0.003 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0009 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0006 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0006 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0006 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0006 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0006 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0006 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0006 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0006 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0006 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0006 U 0.035 0.000 mg/Kg 0.09/01/20 09:15 09/02/20 0 4-Ritrazine 0.0006 U 0.035 0.000 mg/Kg 0.	•						≎		09/02/20 02:24	
4-Chloroaniline 0.024 U 0.35 0.024 mg/Kg 09/01/20 09:15 09/02/20 0 4-Chlorophenyl phenyl ether 0.012 U 0.35 0.012 mg/Kg 09/01/20 09:15 09/02/20 0 4-Methylphenol 0.022 U 0.35 0.022 mg/Kg 09/01/20 09:15 09/02/20 0 4-Nitroaniline 0.040 U 0.35 0.022 mg/Kg 09/01/20 09:15 09/02/20 0 4-Nitrophenol 0.057 U 0.70 0.057 mg/Kg 09/01/20 09:15 09/02/20 0 4-Nitrophenol 0.057 U 0.35 0.025 mg/Kg 09/01/20 09:15 09/02/20 0 4-Nitrophenol 0.057 U 0.35 0.025 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.025 U 0.35 0.025 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.0036 U 0.35 0.0036 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.0036 U 0.35 0.0036 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.0036 U 0.35 0.0036 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.0011 U 0.35 0.017 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.011 U 0.35 0.017 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.0088 U* 0.14 0.0088 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.0088 U* 0.14 0.0088 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.015 U 0.35 0.015 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.012 U 0.35 0.015 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.0090 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.0090 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.0060 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.0060 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.0060 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.0060 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.016 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.016 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.016 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.016 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.016 U 0.35 0.018 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.016 U 0.35 0.018 mg/Kg 09/01/20 09:15 09/02/20 0 4-Roenaphthylene 0.016 U 0.35 0.005 mg/Kg 09/01/20						0 0	₽		09/02/20 02:24	
4-Chlorophenyl phenyl ether 0.012 U 0.35 0.012 mg/Kg 09/01/20 09:15 09/02/20 0 4-Methylphenol 0.022 U 0.35 0.022 mg/Kg 09/01/20 09:15 09/02/20 0 4-Methylphenol 0.040 U 0.35 0.024 mg/Kg 09/01/20 09:15 09/02/20 0 4-Nitrophenol 0.057 U 0.70 0.057 mg/Kg 09/01/20 09:15 09/02/20 0 4-Nitrophenol 0.057 U 0.70 0.057 mg/Kg 09/01/20 09:15 09/02/20 0 4-Rechaphthene 0.025 U 0.35 0.025 mg/Kg 09/01/20 09:15 09/02/20 0 Aceaphthylene 0.0036 U 0.35 0.0036 mg/Kg 09/01/20 09:15 09/02/20 0 Aceaphthylene 0.0017 U 0.35 0.017 mg/Kg 09/01/20 09:15 09/02/20 0 Acetophenone 0.017 U 0.35 0.017 mg/Kg 09/01/20 09:15 09/02/20 0 Actrazine 0.0088 U* 0.14 0.0088 mg/Kg 09/01/20 09:15 09/02/20 0 Atrazine 0.0088 U* 0.14 0.0088 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.015 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.015 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalginhracene 0.0012 U 0.35 0.015 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[a]pyrene 0.0092 U 0.035 0.004 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[a]pyrene 0.0092 U 0.035 0.0092 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[a]hjlperylene 0.0090 U 0.035 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[b]fluoranthene 0.0068 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[b]fluoranthene 0.0068 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[k]fluoranthene 0.0068 U 0.35 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[k]fluoranthene 0.0068 U 0.35 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[k]fluoranthene 0.0068 U 0.35 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[k]fluoranthene 0.0068 U 0.35 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[k]fluoranthene 0.0068 U 0.35 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[k]fluoranthene 0.0068 U 0.35 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[k]fluoranthene 0.0068 U 0.35 0.0069 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[k]fluoranthene 0.0068 U 0.35 0.0069 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[k]fluoranthene 0.0069 U 0.35 0.0069 mg/Kg 09/01/20 09:15 09/02/20 0 Dibenzo[cathylhethyl) phthalate 0.016 U 0.35 0.0069 mg/Kg 09/01/20 09:15 09/02/20 0 Dibenzo[c	4-Chloro-3-methylphenol	0.019	U	0.35			₩	09/01/20 09:15	09/02/20 02:24	
4-Methylphenol 0.022 U 0.35 0.022 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Nitroaniline 0.040 U 0.35 0.040 mg/Kg 0 09/01/20 09:15 09/02/20 0 4-Nitroaniline 0.057 U 0.70 0.057 mg/Kg 0 09/01/20 09:15 09/02/20 0 A-Cenaphthene 0.025 U 0.35 0.025 mg/Kg 0 09/01/20 09:15 09/02/20 0 A-Cenaphthylene 0.0036 U 0.35 0.0036 mg/Kg 0 09/01/20 09:15 09/02/20 0 A-Cenaphthylene 0.0036 U 0.35 0.0036 mg/Kg 0 09/01/20 09:15 09/02/20 0 A-Cenaphthylene 0.0036 U 0.35 0.0017 mg/Kg 0 09/01/20 09:15 09/02/20 0 A-Cetophenone 0.017 U 0.35 0.017 mg/Kg 0 09/01/20 09:15 09/02/20 0 A-Cetophenone 0.011 U 0.35 0.011 mg/Kg 0 09/01/20 09:15 09/02/20 0 A-Cetophenone 0.011 U 0.35 0.011 mg/Kg 0 09/01/20 09:15 09/02/20 0 A-Cetophenone 0.015 U 0.35 0.011 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzaldehyde 0.015 U 0.35 0.015 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzaldehyde 0.015 U 0.35 0.034 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzalgalpyrene 0.012 U 0.035 0.034 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzalgalpyrene 0.0092 U 0.035 0.0092 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzalgalpyrene 0.0092 U 0.035 0.0092 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzalgalpyrene 0.0098 U 0.035 0.0092 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzalgalpyrene 0.0098 U 0.035 0.0090 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzalgalpyrene 0.0098 U 0.035 0.0090 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzalgalpyrene 0.0098 U 0.035 0.0090 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzalgalpyrene 0.0090 U 0.035 0.0090 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzalgalpyrene 0.0090 U 0.035 0.0090 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzalgalpyrene 0.0090 U 0.035 0.0090 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzalgalpyrene 0.0090 U 0.035 0.0090 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzalgalpyrene 0.0090 U 0.035 0.0090 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzalgalpyrene 0.0090 U 0.035 0.0090 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzalgalpyrene 0.0090 U 0.035 0.0090 mg/Kg 0 09/01/20 09:15 09/02/20 0 B-Enzalgalpyrene 0.0090 U 0.035 0.0090 mg/Kg 0 09/01/20 09:15 09/02/20 0 0 09/01/20 09:15 09/02/20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.024	U	0.35			₩	09/01/20 09:15	09/02/20 02:24	
4-Nitroaniline 0.040 U 0.35 0.040 mg/Kg 09/01/20 09:15 09/02/20 0 4-Nitrophenol 0.057 U 0.70 0.057 mg/Kg 09/01/20 09:15 09/02/20 0 Acenaphthene 0.025 U 0.35 0.025 mg/Kg 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0036 U 0.35 0.0036 mg/Kg 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.017 U 0.35 0.017 mg/Kg 09/01/20 09:15 09/02/20 0 Acetophenone 0.017 U 0.35 0.017 mg/Kg 09/01/20 09:15 09/02/20 0 Anthracene 0.011 U 0.35 0.017 mg/Kg 09/01/20 09:15 09/02/20 0 Artrazine 0.0088 U 0.14 0.0088 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.015 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.015 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldine 0.034 U 0.35 0.035 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldine 0.034 U 0.35 0.035 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldine 0.0092 U 0.035 0.0092 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldipyrene 0.0092 U 0.035 0.0092 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldipyrene 0.0090 U 0.035 0.0092 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalfituoranthene 0.0096 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalfituoranthene 0.0068 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalfituoranthene 0.0068 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalfituoranthene 0.0068 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalfituoranthene 0.0068 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalfituoranthene 0.0068 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroisopropyl) ether 0.012 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chlorotethyl)ether 0.012 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chlorotethyl)ether 0.012 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chlorotethyl)ether 0.013 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chlorotethyl)ether 0.014 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chlorotethyl)ether 0.015 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chlorotethyl)ether 0.016 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 Dibenz(a,h)anthracene 0.015 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Dibenz(a,h)anthracene	4-Chlorophenyl phenyl ether	0.012	U	0.35	0.012	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	
4-Nitrophenol 0.057 U 0.70 0.057 mg/kg 0.09/01/20 09:15 09/02/20 0 Acenaphthene 0.025 U 0.35 0.025 mg/kg 0.09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0036 U 0.35 0.0036 mg/kg 0.09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0036 U 0.35 0.0036 mg/kg 0.09/01/20 09:15 09/02/20 0 Acetophenone 0.017 U 0.35 0.011 mg/kg 0.09/01/20 09:15 09/02/20 0 Activate 0.0038 U* 0.14 0.0088 mg/kg 0.09/01/20 09:15 09/02/20 0 Attrazine 0.0088 U* 0.14 0.0088 mg/kg 0.09/01/20 09:15 09/02/20 0 Attrazine 0.0038 U* 0.14 0.0088 mg/kg 0.09/01/20 09:15 09/02/20 0 Benzidine 0.034 U 0.35 0.015 mg/kg 0.09/01/20 09:15 09/02/20 0 Benzidine 0.034 U 0.35 0.015 mg/kg 0.09/01/20 09:15 09/02/20 0 Benzidine 0.0034 U 0.35 0.005 mg/kg 0.09/01/20 09:15 09/02/20 0 Benzidine 0.0090 U 0.035 0.0090 mg/kg 0.09/01/20 09:15 09/02/20 0 Benzidiphuranthene 0.0090 U 0.035 0.0090 mg/kg 0.09/01/20 09:15 09/02/20 0 Benzidiphuranthene 0.0090 U 0.035 0.0090 mg/kg 0.09/01/20 09:15 09/02/20 0 Benzidiphuranthene 0.0068 U 0.035 0.0090 mg/kg 0.09/01/20 09:15 09/02/20 0 Benzidiphuranthene 0.0068 U 0.035 0.0090 mg/kg 0.09/01/20 09:15 09/02/20 0 Benzidiphuranthene 0.0068 U 0.035 0.0090 mg/kg 0.09/01/20 09:15 09/02/20 0 Benzidiphuranthene 0.0068 U 0.035 0.0090 mg/kg 0.09/01/20 09:15 09/02/20 0 Benzidiphuranthene 0.0068 U 0.035 0.0090 mg/kg 0.09/01/20 09:15 09/02/20 0 Benzidiphuranthene 0.0068 U 0.035 0.0090 mg/kg 0.09/01/20 09:15 09/02/20 0 Bis(2-chlorostopropyl) ether 0.0063 U 0.35 0.0068 mg/kg 0.09/01/20 09:15 09/02/20 0 Bis(2-chlorostopropyl) ether 0.012 U 0.035 0.0068 mg/kg 0.09/01/20 09:15 09/02/20 0 Bis(2-chlorostopropyl) ether 0.012 U 0.035 0.0068 mg/kg 0.09/01/20 09:15 09/02/20 0 Bis(2-chlorostopropyl) ether 0.012 U 0.035 0.0068 mg/kg 0.09/01/20 09:15 09/02/20 0 Bis(2-chlorostopropyl) ether 0.012 U 0.035 0.0068 mg/kg 0.09/01/20 09:15 09/02/20 0 Bis(2-chlorostopropyl) ether 0.012 U 0.035 0.0069 mg/kg 0.09/01/20 09:15 09/02/20 0 Bis(2-chlorostopropyl) ether 0.012 U 0.035 0.0069 mg/kg 0.09/01/20 09:15 09/02/20 0 Dibenz(a,h)anthracene 0.0050 U 0.035 0.0069 mg/kg 0.09/01/20 09:15	4-Methylphenol	0.022	U	0.35	0.022	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	
Acenaphthene 0.025 U 0.35 0.025 mg/Kg 09/01/20 09:15 09/02/20 0 Acenaphthylene 0.0036 U 0.35 0.0036 mg/Kg 09/01/20 09:15 09/02/20 0 Acetophenone 0.017 U 0.35 0.017 mg/Kg 09/01/20 09:15 09/02/20 0 Anthracene 0.011 U 0.35 0.011 mg/Kg 09/01/20 09:15 09/02/20 0 Anthracene 0.011 U 0.35 0.011 mg/Kg 09/01/20 09:15 09/02/20 0 Attrazine 0.0088 U* 0.14 0.0088 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.015 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.015 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalgianthracene 0.012 U 0.35 0.012 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalgipyrene 0.0092 U 0.035 0.012 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalgipyrene 0.0090 U 0.035 0.0092 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalgihilporanthene 0.0090 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalgihilporanthene 0.0090 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalgihilporanthene 0.0008 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalgifiloranthene 0.0008 U 0.35 0.0009 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalgifiloranthene 0.0008 U 0.35 0.0009 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalgifiloranthene 0.0008 U 0.35 0.0009 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalgifiloranthene 0.0008 U 0.35 0.0009 mg/Kg 09/01/20 09:15 09/02/20 0 Benzalgifiloranthene 0.0008 U 0.35 0.0009 mg/Kg 09/01/20 09:15 09/02/20 0 Bescalgifiloranthene 0.0009 U 0.35 0.0009 mg/Kg 09/01/20 09:15 09/02/20 0 Bescalgifiloranthene 0.0009 U 0.35 0.0009 mg/Kg 09/01/20 09:15 09/02/20 0 Bescalgifiloranthene 0.0010 U 0.35 0.0009 mg/Kg 09/01/20 09:15 09/02/20 0 Bescalgifiloranthone 0.0010 U 0.35 0.0009 mg/Kg 09/01/20 09:15 09/02/20 0 Bescalgifiloranthone 0.0010 U 0.35 0.0009 mg/Kg 09/01/20 09:15 09/02/20 0 Bescalgifiloranthone 0.0010 U 0.35 0.0010 mg/Kg 09/01/20 09:15 09/02/20 0 Bescalgifiloranthone 0.0010 U 0.35 0.0010 mg/Kg 09/01/20 09:15 09/02/20 0 Bescalgifiloranthone 0.0010 U 0.35 0.0010 mg/Kg 09/01/20 09:15 09/02/20 0 Bescalgifiloranthone 0.0010 U 0.35 0.0010 mg/Kg 09/01/20 09:15 09/02/20 0 Bescalgifiloranthone 0.0010 U 0.35 0.0010 mg/Kg 09/01/20 09:15 09/	4-Nitroaniline	0.040	U	0.35	0.040	mg/Kg	₽	09/01/20 09:15	09/02/20 02:24	
Acetaphthylene 0.0036 U 0.35 0.0036 mg/Kg 09/01/20 09:15 09/02/20 0 Acetophenone 0.017 U 0.35 0.017 mg/Kg 09/01/20 09:15 09/02/20 0 Anthracene 0.011 U 0.35 0.011 mg/Kg 09/01/20 09:15 09/02/20 0 Artrazine 0.0088 U* 0.14 0.0088 mg/Kg 09/01/20 09:15 09/02/20 0 Atrazine 0.0088 U* 0.14 0.0088 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.015 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.015 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldine 0.034 U 0.35 0.012 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[a]anthracene 0.012 U 0.035 0.002 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[a]pyrene 0.0092 U 0.035 0.0092 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[b]fluoranthene 0.0090 U 0.035 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[b]fluoranthene 0.0068 U 0.35 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Benzo[k]fluoranthene 0.0068 U 0.035 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 Beis(2-chloroisporopyl) ether 0.0063 U 0.35 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethoxy)methane 0.027 U 0.35 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethy)jether 0.012 U 0.035 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethy)jether 0.012 U 0.035 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethy)jether 0.016 U 0.35 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethy)jether 0.016 U 0.35 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethy)jether 0.016 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethy)jether 0.016 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethy)jether 0.016 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethy)jether 0.005 U 0.35 0.0069 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethy)jether 0.0069 U 0.35 0.0069 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethy)jether 0.0069 U 0.35 0.0069 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethy)jether 0.0069 U 0.35 0.0069 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethy)jether 0.0069 U 0.35 0.0069 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethy)jether 0.0069 U 0.35 0.0069 mg/Kg 09/01/20 09:15 09/02/20 0	4-Nitrophenol	0.057	U	0.70	0.057	mg/Kg	☼	09/01/20 09:15	09/02/20 02:24	
Acetophenone 0.017 U 0.35 0.017 mg/Kg 0.09/01/20 09:15 09/02/20 0 Anthracene 0.011 U 0.35 0.011 mg/Kg 0.09/01/20 09:15 09/02/20 0 Atrazine 0.0088 U* 0.14 0.0088 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.015 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.015 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzolajanthracene 0.034 U 0.35 0.034 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzolajanthracene 0.012 U 0.035 0.0012 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzolajanthracene 0.0092 U 0.035 0.0092 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzolajpyrene 0.0092 U 0.035 0.0092 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzolajfluoranthene 0.0090 U 0.035 0.0090 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzolajfluoranthene 0.0068 U 0.355 0.0010 mg/Kg 0.09/01/20 09:15 09/02/20 0 Benzolajfluoranthene 0.0068 U 0.035 0.0068 mg/Kg 0.09/01/20 09:15 09/02/20 0 Bis(2-chloroisopropyl) ether 0.0063 U 0.35 0.0068 mg/Kg 0.09/01/20 09:15 09/02/20 0 Bis(2-chloroethoxy)methane 0.027 U 0.35 0.0063 mg/Kg 0.09/01/20 09:15 09/02/20 0 Bis(2-chloroethyl)ether 0.012 U 0.35 0.0063 mg/Kg 0.09/01/20 09:15 09/02/20 0 Bis(2-chloroethyl)ether 0.012 U 0.35 0.012 mg/Kg 0.09/01/20 09:15 09/02/20 0 Bis(2-chloroethyl)ether 0.018 U 0.35 0.018 mg/Kg 0.09/01/20 09:15 09/02/20 0 Bis(2-chloroethyl)ether 0.018 U 0.35 0.018 mg/Kg 0.09/01/20 09:15 09/02/20 0 Bis(2-chloroethyl)ether 0.018 U 0.35 0.018 mg/Kg 0.09/01/20 09:15 09/02/20 0 Carboacole 0.013 U 0.35 0.018 mg/Kg 0.09/01/20 09:15 09/02/20 0 Carboacole 0.013 U 0.35 0.009 mg/Kg 0.09/01/20 09:15 09/02/20 0 Chrysene 0.0059 U 0.35 0.0059 mg/Kg 0.09/01/20 09:15 09/02/20 0 Dibenz(a,h)anthracene 0.0050 U 0.35 0.0050 mg/Kg 0.09/01/20 09:15 09/02/20 0 Dibenzofuran 0.0049 U 0.35 0.0050 mg/Kg 0.09/01/20 09:15 09/02/20 0 Dibenzofuran 0.0049 U 0.35 0.0050 mg/Kg 0.09/01/20 09:15 09/02/20 0 Dibenzofuran 0.0049 U 0.35 0.0050 mg/Kg 0.09/01/20 09:15 09/02/20 0	Acenaphthene	0.025	U	0.35	0.025	mg/Kg	☼	09/01/20 09:15	09/02/20 02:24	
Anthracene 0.011 U 0.35 0.011 mg/Kg 09/01/20 09:15 09/02/20 0 Atrazine 0.0088 U* 0.14 0.0088 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.015 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldehyde 0.015 U 0.35 0.015 mg/Kg 09/01/20 09:15 09/02/20 0 Benzaldine 0.034 U 0.35 0.034 mg/Kg 09/01/20 09:15 09/02/20 0 Benzolajanthracene 0.012 U 0.035 0.012 mg/Kg 09/01/20 09:15 09/02/20 0 Benzolajanthracene 0.0092 U 0.035 0.0092 mg/Kg 09/01/20 09:15 09/02/20 0 Benzolajpyrene 0.0092 U 0.035 0.0092 mg/Kg 09/01/20 09:15 09/02/20 0 Benzolajpyrene 0.0090 U 0.035 0.0092 mg/Kg 09/01/20 09:15 09/02/20 0 Benzolajhuoranthene 0.0090 U 0.035 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Benzolajhiuoranthene 0.0068 U 0.035 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 Benzolajhiuoranthene 0.0068 U 0.035 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 Bis (2-chloroisopropyl) ether 0.0063 U 0.35 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 Bis (2-chloroethoxy)methane 0.027 U 0.35 0.0063 mg/Kg 09/01/20 09:15 09/02/20 0 Bis (2-chloroethyl)ether 0.012 U 0.35 0.010 mg/Kg 09/01/20 09:15 09/02/20 0 Bis (2-chloroethyl)ether 0.012 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 Bis (2-chloroethyl)ether 0.012 U 0.35 0.018 mg/Kg 09/01/20 09:15 09/02/20 0 Bis (2-chloroethyl)ether 0.012 U 0.35 0.018 mg/Kg 09/01/20 09:15 09/02/20 0 Bis (2-chloroethyl)ether 0.015 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 Bis (2-chloroethyl)ether 0.015 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 Carbrazole 0.013 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 Chrysene 0.0059 U 0.35 0.0059 mg/Kg 09/01/20 09:15 09/02/20 0 Dibenz (a,h)anthracene 0.015 U 0.035 0.0049 mg/Kg 09/01/20 09:15 09/02/20 0 Dibenz (a,h)anthracene 0.015 U 0.035 0.0049 mg/Kg 09/01/20 09:15 09/02/20 0 Dibenz (a,h)anthracene 0.0050 U 0.35 0.0049 mg/Kg 09/01/20 09:15 09/02/20 0 Dibenz (a,h)anthracene 0.0050 U 0.35 0.0049 mg/Kg 09/01/20 09:15 09/02/20 0	Acenaphthylene	0.0036	U	0.35	0.0036	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	
Atrazine 0.0088 U* 0.14 0.0088 mg/Kg 09/01/20 09:15 09/02/20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acetophenone	0.017	U	0.35	0.017	mg/Kg	☼	09/01/20 09:15	09/02/20 02:24	
Benzaldehyde 0.015 U 0.35 0.015 mg/Kg © 09/01/20 09:15 09/02/20 09:20 Benzolaline 0.034 U 0.35 0.034 mg/Kg © 09/01/20 09:15 09/02/20 0 Benzolaline 0.012 U 0.035 0.012 mg/Kg © 09/01/20 09:15 09/02/20 0 Benzolaline 0.0092 U 0.035 0.0092 mg/Kg © 09/01/20 09:15 09/02/20 0 Benzolaline 0.0090 U 0.035 0.0092 mg/Kg © 09/01/20 09:15 09/02/20 0 Benzolaline 0.0090 U 0.035 0.0090 mg/Kg © 09/01/20 09:15 09/02/20 0 Benzolaline 0.0090 U 0.035 0.0010 mg/Kg © 09/01/20 09:15 09/02/20 0 Benzolaline 0.010 U 0.035 0.0010 mg/Kg © 09/01/20 09:15 09/02/20 0 Benzolaline 0.010 U 0.035 0.0068 mg/Kg © 09/01/20 09:15 09/02/20 0 Benzolaline	Anthracene	0.011	U	0.35	0.011	mg/Kg	≎	09/01/20 09:15	09/02/20 02:24	
Benzidine 0.034 U 0.35 0.034 mg/Kg 09/01/20 09:15 09/02/20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Atrazine	0.0088	U *	0.14	0.0088	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	
Benzo[a]anthracene 0.012 U 0.035 0.012 mg/Kg 09/01/20 09:15 09/02/20 0 0.035 0.0092 mg/Kg 09/01/20 09:15 09/02/20 0 0.035 0.0092 mg/Kg 09/01/20 09:15 09/02/20 0 0.035 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 0.035 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 0.035 0.0027 mg/Kg 09/01/20 09:15 09/02/20 0 0.035 0.0027 mg/Kg 09/01/20 09:15 09/02/20 0 0.035 0.002 mg/Kg 09/01/20 09:15 09/02/20 0 0.002 mg/Kg 09/01/20 09:15 09/02/20 0.002 mg/Kg 09/01/20 09:15 09/02/20 0 0.002 mg/Kg 09/01/20 09:15 09/02	Benzaldehyde	0.015	U	0.35	0.015	mg/Kg	☼	09/01/20 09:15	09/02/20 02:24	
Benzo[a]pyrene 0.0092 U 0.035 0.0092 mg/Kg 09/01/20 09:15 09/02/20 0 0.035 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0 0.035 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 0.0069 mg/Kg 09/01/20 09:15 09/02	Benzidine	0.034	U	0.35	0.034	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	
Benzo[b]fluoranthene 0.0090 U 0.035 0.0090 mg/Kg 09/01/20 09:15 09/02/20 0	Benzo[a]anthracene	0.012	U	0.035	0.012	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	
Benzo[g,h,i]perylene 0.010 U 0.35 0.010 mg/Kg 09/01/20 09:15 09/02/20 0 09/02/20 0 Benzo[k]fluoranthene 0.0068 U 0.035 0.0068 mg/Kg 09/01/20 09:15 09/02/20 0 09/02/20 0 bis (2-chloroisopropyl) ether 0.0063 U 0.35 0.0063 mg/Kg 09/01/20 09:15 09/02/20 0 09/02/20 0 Bis(2-chloroethoxy)methane 0.027 U 0.35 0.027 mg/Kg 09/01/20 09:15 09/02/20 0 09/02/20 0 Bis(2-chloroethyl)ether 0.012 U 0.035 0.012 mg/Kg 09/01/20 09:15 09/02/20 0 09/02/20 0 Bis(2-ethylhexyl) phthalate 0.018 U 0.35 0.018 mg/Kg 09/01/20 09:15 09/02/20 0 09/02/20 0 Butyl benzyl phthalate 0.016 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 09/02/20 0 Caprolactam 0.054 U* 0.35 0.054 mg/Kg 09/01/20 09:15 09/02/20 0 09/02/20 0 Chrysene 0.0059 U 0.35 0.0059 mg/Kg 09/01/20 09:15 09/02/20 0 09/02/20 0 Dibenz(a,h)anthracene 0.015 U 0.035 0.0059 mg/Kg 09/01/20 09:15 09/02/20 0 09/02/20 0 Dibenzofuran 0.0049 U 0.35 0.0050 mg/Kg 09/01/20 09:15 09/02/20 0 0	Benzo[a]pyrene	0.0092	U	0.035	0.0092	mg/Kg	≎	09/01/20 09:15	09/02/20 02:24	
Benzo[g,h,i]perylene 0.010 U 0.35 0.010 mg/Kg © 09/01/20 09:15 09/02/20 0 Benzo[k]fluoranthene 0.0068 U 0.035 0.0068 mg/Kg © 09/01/20 09:15 09/02/20 0 bis (2-chloroisopropyl) ether 0.0063 U 0.35 0.0063 mg/Kg © 09/01/20 09:15 09/02/20 0 Bis(2-chloroethoxy)methane 0.027 U 0.35 0.027 mg/Kg © 09/01/20 09:15 09/02/20 0 Bis(2-chloroethyl)ether 0.012 U 0.035 0.012 mg/Kg © 09/01/20 09:15 09/02/20 0 Bis(2-ethylhexyl) phthalate 0.018 U 0.35 0.018 mg/Kg © 09/01/20 09:15 09/02/20 0 Butyl benzyl phthalate 0.016 U 0.35 0.016 mg/Kg © 09/01/20 09:15 09/02/20 0 Caprolactam 0.054 U* 0.35 0.054 mg/Kg © 09/01/20 09:15 09/02/20 0 Chrysene 0.0059 U 0.35 0.005 mg/Kg © 09/01/20 09:15	Benzo[b]fluoranthene	0.0090	U	0.035	0.0090	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	
Benzo[k]fluoranthene 0.0068 U 0.035 0.0068 mg/kg © 09/01/20 09:15 09/02/20 0 bis (2-chloroisopropyl) ether 0.0063 U 0.35 0.0063 mg/kg © 09/01/20 09:15 09/02/20 0 Bis(2-chloroethoxy)methane 0.027 U 0.35 0.027 mg/kg © 09/01/20 09:15 09/02/20 0 Bis(2-chloroethyl)ether 0.012 U 0.035 0.012 mg/kg © 09/01/20 09:15 09/02/20 0 Bis(2-ethylhexyl) phthalate 0.018 U 0.35 0.018 mg/kg © 09/01/20 09:15 09/02/20 0 Butyl benzyl phthalate 0.016 U 0.35 0.016 mg/kg © 09/01/20 09:15 09/02/20 0 Caprolactam 0.054 U* 0.35 0.054 mg/kg © 09/01/20 09:15 09/02/20 0 Carbazole 0.013 U 0.35 0.013 mg/kg © 09/01/20 09:15 09/02/20 0 Chrysene 0.0059 U 0.35 0.0059 mg/kg © 09/01/20 09:15 09/02	Benzo[g,h,i]perylene	0.010	U	0.35	0.010		₩	09/01/20 09:15	09/02/20 02:24	
bis (2-chloroisopropyl) ether 0.0063 U 0.35 0.0063 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethoxy)methane 0.027 U 0.35 0.027 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-chloroethyl)ether 0.012 U 0.035 0.012 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-ethylhexyl) phthalate 0.018 U 0.35 0.018 mg/Kg 09/01/20 09:15 09/02/20 0 Butyl benzyl phthalate 0.016 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 Caprolactam 0.054 U* 0.35 0.054 mg/Kg 09/01/20 09:15 09/02/20 0 Carbazole 0.013 U 0.35 0.013 mg/Kg 09/01/20 09:15 09/02/20 0 Chrysene 0.0059 U 0.35 0.0059 mg/Kg 09/01/20 09:15 09/02/20 0 Dibenz(a,h)anthracene 0.015 U 0.035 0.0059 mg/Kg 09/01/20 09:15 09/02/20 0 Dibenzofuran 0.0049 U 0.35 0.0059 mg/Kg 09/01/20 09:15 09/02/20 0 Diethyl phthalate 0.0050 U 0.35 0.0050 mg/Kg 09/01/20 09:15 09/02/20 0	Benzo[k]fluoranthene	0.0068	U	0.035	0.0068		₩	09/01/20 09:15	09/02/20 02:24	
Bis(2-chloroethoxy)methane 0.027 U 0.35 0.027 mg/Kg 09/01/20 09:15 09/02/20 0 09/02/20 0 09/01/20 09:15 09/02/20 0		0.0063	U	0.35			₩	09/01/20 09:15	09/02/20 02:24	
Bis(2-chloroethyl)ether 0.012 U 0.035 0.012 mg/Kg 09/01/20 09:15 09/02/20 0 Bis(2-ethylhexyl) phthalate 0.018 U 0.35 0.018 mg/Kg 09/01/20 09:15 09/02/20 0 Butyl benzyl phthalate 0.016 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 Caprolactam 0.054 U* 0.35 0.054 mg/Kg 09/01/20 09:15 09/02/20 0 Carbazole 0.013 U 0.35 0.013 mg/Kg 09/01/20 09:15 09/02/20 0 Chrysene 0.0059 U 0.35 0.0059 mg/Kg 09/01/20 09:15 09/02/20 0 Dibenz(a,h)anthracene 0.015 U 0.035 0.015 mg/Kg 09/01/20 09:15 09/02/20 0 Dibenzofuran 0.0049 U 0.35 0.0049 mg/Kg 09/01/20 09:15 09/02/20 0 Diethyl phthalate 0.0050 U 0.35 0.0050 mg/Kg 09/01/20 09:15 09/02/20 0									09/02/20 02:24	
Bis(2-ethylhexyl) phthalate 0.018 U 0.35 0.018 mg/Kg 09/01/20 09:15 09/02/20 0 Butyl benzyl phthalate 0.016 U 0.35 0.016 mg/Kg 09/01/20 09:15 09/02/20 0 Caprolactam 0.054 U* 0.35 0.054 mg/Kg 09/01/20 09:15 09/02/20 0 Carbazole 0.013 U 0.35 0.013 mg/Kg 09/01/20 09:15 09/02/20 0 Chrysene 0.0059 U 0.35 0.0059 mg/Kg 09/01/20 09:15 09/02/20 0 Dibenz(a,h)anthracene 0.015 U 0.35 0.015 mg/Kg 09/01/20 09:15 09/02/20 0 Dibenzofuran 0.0049 U 0.35 0.0049 mg/Kg 09/01/20 09:15 09/02/20 0 Diethyl phthalate 0.0050 U 0.35 0.0050 mg/Kg 09/01/20 09:15 09/02/20 0	• • • • • • • • • • • • • • • • • • • •						Ď.			
Butyl benzyl phthalate 0.016 U 0.35 0.016 mg/Kg © 09/01/20 09:15 09/02/20 0 Caprolactam 0.054 U* 0.35 0.054 mg/Kg © 09/01/20 09:15 09/02/20 0 Carbazole 0.013 U 0.35 0.013 mg/Kg © 09/01/20 09:15 09/02/20 0 Chrysene 0.0059 U 0.35 0.0059 mg/Kg © 09/01/20 09:15 09/02/20 0 Dibenz(a,h)anthracene 0.015 U 0.035 0.015 mg/Kg © 09/01/20 09:15 09/02/20 0 Dibenzofuran 0.0049 U 0.35 0.0049 mg/Kg © 09/01/20 09:15 09/02/20 0 Diethyl phthalate 0.0050 U 0.35 0.0050 mg/Kg © 09/01/20 09:15 09/02/20 0	• • •									
Caprolactam 0.054 U * 0.35 0.054 mg/Kg © 09/01/20 09:15 09/02/20 0 Carbazole 0.013 U 0.35 0.013 mg/Kg © 09/01/20 09:15 09/02/20 0 Chrysene 0.0059 U 0.35 0.0059 mg/Kg © 09/01/20 09:15 09/02/20 0 Dibenz(a,h)anthracene 0.015 U 0.035 0.015 mg/Kg © 09/01/20 09:15 09/02/20 0 Dibenzofuran 0.0049 U 0.35 0.0049 mg/Kg © 09/01/20 09:15 09/02/20 0 Diethyl phthalate 0.0050 U 0.35 0.0050 mg/Kg © 09/01/20 09:15 09/02/20 0	`									
Carbazole 0.013 U 0.35 0.013 mg/Kg © 09/01/20 09:15 09/02/20 0 Chrysene 0.0059 U 0.35 0.0059 mg/Kg © 09/01/20 09:15 09/02/20 0 Dibenz(a,h)anthracene 0.015 U 0.035 0.015 mg/Kg © 09/01/20 09:15 09/02/20 0 Dibenzofuran 0.0049 U 0.35 0.0049 mg/Kg © 09/01/20 09:15 09/02/20 0 Diethyl phthalate 0.0050 U 0.35 0.0050 mg/Kg © 09/01/20 09:15 09/02/20 0	• • •								09/02/20 02:24	
Chrysene 0.0059 U 0.35 0.0059 mg/Kg © 09/01/20 09:15 09/02/20 0 Dibenz(a,h)anthracene 0.015 U 0.035 0.015 mg/Kg © 09/01/20 09:15 09/02/20 0 Dibenzofuran 0.0049 U 0.35 0.0049 mg/Kg © 09/01/20 09:15 09/02/20 0 Diethyl phthalate 0.0050 U 0.35 0.0050 mg/Kg © 09/01/20 09:15 09/02/20 0	•									
Dibenz(a,h)anthracene 0.015 U 0.035 0.015 mg/Kg © 09/01/20 09:15 09/02/20 0 Dibenzofuran 0.0049 U 0.35 0.0049 mg/Kg © 09/01/20 09:15 09/02/20 0 Diethyl phthalate 0.0050 U 0.35 0.0050 mg/Kg © 09/01/20 09:15 09/02/20 0										
Dibenzofuran 0.0049 U 0.35 0.0049 mg/Kg \$\times 09/01/20 09:15 09/02/20 0 Diethyl phthalate 0.0050 U 0.35 0.0050 mg/Kg \$\times 09/01/20 09:15 09/02/20 0	•									
Diethyl phthalate 0.0050 U 0.35 0.0050 mg/Kg © 09/01/20 09:15 09/02/20 0	, ,									
Dimethyl abthelete	• •									
									09/02/20 02:24 09/02/20 02:24	

Eurofins TestAmerica, Edison

9/4/2020

3

6

8

10

Job ID: 460-217093-1

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: EME Horizon C Topsoil

Lab Sample ID: 460-217093-2 Date Collected: 08/27/20 11:30 **Matrix: Solid** Date Received: 08/28/20 16:40 Percent Solids: 95.3

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	0.012	U	0.35		0.012	mg/Kg	*	09/01/20 09:15	09/02/20 02:24	1
Fluorene	0.0047	U	0.35		0.0047	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	1
Hexachlorobenzene	0.016	U	0.035		0.016	mg/Kg	₽	09/01/20 09:15	09/02/20 02:24	1
Hexachlorobutadiene	0.0074	U	0.070		0.0074	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	1
Hexachlorocyclopentadiene	0.030	U	0.35		0.030	mg/Kg	₽	09/01/20 09:15	09/02/20 02:24	1
Hexachloroethane	0.012	U	0.035		0.012	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	1
Indeno[1,2,3-cd]pyrene	0.014	U	0.035		0.014	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	1
Isophorone	0.10	U	0.14		0.10	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	1
Naphthalene	0.0060	U	0.35		0.0060	mg/Kg		09/01/20 09:15	09/02/20 02:24	1
Nitrobenzene	0.0083	U	0.035		0.0083	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	1
N-Nitrosodimethylamine	0.032	U	0.35		0.032	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	1
N-Nitrosodi-n-propylamine	0.025	U	0.035		0.025	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	1
N-Nitrosodiphenylamine	0.0066	U	0.35		0.0066	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	1
Pentachlorophenol	0.071	U	0.28		0.071	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	1
Phenanthrene	0.0061	U	0.35		0.0061	mg/Kg		09/01/20 09:15	09/02/20 02:24	1
Phenol	0.013	U	0.35		0.013	mg/Kg	₩	09/01/20 09:15	09/02/20 02:24	1
Pyrene	0.0086	U	0.35		0.0086	mg/Kg	₽	09/01/20 09:15	09/02/20 02:24	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Aldol condensation product	12	A J	mg/Kg	₩	2.	76		09/01/20 09:15	09/02/20 02:24	1
Dibenzylidene	0.75	JN	mg/Kg	₩	14.	.37	6311-48-4	09/01/20 09:15	09/02/20 02:24	1
4,4'-biphenylenediamine										
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	60		30 - 130					09/01/20 09:15	09/02/20 02:24	1
2-Fluorobiphenyl	52		30 - 130					09/01/20 09:15	09/02/20 02:24	1
2-Fluorophenol	49		30 - 130					09/01/20 09:15	09/02/20 02:24	1
Nitrobenzene-d5	53		30 - 130					09/01/20 09:15	09/02/20 02:24	1
Phenol-d5	48		30 - 130					09/01/20 09:15	09/02/20 02:24	1
Terphenyl-d14	70		30 - 130					09/01/20 09:15	09/02/20 02:24	1
Method: 2024B Organischle	rine Pesticio	les (GC)								
Method: 8081B - Organochlo			RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	KL							
•	0.0012		0.0070		0.0012	mg/Kg	<u></u>	08/29/20 19:54	08/31/20 11:38	1
Analyte		U			0.0012 0.00083		—— ~ \$	08/29/20 19:54 08/29/20 19:54	08/31/20 11:38 08/31/20 11:38	1
Analyte 4,4'-DDD	0.0012	U	0.0070			mg/Kg				-
Analyte 4,4'-DDD 4,4'-DDE	0.0012 0.00083	U U U	0.0070 0.0070		0.00083	mg/Kg	₽	08/29/20 19:54 08/29/20 19:54	08/31/20 11:38	1
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT	0.0012 0.00083 0.0013	U U U	0.0070 0.0070 0.0070		0.00083 0.0013	mg/Kg mg/Kg mg/Kg	\$ \$	08/29/20 19:54 08/29/20 19:54 08/29/20 19:54	08/31/20 11:38 08/31/20 11:38	1

4,4-000	0.0012	U	0.0070	0.0012	mg/rtg	74	00/23/20 13.54	00/31/20 11.30	
4,4'-DDE	0.00083	U	0.0070	0.00083	mg/Kg	☼	08/29/20 19:54	08/31/20 11:38	1
4,4'-DDT	0.0013	U	0.0070	0.0013	mg/Kg	₽	08/29/20 19:54	08/31/20 11:38	1
Aldrin	0.0011	U	0.0070	0.0011	mg/Kg	≎	08/29/20 19:54	08/31/20 11:38	1
alpha-BHC	0.00071	U	0.0021	0.00071	mg/Kg	≎	08/29/20 19:54	08/31/20 11:38	1
beta-BHC	0.00079	U	0.0021	0.00079	mg/Kg	≎	08/29/20 19:54	08/31/20 11:38	1
Chlordane (n.o.s.)	0.017	U	0.070	0.017	mg/Kg	₩	08/29/20 19:54	08/31/20 11:38	1
Chlordane (technical)	0.017	U	0.070	0.017	mg/Kg	≎	08/29/20 19:54	08/31/20 11:38	1
cis-Chlordane	0.0011	U	0.0070	0.0011	mg/Kg	☼	08/29/20 19:54	08/31/20 11:38	1
delta-BHC	0.00043	U	0.0021	0.00043	mg/Kg	₩	08/29/20 19:54	08/31/20 11:38	1
Dieldrin	0.00091	U	0.0021	0.00091	mg/Kg	≎	08/29/20 19:54	08/31/20 11:38	1
Endosulfan I	0.0011	U	0.0070	0.0011	mg/Kg	☼	08/29/20 19:54	08/31/20 11:38	1
Endosulfan II	0.0018	U	0.0070	0.0018	mg/Kg	≎	08/29/20 19:54	08/31/20 11:38	1
Endosulfan sulfate	0.00088	U	0.0070	0.00088	mg/Kg	☼	08/29/20 19:54	08/31/20 11:38	1
Endrin	0.0010	U	0.0070	0.0010	mg/Kg	☼	08/29/20 19:54	08/31/20 11:38	1
Endrin aldehyde	0.0017	U	0.0070	0.0017	mg/Kg	₩	08/29/20 19:54	08/31/20 11:38	1
Endrin ketone	0.0014	U	0.0070	0.0014	mg/Kg	₽	08/29/20 19:54	08/31/20 11:38	1
	4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (n.o.s.) Chlordane (technical) cis-Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde	4,4'-DDE 0.00083 4,4'-DDT 0.0013 Aldrin 0.0011 alpha-BHC 0.00071 beta-BHC 0.00079 Chlordane (n.o.s.) 0.017 Chlordane (technical) 0.017 cis-Chlordane 0.0011 delta-BHC 0.00043 Dieldrin 0.00091 Endosulfan I 0.0011 Endosulfan sulfate 0.00088 Endrin 0.0010 Endrin aldehyde 0.0017	4,4'-DDE 0.00083 U 4,4'-DDT 0.0013 U Aldrin 0.0011 U alpha-BHC 0.00071 U beta-BHC 0.00079 U Chlordane (n.o.s.) 0.017 U Chlordane (technical) 0.017 U cis-Chlordane 0.0011 U delta-BHC 0.00043 U Dieldrin 0.00091 U Endosulfan I 0.0011 U Endosulfan sulfate 0.00088 U Endrin 0.0010 U Endrin aldehyde 0.0017 U	4,4'-DDE 0.00083 U 0.0070 4,4'-DDT 0.0013 U 0.0070 Aldrin 0.0011 U 0.0070 alpha-BHC 0.00071 U 0.0021 beta-BHC 0.00079 U 0.0021 Chlordane (n.o.s.) 0.017 U 0.070 Chlordane (technical) 0.017 U 0.070 cis-Chlordane 0.0011 U 0.0070 delta-BHC 0.00043 U 0.0021 Dieldrin 0.00091 U 0.0021 Endosulfan I 0.0011 U 0.0070 Endosulfan sulfate 0.00088 U 0.0070 Endrin 0.0010 U 0.0070 Endrin aldehyde 0.0017 U 0.0070	4,4'-DDE 0.00083 U 0.0070 0.00083 4,4'-DDT 0.0013 U 0.0070 0.0013 Aldrin 0.0011 U 0.0070 0.0011 alpha-BHC 0.00071 U 0.0021 0.00071 beta-BHC 0.00079 U 0.0021 0.00079 Chlordane (n.o.s.) 0.017 U 0.070 0.017 Chlordane (technical) 0.017 U 0.070 0.017 cis-Chlordane 0.0011 U 0.0070 0.0011 delta-BHC 0.00043 U 0.0021 0.00043 Dieldrin 0.00043 U 0.0021 0.00091 Endosulfan I 0.0011 U 0.0070 0.0011 Endosulfan sulfate 0.00088 U 0.0070 0.00088 Endrin 0.0010 U 0.0070 0.0010 Endrin aldehyde 0.0017 U 0.0070 0.0017	4,4'-DDE 0.00083 U 0.0070 0.00083 mg/Kg 4,4'-DDT 0.0013 U 0.0070 0.0013 mg/Kg Aldrin 0.0011 U 0.0070 0.0011 mg/Kg alpha-BHC 0.00071 U 0.0021 0.00071 mg/Kg beta-BHC 0.00079 U 0.0021 0.00079 mg/Kg Chlordane (n.o.s.) 0.017 U 0.070 0.017 mg/Kg Chlordane (technical) 0.017 U 0.070 0.017 mg/Kg cis-Chlordane 0.0011 U 0.0070 0.0011 mg/Kg delta-BHC 0.00043 U 0.0021 0.00043 mg/Kg Dieldrin 0.00091 U 0.0021 0.00091 mg/Kg Endosulfan I 0.0011 U 0.0070 0.0011 mg/Kg Endrin 0.0010 U 0.0070 0.0018 mg/Kg Endrin aldehyde 0.0017 U 0.0070 0.0010 mg/Kg	4,4'-DDE 0.00083 U 0.0070 0.0083 mg/Kg A 4,4'-DDT 0.0013 U 0.0070 0.0013 mg/Kg A Aldrin 0.0011 U 0.0070 0.0011 mg/Kg A alpha-BHC 0.00071 U 0.0021 0.00071 mg/Kg A beta-BHC 0.00079 U 0.0021 0.00079 mg/Kg A Chlordane (n.o.s.) 0.017 U 0.070 0.017 mg/Kg A Chlordane (technical) 0.017 U 0.070 0.017 mg/Kg A cis-Chlordane 0.0011 U 0.0070 0.0011 mg/Kg A delta-BHC 0.00043 U 0.0021 0.00043 mg/Kg A Dieldrin 0.00041 U 0.0021 0.00043 mg/Kg A Endosulfan I 0.0011 U 0.0070 0.0011 mg/Kg A Endrin 0.0010 U 0.0070 0.0010 mg/Kg A Endrin aldehyd	4,4'-DDE 0.00083 U 0.0070 0.00083 mg/Kg \$ 08/29/20 19:54 4,4'-DDT 0.0013 U 0.0070 0.0013 mg/Kg \$ 08/29/20 19:54 Aldrin 0.0011 U 0.0070 0.0011 mg/Kg \$ 08/29/20 19:54 alpha-BHC 0.00071 U 0.0021 0.00071 mg/Kg \$ 08/29/20 19:54 beta-BHC 0.00079 U 0.070 0.017 mg/Kg \$ 08/29/20 19:54 Chlordane (n.o.s.) 0.017 U 0.070 0.017 mg/Kg \$ 08/29/20 19:54 Chlordane (technical) 0.017 U 0.070 0.017 mg/Kg \$ 08/29/20 19:54 cis-Chlordane 0.0011 U 0.0070 0.0011 mg/Kg \$ 08/29/20 19:54 delta-BHC 0.00043 U 0.0021 0.00043 mg/Kg \$ 08/29/20 19:54 Dieldrin 0.00043 U 0.0021 0.00043 mg/Kg \$ 08/29/20 19:54 Endosulfan II 0.0011 U 0.0070 0.0011 mg/Kg \$ 08/29/20 19:54 Endrin	4,4'-DDE 0.00083 U 0.0070 0.00083 mg/Kg © 08/29/20 19:54 08/31/20 11:38 4,4'-DDT 0.0013 U 0.0070 0.0013 mg/Kg © 08/29/20 19:54 08/31/20 11:38 Aldrin 0.0011 U 0.0070 0.0011 mg/Kg © 08/29/20 19:54 08/31/20 11:38 alpha-BHC 0.00071 U 0.0021 0.00071 mg/Kg © 08/29/20 19:54 08/31/20 11:38 beta-BHC 0.00079 U 0.0021 0.0079 mg/Kg © 08/29/20 19:54 08/31/20 11:38 Chlordane (n.o.s.) 0.017 U 0.070 0.017 mg/Kg © 08/29/20 19:54 08/31/20 11:38 cis-Chlordane (technical) 0.017 U 0.070 0.017 mg/Kg © 08/29/20 19:54 08/31/20 11:38 delta-BHC 0.00043 U 0.0070 0.0011 mg/Kg © 08/29/20 19:54 08/31/20 11:38 Dieldrin 0.00043 U 0.0021 0.00043 mg/Kg © 08/29/20 19:54 08/31/20 11:38 Endosulfan II 0.0011 U 0.0070 0.0018

Eurofins TestAmerica, Edison

Job ID: 460-217093-1

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: EME Horizon C Topsoil

Lab Sample ID: 460-217093-2 Date Collected: 08/27/20 11:30 **Matrix: Solid** Date Received: 08/28/20 16:40

Percent Solids: 95.3

Method: 8081B - Organod	chlorine Pesticio	les (GC) (C	Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
gamma-BHC (Lindane)	0.00065	U	0.0021	0.00065	mg/Kg	-	08/29/20 19:54	08/31/20 11:38	1
Heptachlor	0.00083	U	0.0070	0.00083	mg/Kg	₩	08/29/20 19:54	08/31/20 11:38	1
Heptachlor epoxide	0.0010	U	0.0070	0.0010	mg/Kg	☼	08/29/20 19:54	08/31/20 11:38	1
Methoxychlor	0.0016	U	0.0070	0.0016	mg/Kg	₩	08/29/20 19:54	08/31/20 11:38	1
Toxaphene	0.025	U	0.070	0.025	mg/Kg	₽	08/29/20 19:54	08/31/20 11:38	1
trans-Chlordane	0.0012	U	0.0070	0.0012	mg/Kg	≎	08/29/20 19:54	08/31/20 11:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	65		30 - 150				08/29/20 19:54	08/31/20 11:38	1
DCB Decachlorobiphenyl	75		30 - 150				08/29/20 19:54	08/31/20 11:38	1
Tetrachloro-m-xylene	65		30 - 150				08/29/20 19:54	08/31/20 11:38	1
Tetrachloro-m-xylene	64		30 - 150				08/29/20 19:54	08/31/20 11:38	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.0093	U	0.070	0.0093	mg/Kg	<u></u>	08/29/20 19:51	08/31/20 12:00	1
Aroclor 1221	0.0093	U	0.070	0.0093	mg/Kg	₩	08/29/20 19:51	08/31/20 12:00	1
Aroclor 1232	0.0093	U	0.070	0.0093	mg/Kg	₩	08/29/20 19:51	08/31/20 12:00	1
Aroclor 1242	0.0093	U	0.070	0.0093	mg/Kg	₩	08/29/20 19:51	08/31/20 12:00	1
Aroclor 1248	0.0093	U	0.070	0.0093	mg/Kg	₩	08/29/20 19:51	08/31/20 12:00	1
Aroclor 1254	0.0097	U	0.070	0.0097	mg/Kg	₩	08/29/20 19:51	08/31/20 12:00	1
Aroclor 1260	0.0097	U	0.070	0.0097	mg/Kg	₩	08/29/20 19:51	08/31/20 12:00	1
Aroclor 1262	0.0097	U	0.070	0.0097	mg/Kg	₩	08/29/20 19:51	08/31/20 12:00	1
Aroclor 1268	0.0097	U	0.070	0.0097	mg/Kg	₩	08/29/20 19:51	08/31/20 12:00	1
Polychlorinated biphenyls, Total	0.0097	U	0.070	0.0097	mg/Kg	☆	08/29/20 19:51	08/31/20 12:00	1

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	108	30 - 150	08/29/20 19:51	08/31/20 12:00	1
DCB Decachlorobiphenyl	110	30 - 150	08/29/20 19:51	08/31/20 12:00	1
Tetrachloro-m-xylene	105	30 - 150	08/29/20 19:51	08/31/20 12:00	1
Tetrachloro-m-xylene	104	30 - 150	08/29/20 19:51	08/31/20 12:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	12500		16.8	2.2	mg/Kg	<u></u>	08/29/20 16:35	08/30/20 16:26	1
Antimony	0.12	U	0.84	0.12	mg/Kg	₩	08/29/20 16:35	08/30/20 16:26	1
Arsenic	4.6		0.84	0.084	mg/Kg	₩	08/29/20 16:35	08/30/20 16:26	1
Barium	16.1		1.7	0.12	mg/Kg	₩	08/29/20 16:35	08/30/20 16:26	1
Beryllium	0.19	J	0.34	0.048	mg/Kg	₩	08/29/20 16:35	08/30/20 16:26	1
Cadmium	0.095	U	0.84	0.095	mg/Kg	₩	08/29/20 16:35	08/30/20 16:26	1
Chromium	16.1		1.7	0.15	mg/Kg	₩	08/29/20 16:35	08/30/20 16:26	1
Cobalt	1.0	J	1.7	0.12	mg/Kg	₩	08/29/20 16:35	08/30/20 16:26	1
Copper	7.8		1.7	0.18	mg/Kg	₩	08/29/20 16:35	08/30/20 16:26	1
Lead	7.4		0.50	0.17	mg/Kg	₩	08/29/20 16:35	08/30/20 16:26	1
Manganese	13.8		3.4	0.34	mg/Kg	₩	08/29/20 16:35	08/30/20 16:26	1
Nickel	3.3		1.7	0.16	mg/Kg	₩	08/29/20 16:35	08/30/20 16:26	1
Selenium	0.18	J	1.0	0.099	mg/Kg	₩	08/29/20 16:35	08/30/20 16:26	1
Silver	0.075	U	0.84	0.075	mg/Kg	₩	08/29/20 16:35	08/30/20 16:26	1
Thallium	0.042	J	0.34	0.034	mg/Kg	₩	08/29/20 16:35	08/30/20 16:26	1
Vanadium	26.5		1.7	0.17	mg/Kg	₩	08/29/20 16:35	08/30/20 16:26	1

Eurofins TestAmerica, Edison

Page 17 of 26

Client Sample Results

Client: Sevenson Environmental Services, Inc. Job ID: 460-217093-1 Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: EME Horizon C Topsoil

Lab Sample ID: 460-217093-2 Date Collected: 08/27/20 11:30

Matrix: Solid

Percent Solids: 95.3 Date Received: 08/28/20 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zinc	5.0	J	6.7	1.9	mg/Kg	₩	08/29/20 16:35	08/30/20 16:26	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0086	J	0.018	0.0042	mg/Kg	₩	09/02/20 03:14	09/02/20 08:51	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	0.37	U	2.1	0.37	mg/Kg	☆	09/01/20 09:10	09/01/20 15:11	1
Cyanide, Total	0.12	U	0.24	0.12	mg/Kg	₩	09/02/20 09:08	09/02/20 12:34	1
pH	5.2	HF	0.1	0.1	SU			08/31/20 14:22	1
Temperature	21.6	HF	0.1	0.1	Degrees C			08/31/20 14:22	1
Corrosivity	5.2	HF	0.1	0.1	SU			08/31/20 14:22	1
			105	85.3	mg/Kg	₩		09/03/20 11:13	1
TOC Result 1	85.3	U	105	05.5	1119/119	7		00/00/20 11.10	-
	85.3 4.7	U	1.0	1.0	7 7			09/01/20 07:48	1

9/4/2020

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: EME Horizon B Topsoil

Date Collected: 08/27/20 11:00 Date Received: 08/28/20 16:40 Lab Sample ID: 460-217093-1

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9045D		1	720853	08/31/20 14:20	YAH	TAL EDI
Total/NA	Analysis	Moisture		1	721036	09/01/20 07:48	MMC	TAL EDI

Client Sample ID: EME Horizon B Topsoil Lab Sample ID: 460-217093-1

Date Collected: 08/27/20 11:00 Matrix: Solid Date Received: 08/28/20 16:40 Percent Solids: 91.6

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			720449	08/28/20 23:40	AVM	TAL EDI
Total/NA	Analysis	8260C		1	720629	08/30/20 13:58	AAT	TAL EDI
Total/NA	Prep	3546			721052	09/01/20 09:15	OTS	TAL EDI
Total/NA	Analysis	8270D		1	720914	09/02/20 04:37	MME	TAL EDI
Total/NA	Prep	3546			720617	08/29/20 19:54	ZXB	TAL EDI
Total/NA	Analysis	8081B		1	720733	08/31/20 11:25	FAM	TAL EDI
Total/NA	Prep	3546			720616	08/29/20 19:51	ZXB	TAL EDI
Total/NA	Analysis	8082A		1	720748	08/31/20 11:43	JHP	TAL EDI
Total/NA	Prep	3050B			720605	08/29/20 16:35	GRB	TAL EDI
Total/NA	Analysis	6020B		1	720689	08/30/20 16:19	DLE	TAL EDI
Total/NA	Prep	7471B			721253	09/02/20 03:14	TJS	TAL EDI
Total/NA	Analysis	7471B		1	721350	09/02/20 08:49	TJS	TAL EDI
Total/NA	Prep	3060A			721050	09/01/20 09:10	RPR	TAL EDI
Total/NA	Analysis	7196A		1	721072	09/01/20 15:11	RPR	TAL EDI
Total/NA	Prep	9012B			721333	09/02/20 09:08	IAA	TAL EDI
Total/NA	Analysis	9012B		1	721391	09/02/20 12:30	AJP	TAL EDI
Total/NA	Analysis	Lloyd Kahn		1	721684	09/03/20 10:34	AJP	TAL EDI

Client Sample ID: EME Horizon C Topsoil

Lab Sample ID: 460-217093-2 Date Collected: 08/27/20 11:30 **Matrix: Solid**

Date Received: 08/28/20 16:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9045D		1	720853	08/31/20 14:22	YAH	TAL EDI
Total/NA	Analysis	Moisture		1	721036	09/01/20 07:48	MMC	TAL EDI

Client Sample ID: EME Horizon C Topsoil

Matrix: Solid Date Collected: 08/27/20 11:30 Date Received: 08/28/20 16:40 Percent Solids: 95.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			720449	08/28/20 23:39	AVM	TAL EDI
Total/NA	Analysis	8260C		1	720629	08/30/20 14:25	AAT	TAL EDI
Total/NA	Prep	3546			721052	09/01/20 09:15	OTS	TAL EDI
Total/NA	Analysis	8270D		1	720914	09/02/20 02:24	MME	TAL EDI
Total/NA	Prep	3546			720617	08/29/20 19:54	ZXB	TAL EDI
Total/NA	Analysis	8081B		1	720733	08/31/20 11:38	FAM	TAL EDI

Eurofins TestAmerica, Edison

Lab Sample ID: 460-217093-2

Page 19 of 26

Lab Chronicle

Client: Sevenson Environmental Services, Inc. Job ID: 460-217093-1 Project/Site: 1247 HON SA-6 South Deferred Area

Client Sample ID: EME Horizon C Topsoil

Lab Sample ID: 460-217093-2 Date Collected: 08/27/20 11:30 **Matrix: Solid**

Percent Solids: 95.3 Date Received: 08/28/20 16:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			720616	08/29/20 19:51	ZXB	TAL EDI
Total/NA	Analysis	8082A		1	720748	08/31/20 12:00	JHP	TAL EDI
Total/NA	Prep	3050B			720605	08/29/20 16:35	GRB	TAL EDI
Total/NA	Analysis	6020B		1	720689	08/30/20 16:26	DLE	TAL EDI
Total/NA	Prep	7471B			721253	09/02/20 03:14	TJS	TAL EDI
Total/NA	Analysis	7471B		1	721350	09/02/20 08:51	TJS	TAL EDI
Total/NA	Prep	3060A			721050	09/01/20 09:10	RPR	TAL EDI
Total/NA	Analysis	7196A		1	721072	09/01/20 15:11	RPR	TAL EDI
Total/NA	Prep	9012B			721333	09/02/20 09:08	IAA	TAL EDI
Total/NA	Analysis	9012B		1	721391	09/02/20 12:34	AJP	TAL EDI
Total/NA	Analysis	Lloyd Kahn		1	721684	09/03/20 11:13	AJP	TAL EDI

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-217093-1

Laboratory: Eurofins TestAmerica, Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
New Jersey		NELAP	12028	06-30-21
The following analytes the agency does not do		report, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
7196A	3060A	Solid	Cr (VI)	
8081B	3546	Solid	Chlordane (n.o.s.)	
8082A	3546	Solid	Polychlorinated biphenyls, To	otal
9045D		Solid	Corrosivity	
9045D		Solid	Temperature	
Lloyd Kahn		Solid	TOC Result 1	
Moisture		Solid	Percent Moisture	
Moisture		Solid	Percent Solids	

2

6

9

Method Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-217093-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL EDI
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL EDI
8081B	Organochlorine Pesticides (GC)	SW846	TAL EDI
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL EDI
6020B	Metals (ICP/MS)	SW846	TAL EDI
7471B	Mercury (CVAA)	SW846	TAL EDI
7196A	Chromium, Hexavalent	SW846	TAL EDI
9012B	Cyanide, Total andor Amenable	SW846	TAL EDI
9045D	pH	SW846	TAL EDI
Lloyd Kahn	Organic Carbon, Total (TOC)	EPA	TAL EDI
Moisture	Percent Moisture	EPA	TAL EDI
3050B	Preparation, Metals	SW846	TAL EDI
3060A	Alkaline Digestion (Chromium, Hexavalent)	SW846	TAL EDI
3546	Microwave Extraction	SW846	TAL EDI
5035	Closed System Purge and Trap	SW846	TAL EDI
7471B	Preparation, Mercury	SW846	TAL EDI
9012B	Cyanide, Total and/or Amenable, Distillation	SW846	TAL EDI

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins TestAmerica, Edison

2

Λ

5

0

46

Sample Summary

Client: Sevenson Environmental Services, Inc. Project/Site: 1247 HON SA-6 South Deferred Area

Job ID: 460-217093-1

Lab Sample ID Client Sample ID Matrix Collected Received Asset ID 460-217093-1 EME Horizon B Topsoil Solid 08/27/20 11:00 08/28/20 16:40 460-217093-2 EME Horizon C Topsoil Solid 08/27/20 11:30 08/28/20 16:40	Lab Camula ID	Oliont Commis ID	B# a fuit.	O alla ata d	Danahard	
	Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
460-217093-2 EME Horizon C Topsoil Solid 08/27/20 11:30 08/28/20 16:40	460-217093-1	EME Horizon B Topsoil	Solid	08/27/20 11:00	08/28/20 16:40	
	460-217093-2	EME Horizon C Topsoil	Solid	08/27/20 11:30	08/28/20 16:40	

- 4

0

Client Information	Sampler: Toni Polk			Benne	Lab PM: Bennett, Allison L	ison						Test	Amer	Iracking No(s)	(s). urofin	Carrier Tracking No(s): Test America/Eurofins Courier	_	COC NO.		
	Phone: 716 525 5112			E-Mail:	hod	0	toetar	norio	o odi			Service	ce				ш и	Page:		
	7 10 223 2147			allisor	Tipe II	meil	lesia	Sie	200		1		1	١			T	5		
Company: Sevenson Environmental Services, Inc.									Analysis	ysis		Requested	ted				, ,	1247	1109	5
Address: 2749 Lockport Road	Due Date Requested:	÷			_			_	H	_				-	-	L		Preservation Co		
City. Niagara Falls	TAT Requested (days)	ys): 1 week TAT	TAT															A - HCL B - NaOH C - Zn Acetate		M - Hexane N - None O - AsNaO2
State, Zip: NY, 14305																		D - Nithe Acid E - NaHSO4		33 8
06	PO#. 1247 MM							30	96					uqe	11119			G - Amchlor H - Ascorbic Acid		odecahvdrate
	WO#:					•	•		17-10					N byol	u nkor			I - Ice J - DI Water		Φ.
Project Name: 1247 HON SA-6 South Deferred Area	Project #:				_	SOIT 81			nuuou	Se		S TICs	ı	1 vd O	1 (a 2)			K - EDTA L - EDA		specify)
Site: Deferred Area Backfill Sampling	SSOW#:				-)C2 + .						18 + 21	e, Tota	JI - bo	21 - pc			Other:		
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W=water, S=solid, O=waste/oll, BT=Tissue, A=Air)	Filtered Samp Perform MS /	8560C - SRS VC	8260C - SRS VC	6020B - SRS Md	7196A - Hexava TuoreM - Alty	9081B - SRS Pe	8082A - PCBs	18 272 - G0728	9012B - Cyanid	Hq - G3406	Lloyd_Kahn_M		nedmuN latoT	Special	Special Instructions/Note:	s/Note:
	\bigvee	\bigvee		1	X	X	$\langle \cdot \rangle$	\Diamond	\Diamond	$\stackrel{X}{\leftrightarrow}$	\boxtimes	X	\overleftrightarrow{X}	\Diamond	\Diamond	\Diamond			1	
EME Horizon B Topsoil	8/27/20	1100	Ö	Solid	> Z	×	×	×	×	×	×	×	×	×	×	×	7	1 week TAT		
EME Horizon C Topsoil	8/27/20	1130	Ö	Solid	> Z	×	×	×	×	×	×	×	×	×	×	×	7	1 week TAT	4	
					-				-					-						
															-					
				SHORT	RI															
460-217093 Chain of Custodia				HOLD		-		1	+	-				+	+	4				
Apprendiction					-			+	+	+				+	+	-				
Possible Hazard Identification Non-Hazard Fammable Solution Poly	Polson B Tuknown		Radiological		Sa		le Disposal (A1	osal (A fe	e may	pe a	be assessed if san	sed i	sam	ples	are re	taine Archi	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month. Return To Client	1 month) Months	St
Deliverable Requested: I, II, III, IV, Other (specify)					Sp	Scial	Special Instructions/QC Requirements:	ctions	/QC	Redui	eme	ıts:			Ì					
Empty Kit Relinquished by:					Time:			,			1		Methoc	Method of Shipmen	pment					
Relinquished by: Toni Polk	Date/Time: 8/27/2020 1	0 1100		Company		Rece	Received by	1	5	1	X	1			Sate Time	1	-	926	Company	RG
Relinquished by:	Date/Time:	9)	3	Company	9	Received	ved by	18	7	7 1	1	1		Ď.	Date/Time	87	8	0h9 0	No.	(6)
	Date/Time:			Company		Received	ved by		-					<u></u>	Date/Time	-			Company	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Coole	Cooler Temperature(s) °C and Other Remarks	eratur	၁ _့ (s)ေ	and Ol	her Re	marks:			2	1		U	并一	
																l			Ver: 01/16/2019	6/2019

eurofinsEnvironment Testing
TestAmerica

Chain of Custody Record

Eurofins TestAmerica, Edison

777 New Durham Road Edison, NJ 08817 Phone (732) 549-3900 Fax (732) 549-3679

9

Eurofins TestAmerica Edison Receipt Temperature and pH Log

Page of

### COOPERING CO	Number of Coolers:				IR Gun #	ပိ	Cooler Temperatures	mpera	tures							
11		RAW	CORRECTED				RAW	CORRECTED				RAW	CORRECTED			
12 C C Cooler #6 C Cooler #8 C C Cooler #8 C C C C C C C C C	Cooler #1	1	377		Ö	ooler #4:	S	۷		o	ooler #7:	ပ္	S			
10 C	Cooler #2		ပ္စ		Ü	ooler #5:	Ω,	S		O	ooler #8:	S	υ υ			
Total Tota	Cooler #3		υ Q		Ö	ooler #6:	ပွ	ပ္		O	ooler #9:	S	S			
TALS Sample Number (pHc2)		Ammonia	COD	Nitrate Nitrite	Metals	Hardness	Pest	EPH or QAM	Phenols	Sulfide	TKN	T0C	Total Cyanide	Total Phos	Other	Other
Freservative Name(Conc.:	TALS Sample Number	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH 5-9)	(pH<2)	(pH<2)	(6 <hd)< td=""><td>(pH<2)</td><td>(pH<2)</td><td>(pH>12)</td><td>(pH<2)</td><td></td><td></td></hd)<>	(pH<2)	(pH<2)	(pH>12)	(pH<2)		
Free evalue (in) Expiration Date:																
Figure 1 Figure 1 Figure 1 Figure 2 Figure 3 Figure 3 Figure 4 Figure 4 Figure 4 Figure 5 Figure 5 Figure 6																
Freservative Name/Conc. Expiration Date: Expi																
Freservative (s): Lot # of Preservative(s): The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.																
Figure 1 Sample No(s). adjustnents are required record the information below: Sample No(s). adjusted: Lot # of Preservative(s): The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.																
Freservative(s): Cont. C																
Figure 1 Figure 1 Figure 1 Figure 2 Figure 2 Figure 3 Figure 3 Figure 4																
Figure 1																
Figure 1																
The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. Preservative(s): The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.																
If pH adjustments are required record the information below: Sample No(s). adjusted:																
If pH adjustments are required record the information below: Sample No(s). adjusted:																
If pH adjustments are required record the information below: Sample No(s), adjusted:																
Sample No(s), adjusted: Volume of Preservative used (ml):		If pH adju	stments	are requi	ed record	the infor	mation be	low:								
Preservative Name/Conc.: Lot # of Preservative(s): The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.	Sample No(s).	adjusted:														
Lot # of Preservative(s): The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.	Preservative Na	me/Conc					Volun	ne of Pres	ervative u	:(Im) pasr						
The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.	Lot # of Prese	rvative(s):							Expirat	ion Date:						
		17	e appropr	iate Projec	st Manage	and Depa	artment Ma	nager sho	ould be no	tified abou	ut the samp	oles which	were pH	adjusted.		
					-					(-	1	,			

Client: Sevenson Environmental Services, Inc.

Job Number: 460-217093-1

Login Number: 217093

List Number: 1

Creator: Rivera, Kenneth

List Source: Eurofins TestAmerica, Edison

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
amples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
OC is present.	True	
OC is filled out in ink and legible.	True	
OC is filled out with all pertinent information.	True	
the Field Sampler's name present on COC?	True	
nere are no discrepancies between the containers received and the COC.	True	
amples are received within Holding Time (excluding tests with immediate Ts)	True	
ample containers have legible labels.	True	
ontainers are not broken or leaking.	True	
ample collection date/times are provided.	True	
ppropriate sample containers are used.	True	
sample bottles are completely filled.	True	
ample Preservation Verified.	True	
here is sufficient vol. for all requested analyses, incl. any requested IS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
lultiphasic samples are not present.	True	
amples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Edison

Lab Job ID: 460-217093-1

Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	EME H	lorizo	on B Topsoil	EME I	loriz	on C Topso
Lab Sample ID	Residential	Non-Residential	IGW Screening		46	0-217093-1		46	50-217093
Sampling Date	Sept_2017	Sept_2017	Nov_2013	08/2	27/20	20 11:00:00	08/2	27/20	20 11:30:
Matrix						Soil			S
Dilution Factor						1			
Unit	mg/kg	mg/kg	mg/kg			mg/kg			mg/
				Result	Q	MDL	Result	Q	М
SOIL BY 8260C									
1,1,1-Trichloroethane	160000	NA	0.3	0.00032	U	0.00032	0.00039	U	0.000
1,1,2,2-Tetrachloroethane	1	3	0.007	0.00029	U	0.00029	0.00036	U	0.000
1,1,2-Trichloroethane	2	6	0.02	0.00024	U	0.00024	0.00030	U	0.000
1,1-Dichloroethane	8	24	0.2	0.00028	U	0.00028	0.00035	U	0.000
1,1-Dichloroethene	11	150	0.008	0.00031	U	0.00031	0.00038	U	0.000
1,2-Dibromo-3-Chloropropane	0.08	0.2	0.005	0.00063	U	0.00063	0.00077	U	0.000
1,2-Dibromoethane	0.008	0.04	0.005	0.00025	U	0.00025	0.00030	U	0.000
1,2-Dichloroethane	0.9	3	0.005	0.00040	U	0.00040	0.00050	U	0.000
1,2-Dichloropropane	2	5	0.005	0.00058	U	0.00058	0.00071	U	0.000
2-Butanone	3100	44000	0.9	0.0037	U	0.0037	0.0045	U	0.00
2-Chloroethyl vinyl ether	NA	NA	NA	0.0022	U	0.0022	0.0027	U	0.00
2-Hexanone	NA	NA	NA	0.0023	U	0.0023	0.0029	U	0.00
4-Methyl-2-pentanone	NA	NA	NA	0.0021	U	0.0021	0.0026	U	0.00
Acetone	70000	NA	19	0.0078	U	0.0078	0.0096	U	0.00
Acrolein	0.5	1	0.5	0.038	U *	0.038	0.047	U *	0.0
Acrylonitrile	0.9	3	0.5	0.0022	U *	0.0022	0.0027	U *	0.00
Benzene	2	5	0.005	0.00035	U	0.00035	0.00043	U	0.000
Bromodichloromethane	1	3	0.005	0.00035	U	0.00035	0.00043	U	0.000
Bromoform	81	280	0.03	0.00058	U *	0.00058	0.00071	U *	0.000
Bromomethane	25	59	0.04	0.00065	U *	0.00065	0.00079	U *	0.000
Carbon disulfide	7800	110000	6	0.00036	U	0.00036	0.00045	U	0.000
Carbon tetrachloride	2	4	0.005	0.00053	U	0.00053	0.00065	U	0.000
Chlorobenzene	510	7400	0.6	0.00024	U	0.00024	0.00030	U	0.000
Chloroethane	220	1100	NA	0.00071	U	0.00071	0.00087	U	0.000
Chloroform	0.6	2	0.4	0.0021		0.00043	0.00053	U	0.000
Chloromethane	4	12	NA	0.00059	U	0.00059	0.00073	U	0.000
cis-1,2-Dichloroethene	230	560	0.3	0.00021	U	0.00021	0.00025	U	0.000
cis-1,3-Dichloropropene	NA	NA	NA	0.00037	U	0.00037	0.00046	U	0.000
Dibromochloromethane	3	8	0.005	0.00026	U	0.00026	0.00033	U	0.000
Dichlorodifluoromethane	490	230000	39	0.00046	U	0.00046	0.00057	U	0.000
Ethylbenzene	7800	110000	13	0.00027	U	0.00027	0.00033	U	0.000
Methyl acetate	78000	NA	22	0.0059	U	0.0059	0.0072	U	0.00
Methylene Chloride	46	230	0.01	0.00063	IJ	0.00063	0.00078	U	0.000
MTBE	110	320	0.2	0.00017	U	0.00017	0.00021	U	0.000
Styrene	90	260	3	0.00038	U	0.00038	0.00021	U	0.000
ТВА	1400	11000	0.3	0.0045	U	0.0045	0.0055	U	0.00
Tetrachloroethene	43	1500	0.005	0.00019	U	0.00043	0.00024	U	0.00
Toluene	6300	91000	7	0.00019	U	0.00013	0.00024	U	0.00
trans-1.2-Dichloroethene	300	720	0.6	0.00032	U	0.00032	0.00039	U	0.00
trans-1,3-Dichloropropene	NA	NA	NA	0.00036	U	0.00036	0.00041	U	0.000
Trichloroethene	3	10	0.01	0.00030	U	0.00030	0.00043	U	0.00

Eurofins TestAmerica, Edison

Lab Job ID: 460-217093-1

Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	EME I	loriz	on B Topsoil	EME I	loriz	on C Topsoil
Lab Sample ID	Residential	Non-Residential	IGW Screening		46	50-217093-1		46	0-217093-2
Sampling Date	Sept_2017	Sept_2017	Nov_2013	08/2	27/20	20 11:00:00	08/2	27/20	20 11:30:00
Matrix						Soil			Soil
Dilution Factor						1			1
Unit	mg/kg	mg/kg	mg/kg			mg/kg			mg/kg
				Result	Q	MDL	Result	Q	MDL
Trichlorofluoromethane	23000	340000	34	0.00055	J	0.00055	0.00068	U	0.00068
Vinyl chloride	0.7	2	0.005	0.00074	J	0.00074	0.00092	U	0.00092
Xylenes, Total	12000	170000	19	0.00024	U	0.00024	0.00029	U	0.00029
Total Conc	NA	NA	NA	0.0021			0.0		
Total Estimated Conc. (TICs)	NA	NA	NA	0.0*T			0.0*T		

^{*}T There are no TICs reported for the sample

^{*:} LCS or LCSD is outside acceptance limits.

U : Indicates the analyte was analyzed for but not detected.

Eurofins TestAmerica, Edison

Lab Job ID: 460-217093-1

Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	EME H	lorizo	on B Topsoil	EME I	lorizo	n C Topso
Lab Sample ID	Residential	Non-Residential	IGW Screening		46	50-217093-1		46	0-217093
Sampling Date	Sept_2017	Sept_2017	Nov_2013	08/2	7/20	20 11:00:00	08/2	27/20	20 11:30:
Matrix						Soil			S
Dilution Factor						1			
Unit	mg/kg	mg/kg	mg/kg			mg/kg			mg/
				Result	Q	MDL	Result	Q	MI
SOIL BY 8270D									
1,1'-Biphenyl	61	240	140	0.0048	U	0.0048	0.0046	U	0.00
1,2,4-Trichlorobenzene	73	820	0.7	0.0093	U	0.0093	0.0089	U	0.00
1,2-Dichlorobenzene	5300	59000	17	0.0062	U	0.0062	0.0059	U	0.00
1,2-Diphenylhydrazine	0.7	2	0.7	0.0066	U	0.0066	0.0063	U	0.00
1,3-Dichlorobenzene	5300	59000	19	0.0048	U	0.0048	0.0046	U	0.00
1,4-Dichlorobenzene	5	13	2	0.014	U	0.014	0.013	U	0.0
2,4,5-Trichlorophenol	6100	68000	68	0.037	U	0.037	0.035	U	0.0
2,4,6-Trichlorophenol	19	74	0.2	0.046	U	0.046	0.045	U	0.0
2,4-Dichlorophenol	180	2100	0.2	0.023	U	0.023	0.022	U	0.0
2,4-Dimethylphenol	1200	14000	1	0.016	U	0.016	0.015	U	0.0
2,4-Dinitrophenol	120	1400	0.3	0.18	U	0.18	0.17	U	0.
2,4-Dinitrotoluene	0.7	3	NA	0.039	U	0.039	0.037	U	0.0
2,6-Dinitrotoluene	0.7	3	NA	0.026	U	0.026	0.025	U	0.0
2-Chloronaphthalene	NA	NA	NA	0.017	U	0.017	0.016	U	0.0
2-Chlorophenol	310	2200	0.8	0.013	U	0.013	0.012	U	0.0
2-Methylnaphthalene	230	2400	8	0.010	U	0.010	0.0097	U	0.00
2-Methylphenol	310	3400	NA	0.013	U	0.013	0.013	U	0.0
2-Nitroaniline	39	23000	NA	0.013	U	0.013	0.013	U	0.0
2-Nitrophenol	NA	NA	NA	0.036	U	0.036	0.035	U	0.0
3,3'-Dichlorobenzidine	1	4	0.2	0.055	U *	0.055	0.052	U *	0.0
3-Nitroaniline	NA	NA	NA	0.041	U	0.041	0.039	U	0.0
4,6-Dinitro-2-methylphenol	6	68	0.3	0.059	U	0.059	0.056	U	0.0
4-Bromophenyl phenyl ether	NA	NA	NA	0.014	U	0.014	0.014	U	0.0
4-Chloro-3-methylphenol	NA	NA	NA	0.020	U	0.020	0.019	U	0.0
4-Chloroaniline	NA	NA	NA	0.025	U	0.025	0.024	U	0.0
4-Chlorophenyl phenyl ether	NA	NA	NA	0.013	U	0.013	0.012	U	0.0
4-Methylphenol	31	340	NA	0.023	U	0.023	0.022	U	0.0
4-Nitroaniline	NA	NA	NA	0.041	U	0.041	0.040	U	0.0
4-Nitrophenol	NA	NA	NA	0.059	U	0.059	0.057	U	0.0
Acenaphthene	3400	37000	110	0.026	U	0.026	0.025	U	0.0
Acenaphthylene	NA	300000	NA	0.0037	U	0.0037	0.0036	U	0.00
Acetophenone	2	5	3	0.018	U	0.018	0.017	U	0.0
Anthracene	17000	30000	2400	0.011	U	0.011	0.011	U	0.0
Atrazine	210	2400	0.2	0.0091	U*	0.0091	0.0088	U*	0.00
Benzaldehyde	6100	68000	NA	0.016	U	0.016	0.015	U	0.0
Benzidine	0.7	0.7	0.7	0.036	U	0.036	0.034	U	0.0
Benzo[a]anthracene	5	17	0.8	0.013	U	0.013	0.012	U	0.0
Benzo[a]pyrene	0.5	2	0.2	0.0096	U	0.0096	0.0092	U	0.00
Benzo[b]fluoranthene	5	17	2	0.0093	U	0.0093	0.0092	U	0.00
Benzo[g,h,i]perylene	380000	30000	NA NA	0.011	U	0.011	0.010	U	0.0
Benzo[k]fluoranthene	45	170	25	0.0071	U	0.0071	0.0068	U	0.00

Eurofins TestAmerica, Edison

Lab Job ID: 460-217093-1

Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	EME H	lorizo	on B Topsoil	EME I	loriz	on C Topsoil
Lab Sample ID	Residential	Non-Residential	IGW Screening		46	0-217093-1		46	50-217093-2
Sampling Date	Sept_2017	Sept_2017	Nov_2013	08/2	27/20	20 11:00:00	08/2	27/20	20 11:30:00
Matrix		· -	_			Soil			Soi
Dilution Factor						1			1
Unit	mg/kg	mg/kg	mg/kg			mg/kg			mg/kg
				Result	Q	MDL	Result	Q	MDI
bis (2-chloroisopropyl) ether	23	67	5	0.0065	U	0.0065	0.0063	U	0.0063
Bis(2-chloroethoxy)methane	NA	NA	NA	0.028	U	0.028	0.027	U	0.02
Bis(2-chloroethyl)ether	0.4	2	0.2	0.013	U	0.013	0.012	U	0.012
Bis(2-ethylhexyl) phthalate	35	140	1200	0.019	U	0.019	0.018	U	0.018
Butyl benzyl phthalate	1200	14000	230	0.017	U	0.017	0.016	U	0.016
Caprolactam	31000	340000	12	0.056	U *	0.056	0.054	U *	0.054
Carbazole	24	96	NA	0.014	U	0.014	0.013	U	0.013
Chrysene	450	1700	80	0.0061	U	0.0061	0.0059	U	0.0059
Dibenz(a,h)anthracene	0.5	2	0.8	0.016	U	0.016	0.015	U	0.015
Dibenzofuran	NA	NA	NA	0.0051	U	0.0051	0.0049	U	0.0049
Diethyl phthalate	49000	550000	88	0.0052	U	0.0052	0.0050	U	0.0050
Dimethyl phthalate	NA	NA	NA	0.082	U	0.082	0.079	U	0.079
Di-n-butyl phthalate	6100	68000	760	0.064	U	0.064	0.061	U	0.063
Di-n-octyl phthalate	2400	27000	3300	0.019	U	0.019	0.018	U	0.018
Fluoranthene	2300	24000	1300	0.013	U	0.013	0.012	U	0.012
Fluorene	2300	24000	170	0.0049	U	0.0049	0.0047	U	0.0047
Hexachlorobenzene	0.3	1	0.2	0.017	U	0.017	0.016	U	0.016
Hexachlorobutadiene	6	25	0.9	0.0077	U	0.0077	0.0074	U	0.0074
Hexachlorocyclopentadiene	45	110	320	0.032	U	0.032	0.030	U	0.030
Hexachloroethane	12	48	0.2	0.012	U	0.012	0.012	U	0.012
Indeno[1,2,3-cd]pyrene	5	17	7	0.014	U	0.014	0.014	U	0.014
Isophorone	510	2000	0.2	0.10	U	0.10	0.10	U	0.10
Naphthalene	6	17	25	0.0062	U	0.0062	0.0060	U	0.0060
Nitrobenzene	5	14	0.2	0.0087	U	0.0087	0.0083	U	0.0083
N-Nitrosodimethylamine	0.7	0.7	0.7	0.033	U	0.033	0.032	U	0.032
N-Nitrosodi-n-propylamine	0.2	0.3	0.2	0.026	U	0.026	0.025	U	0.02
N-Nitrosodiphenylamine	99	390	0.4	0.0069	U	0.0069	0.0066	U	0.006
Pentachlorophenol	0.9	3	0.3	0.074	U	0.074	0.071	U	0.07
Phenanthrene	NA	300000	NA	0.0063	U	0.0063	0.0061	U	0.006
Phenol	18000	210000	8	0.013	U	0.013	0.013	U	0.01
Pyrene	1700	18000	840	0.0090	U	0.0090	0.0086	U	0.008
Total Conc	NA	NA	NA	0.0			0.0		
Total Estimated Conc. (TICs)	NA	NA	NA	4.86			12.75		

^{*:} LCS or LCSD is outside acceptance limits.

U : Indicates the analyte was analyzed for but not detected.

Eurofins TestAmerica, Edison

TestAmerica Laboratories, Inc.

Eurofins TestAmerica, Edison

Lab Job ID: 460-217093-1

Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	EME Horizon B Topsoil	EME Horizon C Topsoil
Lab Sample ID	Residential	Non-Residential	IGW Screening	460-217093-1	460-217093-2
Sampling Date	Sept_2017	Sept_2017	Nov_2013	08/27/2020 11:00:00	08/27/2020 11:30:00
Matrix				Soil	Soil
Dilution Factor				1	1
Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				Result Q MDL	Result Q MDL

Eurofins TestAmerica, Edison

Lab Job ID: 460-217093-1

Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	EME H	lorizo	n B Topsoil	EME H	loriz	on C Topsoil
Lab Sample ID		46	0-217093-1		46	50-217093-2
Sampling Date	08/2	7/20	20 11:00:00	08/2	27/20	20 11:30:00
Matrix			Soil			Soil
Dilution Factor			1			1
Unit			mg/kg			mg/kg
	Result	Q	RT mm:ss	Result	Q	RT mm:ss
SOIL TICS BY 8270D						
Aldol condensation product	NR			12	ΑJ	02:45
Aldol condensation product	1.0	A J	02:46	NR		
Dibenzylidene 4,4'-biphenylenediamine	NR			0.75	JN	14:22
Unknown	1.6	J	15:23	NR		
Unknown	0.60	J	15:48	NR		
Unknown	0.38	J	16:08	NR		
Unknown	0.49	J	16:18	NR		
Unknown	0.79	J	17:13	NR		

NR: Not Analyzed

RT mm:ss Retention Time in mm:ss format

 $\label{eq:A:Theta:A:$

J : Indicates an Estimated Value for TICs

 $\ensuremath{\text{N}}$: This flag indicates the presumptive evidence of a compound.

Eurofins TestAmerica, Edison

Lab Job ID: 460-217093-1

Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	EME H	orizo	n B Topsoil	EME H	lorizo	n C Topsoil
Lab Sample ID	Residential	Non-Residential	IGW Screening		46	0-217093-1		46	0-217093-2
Sampling Date	Sept_2017	Sept_2017	Nov_2013	08/2	7/20	20 11:00:00	08/2	7/20	20 11:30:00
Matrix						Soil			Soi
Dilution Factor						1			:
Unit	mg/kg	mg/kg	mg/kg			mg/kg			mg/kį
				Result	Q	MDL	Result	Q	MDI
SOIL BY 8081B									
4,4'-DDD	3	13	4	0.0012	U	0.0012	0.0012	U	0.0012
4,4'-DDE	2	9	18	0.00086	U	0.00086	0.00083	U	0.00083
4,4'-DDT	2	8	11	0.0013	U	0.0013	0.0013	U	0.0013
Aldrin	0.04	0.2	0.2	0.0011	U	0.0011	0.0011	U	0.0011
alpha-BHC	0.1	0.5	0.002	0.00074	U	0.00074	0.00071	U	0.00071
beta-BHC	0.4	2	0.002	0.00082	U	0.00082	0.00079	U	0.00079
Chlordane (n.o.s.)	NA	NA	0.05	0.018	U	0.018	0.017	U	0.017
Chlordane (technical)	0.2	1	NA	0.018	U	0.018	0.017	U	0.017
cis-Chlordane	NA	NA	NA	0.0012	U	0.0012	0.0011	U	0.0011
delta-BHC	NA	NA	NA	0.00045	U	0.00045	0.00043	U	0.00043
Dieldrin	0.04	0.2	0.003	0.00095	U	0.00095	0.00091	U	0.00093
Endosulfan I	NA	NA	NA	0.0011	U	0.0011	0.0011	U	0.0011
Endosulfan II	NA	NA	NA	0.0019	U	0.0019	0.0018	U	0.0018
Endosulfan sulfate	470	6800	2	0.00092	U	0.00092	0.00088	U	0.00088
Endrin	23	340	1	0.0010	U	0.0010	0.0010	U	0.0010
Endrin aldehyde	NA	NA	NA	0.0017	U	0.0017	0.0017	U	0.0017
Endrin ketone	NA	NA	NA	0.0014	U	0.0014	0.0014	U	0.0014
gamma-BHC (Lindane)	0.4	2	0.002	0.00068	U	0.00068	0.00065	U	0.00065
Heptachlor	0.1	0.7	0.5	0.00086	U	0.00086	0.00083	U	0.00083
Heptachlor epoxide	0.07	0.3	0.01	0.0011	U	0.0011	0.0010	U	0.0010
Methoxychlor	390	5700	160	0.0017	U	0.0017	0.0016	U	0.0016
Toxaphene	0.6	3	0.3	0.026	U	0.026	0.025	U	0.025
trans-Chlordane	NA	NA	NA	0.0013	U	0.0013	0.0012	U	0.0012

U : Indicates the analyte was analyzed for but not detected.

Eurofins TestAmerica, Edison

Lab Job ID: 460-217093-1

Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	EME H	loriz	on B Topsoil	EME H	lorizo	n C Topsoil
Lab Sample ID	Residential	Non-Residential	IGW Screening		46	50-217093-1		46	0-217093-2
Sampling Date	Sept_2017	Sept_2017	Nov_2013	08/2	27/20	20 11:00:00	08/2	7/20	20 11:30:00
Matrix						Soil			Soil
Dilution Factor						1			1
Unit	mg/kg	mg/kg	mg/kg			mg/kg			mg/kg
				Result	Q	MDL	Result	Q	MDL
SOIL BY 8082A									
Aroclor 1016	NA	NA	NA	0.0097	U	0.0097	0.0093	U	0.0093
Aroclor 1221	NA	NA	NA	0.0097	U	0.0097	0.0093	U	0.0093
Aroclor 1232	NA	NA	NA	0.0097	U	0.0097	0.0093	U	0.0093
Aroclor 1242	NA	NA	NA	0.0097	U	0.0097	0.0093	U	0.0093
Aroclor 1248	NA	NA	NA	0.0097	U	0.0097	0.0093	U	0.0093
Aroclor 1254	NA	NA	NA	0.010	U	0.010	0.0097	U	0.0097
Aroclor 1260	NA	NA	NA	0.010	U	0.010	0.0097	U	0.0097
Aroclor 1262	NA	NA	NA	0.010	U	0.010	0.0097	U	0.0097
Aroclor 1268	NA	NA	NA	0.010	U	0.010	0.0097	U	0.0097
Total PCBs	0.2	1	0.2	0.010	U	0.010	0.0097	U	0.0097

U : Indicates the analyte was analyzed for but not detected.

Eurofins TestAmerica, Edison

Lab Job ID: 460-217093-1

Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	EME H	orize	on B Topsoil	EME H	loriz	on C Topsoil
Lab Sample ID	Residential	Non-Residential	IGW Screening		46	50-217093-1		46	50-217093-2
Sampling Date	Sept_2017	Sept_2017	Nov_2013	08/2	7/20	20 11:00:00	08/2	27/20	20 11:30:00
Matrix						Soil			Soil
Unit				. 1					
				Result	Q	MDL	Result	Q	MDL
SOIL BY 6020B(MG/KG)									
Aluminum	78000	NA	6000	6090		2.5	12500		2.2
Antimony	31	450	6	0.14	U		0.12	U	0.12
Arsenic	19	19	19	2.8		0.095	4.6		0.084
Barium	16000	59000	2100	10.7		0.14	16.1		0.12
Beryllium	16	140	0.7	0.10	J	0.054	0.19	J	0.048
Cadmium	78	78	2	0.11	U	0.11	0.095	U	0.095
Chromium	NA	NA	NA	8.2		0.17	16.1		0.15
Cobalt	1600	590	90	0.68	J	0.14	1.0	J	0.12
Copper	3100	45000	11000	4.4		0.21	7.8		0.18
Lead	400	800	90	4.4		0.19	7.4		0.17
Manganese	11000	5900	65	41.6		0.38	13.8		0.34
Nickel	1600	23000	48	2.1		0.18	3.3		0.16
Selenium	390	5700	11	0.13	J	0.11	0.18	J	0.099
Silver	390	5700	1	0.085	U	0.085	0.075	U	0.075
Thallium	NA	NA	3	0.039	U	0.039	0.042	J	0.034
Vanadium	78	1100	NA	12.9		0.20	26.5		0.17
Zinc	23000	110000	930	6.7	J	2.2	5.0	J	1.9
SOIL BY 7471B(MG/KG)									
Mercury	23	65	0.1	0.0096	J	0.0040	0.0086	J	0.0042

Highlighted Concentrations shown in bold type face exceed limits

 $[\]label{eq:J:Result} \textit{J}: \textit{Result} \ \textit{is less than the RL} \ \textit{but} \ \textit{greater than or equal to the MDL} \ \textit{and the concentration is an approximate value}.$

U : Indicates the analyte was analyzed for but not detected.

Eurofins TestAmerica, Edison

Lab Job ID: 460-217093-1

Job Description: 1247 HON SA-6 South Deferred Area

For:

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, New York 14305

Client ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	EME H	lorizo	n B Topsoil	EME H	Iorizo	n C Topsoil
Lab Sample ID	Residential	Non-Residential	IGW Screening		46	0-217093-1		46	0-217093-2
Sampling Date	Sept_2017	Sept_2017	Nov_2013	08/2	7/20	20 11:00:00	08/2	7/20	20 11:30:00
Matrix						Soil			Soil
				Result	Q	MDL	Result	Q	MDL
SOIL BY 7196A									
Cr (VI) (mg/kg)	NA	NA	NA	0.38	U	0.38	0.37	U	0.37
	•		•		•	•			
SOIL BY 9012B									
Cyanide, Total (mg/kg)	47	680	20	0.15	J	0.13	0.12	U	0.12
SOIL BY 9045D									
Corrosivity (su)	NA	NA	NA	7.5	HF	0.1	5.2	HF	0.1
pH (su)	NA	NA	NA	7.5	HF	0.1	5.2	HF	0.1
Temperature (degrees c)	NA	NA	NA	21.7	HF	0.1	21.6	HF	0.1
-	<u>.</u>		•						
SOIL BY LLOYD KAHN									
TOC Result 1 (mg/kg)	NA	NA	NA	10100		88.8	85.3	U	85.3

HF: Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

12960 Commerce Lake Drive, A14, Fort Myers, FL 33913 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

Client:	Sevenson Environmental	Project:	Honeywell Project Jersey City, NJ
Material:	Horizon B Topsoil	Project Number:	200608
Source:	Eme	Lab Number:	20-0959A
Location:	Stockpile	Item Number:	No Specification
Date Sampled:	8/27/2020	Sampled By:	Client
Date Tested:	8/31/2020	Tested By:	John Brinsfield

	Report of pH of Soil							
	Test Method: ASTM	D4972 Method A						
pH Test Result:_	6.5	(in Distilled Water)						
	5.9	(In Calcium Chloride Solution)						
Specification								
Comments:								

No specifications available at time of testing.

Report Reviewed By:

This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc. The results in this report relate only to the items inspected or tested.

3348 Route 208, Campbell Hall, NY 10916 Phone: 845_496_1600 Fev. 945 496 1200 Phone: 845-496-1600 Fax: 845-496-1398

12960 Commerce Lake Drive, A14, Fort Myers, FL 33913 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

Client:	Sevenson Environmental Services Inc.	Project:	Honeywell Project Jersey City, NJ
Item:	Horizon B Topsoil	Project Number:	200608
Source:	Eme	Lab Number:	20-0959A
Location:	Stockpile	Item Number:	No Specification
Date Sampled:	8/27/2020	Sampled By:	Client
Date Tested:	9/2/2020-09/03/2020	Tested By:	John Brinsfield

PARTICLE SIZE ANALYSIS BY SIEVE AND HYDROMETER METHOD Test Method: ASTM D422

Sieve Size	Particle Diameter, mm	Percent Passing	Specification
3/8"	9.50	94.9	
#4	4.75	923.0	
#10	2.00	86.2	
#40	0.425	44.7	
#200	0.075	15.1	
	0.050	14.7	
	0.020	13.3	
Hydrometer	0.010	11.8	
Analysis Results	0.005	10.2	
	0.002	8.2	

SOIL SPECIFIC GRAVITY: 2.67 (As reported separately, or estimated.)

DISPERSION METHOD: Mechanical, 1 min.

SAND & GRAVEL PARTICLES: Mix of Hard and Weak Subrounded Particles

Comments:

COM	POSITION SUMMARY (USDA SIZE DES	SIGNATIONS)
Gravel	(3 inches to #10)	13.8%
	Fraction Passing #10:	
Sand	(#10 to 0.05 mm)	82.9%
Silt	(0.05 mm to 0.002 mm)	7.5%
Clay	(Less than 0.002 mm)	9.5%
Total		100.0%
USDA Soi	l Textural Class Loamy Sand	

REPORT REVIEWED BY:

This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc. The results in this report relate only to the items inspected or tested.

12960 Commerce Lake Drive, A14, Fort Myers, FL 33913 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

Client:	Sevenson Environmental Services Inc.	Project:	Honeywell Project Jersey City, NJ
Material:	Horizon B Topsoil	Project Number:	200608
Source:	Eme	Lab Number:	20-0959A
Location:	Stockpile	Item Number:	No Specification
Date Sampled:	8/27/2020	Sampled By:	Client
Date Tested:	8/31/2020	Tested By:	John Brinsfield

Report of Organic Content of Soils by Loss on Ignition								
	Test Method: ASTM D2974 Method C							
Inorganic Content: _	97.3	%	(Sand, silt, clay, etc.)					
Organic Content:	2.7	%						

Specification:

Comments: Sample was ashed at $440 \pm 40^{\circ}$ C

No specifications available at time of testing.

Report Reviewed By:

This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc.

The results in this report relate only to the items inspected or tested.

PDF Revised: 3/8/2019

12960 Commerce Lake Drive, A14, Fort Myers, FL 33913 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

Client:	Sevenson Environmental Services Inc.	Project:	Honeywell Project Jersey City, NJ
Item:	Horizon B Topsoil	Project Number:	200608
Source:	Eme	Lab Number:	20-0959A
Date Sampled:	8/27/2020	Sampled By:	Client
Date Tested:	8/31/2020	Tested By:	John Brinsfield / Steven Bordengo

GRADATION (SIEVE ANALYSIS) OF SOIL OR AGGREGATE	
Test Method(s): ASTM D6913	

Lab Number	Sample Type	Sampling Location	Specification
20-0959A	Horizon B Topsoil	Stockpile	

Sieve	e Size	%	%	Spec. %
mm	Inches	Retained	Passing	Pass
100.0 mm	4"	0.0	100	
75.0 mm	3"	0.0	100	
63.0 mm	2 1/2"	0.0	100	
50.0 mm	2"	0.0	100	
37.5 mm	1 1/2"	0.0	100	
25.0 mm	1"	1.4	99	
19.0 mm	3/4"	0.3	98	
12.5 mm	1/2"	1.4	97	
6.3 mm	1/4"	3.5	93	
4.75 mm	#4	1.1	92	
2.00 mm	#10	6.1	86	
0.850 mm	#20	16.1	70	
0.600 mm	#30	10.9	59	
0.425 mm	#40	14.5	45	
0.150 mm	#100	27.2	18	
0.075 mm	#200	2.4	15	
Pan		15.1		

Comments:

Minus #200 by wash-sieve method.

Report Reviewed By:

This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc. The results in this report relate only to the items inspected or tested.

PDF

12960 Commerce Lake Drive, A14, Fort Myers, FL 33913 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

Client:	Sevenson Environmental	Project:	Honeywell Project Jersey City, NJ
Material:	Horizon C Topsoil	Project Number:	200608
Source:	Eme	Lab Number:	20-0959B
Location:	Stockpile	Item Number:	No Specification
Date Sampled:	8/27/2020	Sampled By:	Client
Date Tested:	8/31/2020	Tested By:	John Brinsfield

	Report of pH of Soil				
	Test Method: ASTM	D4972 Method A			
pH Test Result:	6.8	(in Distilled Water)			
_	6.3	(In Calcium Chloride Solution)			
Specification					
Comments:					
	o d				

Report Reviewed By:

This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc. The results in this report relate only to the items inspected or tested.

12960 Commerce Lake Drive, A14, Fort Myers, FL 33913 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

Client:	Sevenson Environmental Services Inc.	Project:	Honeywell Project Jersey City, NJ
Item:	Horizon C Topsoil	Project Number:	200608
Source:	Eme	Lab Number:	20-0959B
Location:	Stockpile	Item Number:	No Specification
Date Sampled:	8/27/2020	Sampled By:	Client
Date Tested:	9/2/2020-09/03/2020	Tested By:	John Brinsfield

PARTICLE SIZE ANALYSIS BY SIEVE AND HYDROMETER METHOD Test Method: ASTM D422

Sieve Size	Particle Diameter, mm	Percent Passing	Specification
3/8"	9.50	97.0	
#4	4.75	94.6	
#10	2.00	88.1	
#40	0.425	41.9	
#200	0.075	17.9	
	0.050	17.5	
	0.020	16.1	
Hydrometer	0.010	14.8	
Analysis Results	0.005	13.5	
	0.002	12.1	

SOIL SPECIFIC GRAVITY: 2.67 (As reported separately, or estimated.)

DISPERSION METHOD: Mechanical, 1 min.

SAND & GRAVEL PARTICLES: Hard Subrounded Particles

Comments:

COM	POSITION SUMMARY (USDA SIZE DE	SIGNATIONS)
Gravel	(3 inches to #10)	11.9%
	Fraction Passing #10:	
Sand	(#10 to 0.05 mm)	80.1%
Silt	(0.05 mm to 0.002 mm)	6.1%
Clay	(Less than 0.002 mm)	13.7%
Total		100.0%
USDA Soil	l Textural Class Sandy Loam	

Ernily J. Rodriguez

REPORT REVIEWED BY:

12960 Commerce Lake Drive, A14, Fort Myers, FL 33913 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

PDF

Client:	Sevenson Environmental Services Inc.	Project:	Honeywell Project Jersey City, NJ
Material:	Horizon C Topsoil	Project Number:	200608
Source:	Eme	Lab Number:	20-0959B
Location:	Stockpile	Item Number:	No Specification
Date Sampled:	8/27/2020	Sampled By:	Client
Date Tested:	8/31/2020	Tested By:	John Brinsfield

Report of Organic Content of Soils by Loss on Ignition			
Test Method: ASTM D2974 Method C			

Inorganic Content:	99.4	%	(Sand, silt, clay, etc.)
Organic Content:	0.6	%	
Specification:			

Comments: Sample was ashed at $440 \pm 40^{\circ}C$

Report Reviewed By:

This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc. The results in this report relate only to the items inspected or tested.

Revised: 3/8/2019

12960 Commerce Lake Drive, A14, Fort Myers, FL 33913 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

Client:	Sevenson Environmental Services Inc.	Project:	Honeywell Project Jersey City, NJ
Item:	Horizon C Topsoil	Project Number:	200608
Source:	Eme	Lab Number:	20-0959B
Date Sampled:	8/27/2020	Sampled By:	Client
Date Tested:	8/31/2020	Tested By:	John Brinsfield / Steven Bordengo

GRADATION (SIEVE ANALYSIS) OF SOIL OR AGGREGATE	
Test Method(s): ASTM D6938	_

Lab Number	Sample Type	Sampling Location	Specification
20-0959B	Horizon C Topsoil	Stockpile	

Sieve	e Size	%	%	Spec. %
mm	Inches	Retained	Passing	Pass
100.0 mm	4"	0.0	100	
75.0 mm	3"	0.0	100	
63.0 mm	2 1/2"	0.0	100	
50.0 mm	2"	0.0	100	
37.5 mm	1 1/2"	0.0	100	
25.0 mm	1"	0.0	100	
19.0 mm	3/4"	0.0	100	
12.5 mm	1/2"	1.1	99	
6.3 mm	1/4"	3.2	96	
4.75 mm	#4	1.1	95	
2.00 mm	#10	6.5	88	
0.850 mm	#20	19.7	68	
0.600 mm	#30	12.4	56	
0.425 mm	#40	14.1	42	
0.150 mm	#100	21.3	21	
0.075 mm	#200	2.7	18	
Pan		17.9		

Comments:

Minus #200 by wash-sieve method.

Report Reviewed By:

This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc. The results in this report relate only to the items inspected or tested.

PDF

12960 Commerce Lake Drive, A14, Fort Myers, FL 33913 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

Client:	Sevenson Environmental Services Inc.	Project:	Honeywell Project Jersey City, NJ
Material:	Lightweight Fill	Lab Number:	20-0618A
Source:	Solelite	Project Number:	200608
Location:	Stockpile	Item Number:	No Specification
Date Sampled:	6/3/2020	Sampled By:	Client
Date Tested:	6/18/2020	Tested By:	John Brinsfield

REPORT OF UNIT WEIGHT AND VOIDS IN AGGREGATE	
Test Method: ASTM C29	

Procedure used: Rodding

		Specification
Bulk Density (Dry)	46.0	
Bulk Density (SSD)	51.0	
Void Content	44%	

Bulk Density values are in units of lbs/cu ft.

Comments:

No specifications available at time of testing.

Report Reviewed By:

This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc.

The results in this report relate only to the items inspected or tested.

12960 Commerce Lake Drive, Unit 14, Fort Myers, FL 33913 42 Day Farm Road, West Stockbridge, MA 01266

Client:	Sevenson Environmental Services	Project:	Honeywell Project Jersey Cit
Material:	Lightweight Fill	Project Number:	200608
Source:	Solelite	Lab Number:	20-0618A
Location:	Stockpile	Item Number:	No Specification
Date Sampled:	6/3/2020	Sampled By:	Client
Date Tested:	6/19/2020	Tested By:	Jake McCarey

SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE	
Test Method: AASHTO T85	

	Bulk Specific Gravity	Bulk Specific Gravity	Apparent Specific	Absorption %
Trial #	314.119	SSD	Gravity	r
	Gb	Gs	Ga	A
1	1.337	1.481	1.562	10.75
2	1.322	1.470	1.552	11.21
3	1.338	1.484	1.566	10.91
Average	1.332	1.478	1.560	10.96

\sim	• • • • •	<i>^</i> \	
V 1	3001 t 100 t 1011	a	٠.
1.71	ecification(
\sim	3001110001011	,	,.

Notes:

Comments:

Report Reviewed By:

This report shall not be reproduced, except in full, without the written permission of Advance Testing Company, Inc.

Emily J. Kodriguez

The results in this report relate only to the items inspected or tested.

PDF

12960 Commerce Lake Drive, A14, Fort Myers, FL 33913 42 Day Farm Road, West Stockbridge, MA 01266 1813 State Route 7, Harpursville, NY 13787

Client:	Sevenson Environmental Services Inc.	Project:	Honeywell Project Jersey City, NJ
Item:	Lightweight Fill	Project Number:	200608
Source:	Solelite	Lab Number:	20-0618A
Date Sampled:	6/3/2020	Sampled By:	Client
Date Tested:	6/16/2020	Tested By:	Daniel Eastman

GRADATION (SIEVE ANALYSIS) OF SOIL OR AGGREGATE	
Test Method(s): ASTM D6913	

Lab Number	Sample Type	Sampling Location	Specification
20-0618A	Lightweight Fill	Stockpile	No Specification

Sieve	e Size	%	%	Spec. %
mm	Inches	Retained	Passing	Pass
100.0 mm	4"	0.0	100.0	
75.0 mm	3"	0.0	100.0	
63.0 mm	2 1/2"	0.0	100.0	
50.0 mm	2"	0.0	100.0	
37.5 mm	1 1/2"	0.0	100.0	
25.0 mm	1"	0.0	100.0	
19.0 mm	3/4"	3.7	96.3	
12.5 mm	1/2"	40.0	56.3	
6.3 mm	1/4"	44.4	11.9	
4.75 mm	#4	6.0	5.9	
2.00 mm	#10	2.3	3.6	
0.850 mm	#20	0.5	3.1	
0.600 mm	#30	0.1	3.0	
0.425 mm	#40	0.1	2.9	
0.150 mm	#100	0.4	2.5	
0.075 mm	#200	0.4	2.1	
Pan		2.1		

Comments:

Minus #200 by wash-sieve method.

Report Reviewed By:

This report shall not be reproduced, except in full, without written permission from Advance Testing Company, Inc. The results in this report relate only to the items inspected or tested.

PDF

PO Box 437 MOUNT MARION, NY 12456 ~~ 962 KINGS HIGHWAY, SAUGERTIES, NY 12477 PHONE (888) 528-7853 FAX (845) 246-2619

Website: www.nesolite.com

TO WHOM IT MAY CONCERN

FROM: Ron Vaughn

DATE: June 30, 2017

The test results for our ³/₄" to #4 (344) material is listed below. These numbers represent the average of last year's production.

~ 1	
(trad	ation:
Ulau	auvii.

pH: 7.0 (AASHTO T289-1)

SIEVE	% Passing	Chloride Content: 34 ppm
1" (25 mm)	100	(AASHTO T291-I)
³ / ₄ " (19 mm)	98	
½" (12.5 mm)	64	Resistivity 663,013 ohm-cm
3/8" (9.5 mm)	39	(AASHTO T288-I)
#4 (4.75 mm)	8	
#200 (.075 mm)	2	Internal Angle of Friction in Degrees
		Loose: 41.5 @ 41.5 pcf & 17.3% mc
Specific Gravity:	1.50	Compacted: 46.6 @ 52.0 pcf & 17.3%
		By: ASTM D4030
Density (OD):	44 pcf (Minimum)	
(Wet @10%)	48 pcf	Sulfate Content: (AASHTO T290-I) =
(AASHTO T-99)	53 pcf (Dry – Maximum)	<50 ppm
	58 pcf (Wet)	

Soundness (ASTM C88)

Magnesium Sulfate (5 Cycle) = 1.2% Loss

LA Abrasion (ASTM C131)

Grading B = 26.8% Loss

If you have any further questions, please do not hesitate to contact me.

Ronald E. Vaughn

Director of Technical Services

cc: RV/file

APPENDIX H COMPACTION TESTING INFORMATION

DA	ILY REPORT / PROJEC	T OBSERVATIONS	
Permit No:			
		-	
Client: Sevenson E	nvironmental Services, Inc.		AM (°f) PM (°f)
Due is at Names Hamman III	of a mod Amara Dana diation	Temperature:	55 72
Project Name: Honeywell D	eterred Areas Remediation	- Weather (AM):	Sunny
Location: Jersey City,	NJ	_	
Contractor: Savancen Fr	nviranmental Comissa Inc	Weather (PM):	Sunny
Contractor: Sevenson El	nvironmental Services, Inc.		
Date: September 2	22, 2020	Key Persons	
ATC Job No. : 0103000015		Paul Gallo - Sevenson (· · /
ATC 300 No.: 0103000013		Josh - Wood Engineerin	ig
YES	NO		
Spec's & Drawings			
Available On-Site: ^			
THE FOLLOWING WAS NOTED:			
7:00	A B 4	Demonted Oites	DM
Depart Base: 7:30 A		Departed Site: 3:30	
Arrived On-Site: 9:00 A	AM	Arrive Base: 5:00	<u> </u>
>ATC arrived onsite as scheduled	for Backfill Placement Ob	servations and Nuclear Density C	Compaction Testing
>Upon arrival onsite, ATC met Pa		•	<u> </u>
>Paul instructed ATC to follow the			
>Paul informed ATC that contract			
>Paul informed ATC that backfill v			
>Paul informed ATC that after the	• •		•
>Paul informed ATC that contracte			
>ATC drove to Area 3 for the work	·	арризиштата 12 ала ээг	<u>p.a.og o.a.ot</u>
>ATC observed contractor excava		a haul truck	
>As contractor reached bottom of			
>Contractor then backfilled the ex			
>"Bridge" material appeared to be		<u> </u>	
>Paul then notified ATC that contr			
>ATC observed contractor placing		• •	
>ATC observed contractor compa			compactor
>ATC tested each lift for compact		·	
>Results were also given to Wood		' '	
	U U		
Parisonal Par		FIELD REPORT	
Reviewed By:	LIED		Dianari
GEORGE WIES	NEK	signed: Richard	Rigney

	Permi	t No:								Project No.: 01030 00015							
	CI	lient:	Sevenso	on Enviro	nmental Se	ervices, Inc.					1	Technician:	Richard Rigne	у			
	Pro	ject:	Honeyw	ell Deferr	ed Areas F	Remediation	ì					DATE:	September 22,	2020		_	
Gene	eral Contra	ctor:	Sevenso	on Enviro	nmental Se	ervices, Inc.				G	Grading (Contractor:	Sevenson Env	ironmental Services, Ir	nc.		
TEST NO.	PROCTOR NO.	LIFT NO.	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE (PCF)	MOISTURE	MAX D	OF ENSITY ACTUAL	PASS	FAIL	** RETEST NO.	ELEVATION (SEA LEVEL)		LOCATION GRID COORD STAT		ROADWAY	
1	119.1	1	116.2	114.1	2.1	1.8	95.0	95.8	Х			0		Area	a 3		
2	119.1	2	117.1	115.0	2.1	1.8	95.0	96.6	Х			+1		Area	a 3		
3	119.1	3	120.7	118.6	2.1	1.8	95.0	99.6	Х			+2		Area	a 3		
4	119.1	4	119.9	115.8	4.1	3.5	95.0	97.2	Х			+3		Area	a 3		
Com	paction E	quipr	nent Use	ed:	Vibratory:	X	Non-Vi	bratory			Smoo	oth Steel Dru	ım	Sheepsfoot X	Brickfoot		
	Rubber-tir	ed		Vibrat	ory Plate	X	Walk	Behind	Steel [Orum	X	Other:					
Rema	•					nly; All lifts	were co	mpacte	d with a	a trend	ch roller a	and a walk be	ehind plate tam	per; Wood Engineerin	g documen	ted location	
		of ea	ch comp	action tes	t												
*	Proctor No	,		Mavimuu	m Density (PCE)		Opt. Mo	istura <i>l</i>	(%)	St	d. Proctor	Mod. Proctor	Gauge Make		Troxler	
*Proctor No. Maximum Density (PCF) Opt. Moistur BS-7 119.6 9.8									(70)		X	Wod. 1 100tor	Gauge Mode		3440		
(F	Provided by	v			110.0		· <u>-</u>		<i></i>		•			Gauge Seria		29762	
	raSense, L													•	Standard C		
	Method:		ckscatter	-	B Direct T	ransmissio	n	В	-		-			Moistu 660	ıre	Density 1723	

Project: Honeywell Deferred Areas Remediation

Date: 9/22/2020


Site of Excavation and Backfill

Compacting with Roller and Tamper

Compacting First Lift

Placing Backfill

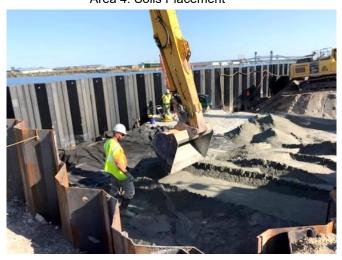
3rd Lift

DAILY REPORT / PRO	JECT OBSERVATIONS
Pormit No:	
Permit No:	<u> </u>
Client: Sevenson Environmental Services,	
Project Name: Hanaywell Deferred Areas Remedia	Temperature: 65 80
Project Name: Honeywell Deferred Areas Remedia	Weather (AM): Sunny
Location: Jersey City, NJ	Month or (DM)
Contractor: Sevenson Environmental Services,	Meather (PM): Sunny Inc.
Potes Contambar 22, 2020	Kay Bayaana On Sita
Date: September 23, 2020	Key Persons On-Site: Paul Gallo - Sevenson (Super)
ATC Job No.: 0103000015	Josh - Wood Engineering
YES NO	
Spec's & Drawings	
Available On-Site:	
THE FOLLOWING WAS NOTED:	
Depart Base: 6:45 AM	Departed Site: 1:45 PM
Arrived On-Site: 8:15 AM	Arrive Base: 2:45 PM
> ATC representative arrived on-site, as scheduled, to o	observe the following:
> ATC arrived on-site and met with Paul- Sevenson to o	go over plans for the day.
> Contractor backfilling at Area 4 with Quarry Screening	
> Backfill was done in 1' lifts and compacted, after each	
Wacker Neuson WP1650 steel plate compactor was us > Screenings used for backfilling was delivered to area	
screenings into excavated areas using excavator.	by during track. Their delivery, contractor graded the
> ATC verified compaction, after each lift, using a Troxl	er nuclear density gauge. All tests were found to have
a compaction percentage of 95% or greater of the provi	
> ATC notified Paul- Sevenson of low moisture percent	ages.
> ATC received elevations from Wood Engineering.	
> See attached Field Density Sheets and Photos for fur	ther information.
Partiawad Bu	FIELD REPORT
Reviewed By: GEORGE WIESNER	SIGNED: Robert Kolaski

	Permi	t No:								Project No.: 01030 00015							
	CI	ient:	Sevenso	n Enviror	nmental Se	rvices, Inc.					7	Technician:	Robert Kolas	ski			
	Pro	ject:	Honeywo	ell Deferre	ed Areas R	emediation						DATE:	September 2	23, 2020			
Gene	ral Contra	ctor:	Sevenso	n Enviror	nmental Se	rvices, Inc.				G	rading (Contractor:	Sevenson E	nvironmental	Services, Inc.		
TEST NO.	PROCTOR NO. *	LIFT NO.	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE (PCF)	MOISTURE %	MAX D	OF ENSITY	PASS	FAIL	** RETEST NO.	ELEVATION BELOW FINISH GRADE (FT.)	DEPTH BELOW PLAN SUBGRADE	LOCATION	GRID COORDINATE	S OR ROADWAY	
1	119.6	1	117.7	116.0	1.7	1.5	95.0	97.0	х			6'			Area 4 (Elevation-	4')	
2	119.6	1	118.0	114.9	3.1	2.7	95.0	96.1	х			6'			Area 4 (Elevation-	4')	
3	119.6	2	116.9	114.3	2.6	2.3	95.0	95.6	х			5'			Area 4 (Elevation-	5')	
4	119.6	2	118.5	115.6	2.9	2.5	95.0	96.7	х			5'			Area 4 (Elevation-	5')	
5	119.6	3	117.3	114.2	3.1	2.7	95.0	95.5	х			4'			Area 4 (Elevation-	6')	
6	119.6	3	119.2	116.7	2.5	2.1	95.0	97.6	х			4'			Area 4 (Elevation-	6')	
7	119.6	4	116.8	115.0	1.8	1.6	95.0	96.2	х			3'			Area 4 (Elevation-	7')	
8	119.6	4	116.6	114.8	1.8	1.6	95.0	96.0	х			3'			Area 4 (Elevation-	7')	
9	119.6	5	121.3	118.6	2.7	2.3	95.0	99.2	х			2'			Area 4 (Elevation-	8')	
10	119.6	5	119.2	115.5	3.7	3.2	95.0	96.6	Х			2'			Area 4 (Elevation-	8')	
Com	paction E		nent Use												ot <u>x</u> Brick	foot	
.	Rubber-tir			-	-	X											
Rema	arks:	Boma	ag BIVIP8	500 waik-	-penina roii	er and a W	acker iv	ieuson v	WP165	U Stee	i piate co	ompactor.					
*	Proctor No).		Maximur	m Density (PCF)		Opt. Mo	isture (%)	St	d. Proctor	Mod. Proct	or G	auge Make:	Troxler	
BS-7 119.6 9.8 Gauge Model #: 34												3440					
(Provided by) Gauge Serial # 26800												26800					
Teri	aSense, L	LC)	. <u> </u>													ard Counts	
	Method:	A: Ba	ockscatte	r	B: Direct	Fransmissic	n	В							Moisture 665	Density 1619	

	Permi	t No:								Project No.: 01030 00015							
	CI	ient:	Sevenso	n Enviror	nmental Se	rvices, Inc.					7	Technician:	Robert Kolas	ki			
	Pro	ject:	Honeyw	ell Deferre	ed Areas R	emediation	l			-		DATE:	September 2	3, 2020			
Gene	ral Contra	ctor:	Sevenso	n Enviror	nmental Se	rvices, Inc.				G	Grading (Contractor:	Sevenson Er	nvironmental	Services, Inc.		
TEST NO.	PROCTOR NO.	LIFT NO.	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE (PCF)	MOISTURE %	MAX D	OF ENSITY	PASS	FAIL	** RETEST NO.	ELEVATION BELOW FINISH GRADE (FT.)	DEPTH BELOW PLAN SUBGRADE	LOCATION	GRID COORDINATES	S OR ROADWAY	
11	119.6	6	117.2	115.0	2.2	1.9	95.0	96.2	х			1'			Area 4 (Elevation-	9')	
12	119.6	6	118.8	116.7	2.1	1.8	95.0	97.6	х			1'			Area 4 (Elevation-	9')	
13	119.6	7	120.5	118.5	2.0	1.7	95.0	99.1	х			0'			Area 4 (Elevation- 1	10')	
14	119.6	7	118.9	115.9	3.0	2.6	95.0	96.9	х			0'			Area 4 (Elevation- 1	10')	
Comi	paction E	naiuc	nent Use	ed:	Vibratory:	х	Non-Vi	bratorv			Smoo	oth Steel Dru	ım	Sheepsfo	ot <u>x</u> Brickfo	oot	
_	Rubber-tir					×					-						
Rema	arks:	Boma	ag BMP8			er and a W						•'					
	•																
*	Proctor No			Maximur	m Density ((PCF)		Opt. Mo	isture ((%)	St	d. Proctor	Mod. Procto	or G	auge Make:	Troxler	
	BS-7				119.6			9	9.8		<u>-</u>			G	auge Model #:	3440	
(F	Provided b	у									<u>-</u>			G	auge Serial #	26800	
Terr	aSense, L	LC)														ard Counts	
Method: A: Backscatter B: Direct Transmission B														Moisture 665	Density 1619		

Project: Honeywell Deferred Areas Remediation


Date: 9/23/2020

Area 4: Backfill Progress

Area 4: Soils Placement

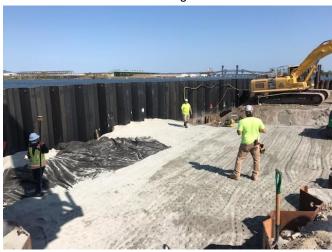
Area 4: Grading Soils

Area 4: Compaction

Area 4: Soils Placement

Area 4: Compaction

Project: Honeywell Deferred Areas Remediation


Date: 9/23/2020

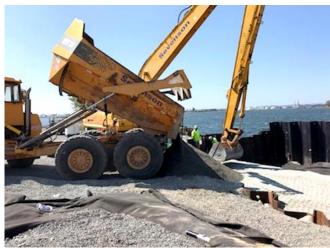
Area 4: Compaction

Area 4: Grading Soils

Area 4: Backfill Progress

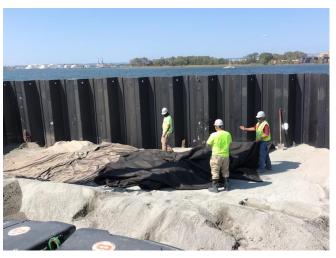
Area 4: Compaction

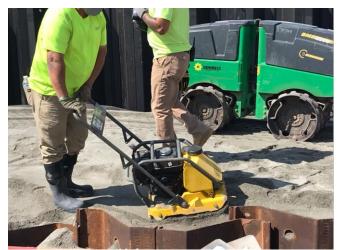
Area 4: Compaction



Area 4: Backfill Progress

Project: Honeywell Deferred Areas Remediation


Date: 9/23/2020


Area 4: Soils Placement

Area 4: Compaction

Area 4: Geo-Fabric Placement

Area 4: Compaction

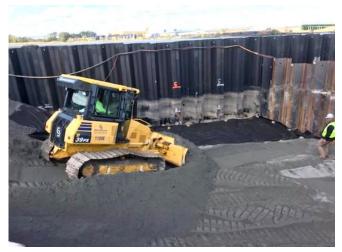
DAILY REPORT / PROJEC	T OBSERVATIONS						
Permit No:							
Client: Sevenson Environmental Services, Inc.		AM (°f) PM (°f)					
Project Name: Honeywell Deferred Areas Remediation	Temperature:	60 65					
Location: Jersey City, NJ	Weather (AM): Cloudy Weather (PM): Sunny						
Contractor: Sevenson Environmental Services, Inc.		Gainiy					
Date: September 30, 2020	Key Persons Paul Gallo - Sevenson (
ATC Job No.: 0103000015	Josh - Wood Engineerin	ng					
Spec's & Drawings Available On-Site:							
THE FOLLOWING WAS NOTED:							
Depart Base: 5:45 AM	Departed Site: 3:45 l	PM					
Arrived On-Site: 6:45 AM	Arrive Base: 5:45 l	PM					
> ATC representative arrived on-site, as scheduled, to obse	rve the following:						
ATC arrived on-site and met with Paul- Sevenson to go ovContractor backfilling at Area 2 with Quarry Screenings, u	•	· Ar					
> Backfill was done in 1' lifts and compacted, after each lift,	using a Bomag BMP8500 walk-						
and a Wacker Neuson WP1650 steel plate compactor was > Screenings used for backfilling was delivered to area by d		actor graded the					
screenings into excavated areas using bulldozer.	uele en de poitre geurge. All toete v	uere found to					
> ATC verified compaction, after each lift, using a Troxler number a compaction percentage of 95% or greater of the province.		vere lourid to					
> ATC notified Paul- Sevenson of low moisture percentages							
> ATC received elevations from Wood Engineering.							
> See attached Field Density Sheet and Photos for further in	nformation.						
Davisous d Dav	FIELD REPORT						
GEORGE WIESNER	SIGNED: Robert K	Kolaski					

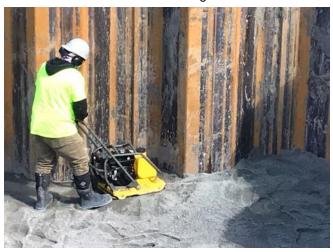
	Permi	t No:							Project No. : 01030 00015						
	C	lient:	Sevenso	on Enviror	nmental Se	rvices, Inc.					٦	Technician:	Robert Kolas	ki	
	Pro	ject:	Honeyw	ell Deferr	ed Areas R	emediation						DATE:	September 3	0, 2020	
Gene	ral Contra	ctor:	Sevenso	on Enviror	nmental Se	rvices, Inc.				G	rading (Contractor:	Sevenson En	vironmental Services, Inc.	
TEST NO.	PROCTOR NO.	LIFT NO.	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE (PCF)	MOISTURE %	MAX D	OF ENSITY	PASS	FAIL	** RETEST NO.	ELEVATION BELOW FINISH GRADE (FT.)	DEPTH BELOW PLAN SUBGRADE	LOCATION GRID COORDINATES	S OR ROADWAY
1	119.6	1	119.4	115.5	3.9	3.4	95.0	96.6	х			10.5'		Area 2 (Elevation- Minu	us 2.5')
2 119.6 1 119.8 115.4 4.4 3.8 95.0 96.5 x 10.5' Area 2 (Elevation- Minus 2.5')														us 2.5')	
3	119.6	2	120.5	116.8	3.7	3.2	95.0	97.7	х			9.5'		Area 2 (Elevation- Minu	us 1.5')
4	119.6	2	120.2	116.5	3.7	3.2	95.0	97.4	х			9.5'		Area 2 (Elevation- Minu	us 1.5')
5	119.6	3	116.7	114.3	2.4	2.1	95.0	95.6	х			8.5'		Area 2 (Elevation- Minu	us 0.5')
6	119.6	3	118.6	116.4	2.2	1.9	95.0	97.3	х			8.5'		Area 2 (Elevation- Minu	us 0.5')
7	119.6	4	116.3	114.0	2.3	2.0	95.0	95.3	х			7.5'		Area 2 (Elevation- 0	0.5')
8	119.6	4	118.9	116.6	2.3	2.0	95.0	97.5	х			7.5'		Area 2 (Elevation- 0	0.5')
Com	paction E	quipn	nent Use	ed:	Vibratory:	х	Non-Vi	bratory			Smo	oth Steel Dru	ım	SheepsfootxBrickfo	oot
	Rubber-tir	ed		Vibrate	ory Plate	Х	Walk	Behind	Steel [Orum	Х	Other:			
Rem	arks:	Boma	ag BMP8	500 walk-	behind roll	er and a W	acker N	leuson \	VP165	0 stee	l plate co	ompactor.			
*	Proctor No).		Maximu	m Density (PCF)	(Opt. Mo	isture ((%)	St	d. Proctor	Mod. Procto	or Gauge Make:	Troxler
	BS-7				119.6			g	8.0					Gauge Model #:	3440
(Provided by)														Gauge Serial #	26800
Ter	erraSense, LLC) Standard Counts														
	Method:	A: Ba	ackscatte	r	B: Direct	Fransmissio	on	В	-		-			Moisture 677	Density 1619

Project: Honeywell Deferred Areas Remediation

Date: 9/30/2020

Area 2: Pre-Backfill


Area 2: Grading Soils


Area 2: Soils Delivery

Area 2: Soils Delivery

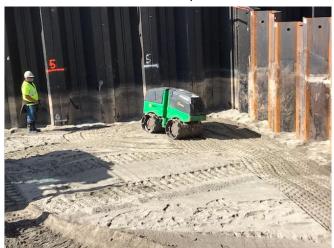
Area 2: Grading Soils

Area 2: Compaction at Edges

Project: Honeywell Deferred Areas Remediation

Date: 9/30/2020

Area 2: Compaction


Area 2: Grading Soils

Area 2: End of Day Backfill Progress

Area 2: Compaction

Area 2: Compaction

	DA	ILY REP	ORT / PROJE	CT OBSERVATION	ONS							
Permit No:				_								
Client:	Sevenson I	Environmer	ntal Services, Inc.		r	AM (°f)	PM (°f)					
Project Name:	Honeywell	Deferred A	reas Remediatior	<u>1</u>	Temperature:	60	65 oudy					
Location:	Jersey City	, NJ		_	Weather (AM): C Weather (PM): S							
Contractor:	Sevenson I	Environmer	ntal Services, Inc.									
Date:	October 1,	2020		Paul Ga	Key Persor		:					
ATC Job No.:				Josh - V	Vood Engineeri	ng						
Spec's & Drawings Available On-Site:		NO	<u>.</u> 									
THE FOLLOWING WAS NOT												
Depart Base:		5 AM	_	Departed Si			_					
Arrived On-Site:	6:45	5 AM	_	Arrive Bas	se: 5:15	PM	_					
> ATC representative	arrived on-	-site, as so	cheduled, to obs	serve the following:								
> ATC arrived on-site	and met w	ith Paul- S	Sevenson to go	over plans for the c	lav.							
> Contractor backfillin				<u> </u>		zer.						
> Backfill was done in	1' lifts and	compacte	ed, after each lit	t, using a Bomag B	MP8500 walk	-behind r	oller					
and a Wacker Neuson	n WP1650	steel plate	compactor wa	as used along edge	S.							
> Screenings used for	r backfilling	was deliv	ered to area by	dump truck. After	delivery, cont	ractor gra	ided the					
screenings into excav	ated areas	using bul	ldozer.									
> ATC verified compa							nd to					
have a compaction pe					Sample BS-7.							
> ATC notified Paul- S				es.								
> ATC received eleva	tions from	Wood Eng	gineering.									
> See attached Field	Density Sh	eets and F	Photos for further	er information.								
Reviewed By:				FIELD REPORT	-							
· ·	GE WIE	SNER		SIGNED:	Joe Fi	ranks						

	Permi	t No:								Project No.: 01030 00015								
	CI	ient:	Sevenso	on Enviror	nmental Se	rvices, Inc.					7	echnician:	Joe Franks					
	Pro	ject:	Honeyw	ell Deferre	ed Areas R	emediation						DATE:	October 1, 2	020				
Gene	ral Contra	ctor:	Sevenso	on Enviror	nmental Se	rvices, Inc.				G	rading (Contractor:	Sevenson Er	nvironmental Se	rvices, Inc.			
TEST NO.	PROCTOR NO.	LIFT NO.	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE (PCF)	MOISTURE	MAX D	OF ENSITY	PASS	FAIL	** RETEST NO.	ELEVATION BELOW FINISH GRADE (FT.)	DEPTH BELOW PLAN SUBGRADE	LOCATION GRID	S OR ROADWAY			
1	119.6	1	118.5	116.4	2.1	1.8	95.0	97.3	х			6.5'		Area 2	s 1.82')			
2	119.6	1	119.9	113.7	2.3	1.6	95.0	95.1	х			6.5'			(Elevation- Minus	,		
3	119.6	2	116.9	114.9	2.0	1.8	95.0	96.1	х			5.5'		Area 2	2 (Elevation- Minu	ıs 1.5')		
4	119.6	2	120.2	117.4	2.8	2.4	95.0	98.2	х			5.5'		Area 2	2 (Elevation- Minu	ıs 1.5')		
5	119.6	3	117.4	115.6	2.2	1.9	95.0	96.7	х			4.5'		Area 2	2 (Elevation- Minu	ıs 2.5')		
6	119.6	3	118.3	116.1	2.4	2.1	95.0	97.1	х			4.5'		Area 2	2 (Elevation- Minu	ıs 2.5')		
7	119.6	4	120.0	118.3	1.7	1.4	95.0	98.9	х			3.5'		Area 2 (Elevation- 3.5')				
8	119.6	4	121.5	119.0	1.7	1.3	95.0	99.5	х			3.5'		Area 2 (Elevation- 3.5')				
9	119.6	5	122.0	119.0	3.0	2.5	95.0	99.5	х					A	rea 2 (Elevation 4	.5		
10	119.6	5	123.0	119.3	3.7	3.1	95.0	99.7	х					A	rea 2(Elevation 4.	5		
Com Rema	paction Ed Rubber-tir	ed		Vibrate	ory Plate	x x er and a W	Walk	Behind	Steel [Orum	Х	Other:		Sheepsfoot _		oot		
*	Proctor No	١.	. <u> </u>	Maximur	m Density (PCF)		Opt. Mo	isture ((%)	St	d. Proctor	Mod. Procto	o <u>r</u> Gaug	ge Make:	Troxler		
	BS-7		<u> </u>		119.6			g	8.0	Gauge Model #: 3440								
(F	Provided by	/)									-			Gaug	ge Serial #	26909		
Ter	raSense, L	LC)														ard Counts		
	Method:	A: Ba	ackscatte	r	B: Direct	Γransmissic	n	В	-					-	Moisture 629	Density 1789		

	Permit	t No:									F	Project No.:	01030 00015				
	CI	ient:	Sevenso	on Enviro	nmental Se	rvices, Inc.					7	echnician:	Joe Franks				
	Pro	ject:	Honeyw	ell Deferr	ed Areas R	emediation	1					DATE:	October 1, 20)20			
Gene	ral Contra	ctor:	Sevenso	on Enviro	nmental Se	rvices, Inc.				G	rading (Contractor:	Sevenson En	vironment	al Services, Inc.	<u> </u>	
TEST NO.	PROCTOR NO.	LIFT NO.	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE (PCF)	MOISTURE	MAX D	OF ENSITY	PASS	FAIL	** RETEST NO.	ELEVATION BELOW FINISH GRADE (FT.)	DEPTH BELOW PLAN SUBGRADE	DW LOCATION GRID COORDINATES OR RO N STATION			
11	119.6	6	121.7	119.0	2.7	2.3	95.0	99.5	х			6.5'			Area 2 (Elevation- Min	us 5.5')	
12	119.6	6	120.8	118.8	2.0	1.7	95.0	99.3	х			6.5'			Area 2 (Elevation- Min	,	
															•	,	
					-												
Com	paction Ed						•				•				sfoot <u>x</u> Brickf		
	Rubber-tire			_		X											
Rema	arks:	Boma	ag BMP8	500 walk	-behind roll	er and a W	acker N	leuson \	WP165	0 stee	el plate co	ompactor.					
*	Proctor No			Maximu	m Density (PCF)		Opt. Mo	isture ((%)	St	d. Proctor	Mod. Procto	<u>or</u>	Gauge Make: _		
	BS-7				119.6			9	9.8		-				Gauge Model #: _		
· ·	Provided by	•					. <u>-</u>				<u>-</u>				Gauge Serial # _		
Ter	aSense, L	LC)									-				Stand Moisture	ard Counts Density	
	Method:	A: Ba	ackscatte	r	B: Direct	Fransmissio	on	В	_						629	1789	
															·	·	

Project: Honeywell Deferred Areas Remediation

Date: 10/1/2020

DAILY REPORT / PROJEC	CT OBSERVATIONS						
Permit No:							
Client: Sevenson Environmental Services, Inc.	_	AM (°f)	PM (°f)				
Project Name: Honeywell Deferred Areas Remediation							
Location: Jersey City, NJ	Weather (AM): Clear Weather (PM): Partly Cloudy						
Contractor: Sevenson Environmental Services, Inc.	- Tourist (Fin).						
Date: October 2, 2020	Rey Person Paul Gallo - Sevenson (Super)					
ATC Job No.: 0103000015	Josh - Wood Engineerin	ıg					
Spec's & Drawings Available On-Site:							
THE FOLLOWING WAS NOTED:							
Depart Base: 6:00 AM Arrived On-Site: 7:30 AM	Departed Site: 2:30 Arrive Base: 3:30						
> ATC representative arrived on-site, as scheduled, to obs	erve the following:						
> ATC arrived on-site and met with Paul- Sevenson to go of	over plans for the day.						
> Contractor backfilling at Area 2 with Quarry Screenings,			II				
> Backfill was done in 1' lifts and compacted, after each lift and a Wacker Neuson WP1650 steel plate compactor was	<u> </u>	-benina ro	lier				
 Screenings used for backfilling was delivered to area by 		actor grad	ded the				
screenings into excavated areas using bulldozer.	,,,,						
> ATC verified compaction, after each lift, using a Troxler r	nuclear density gauge. All tests v	vere found	d to				
have a compaction percentage of 95% or greater of the pro-							
> ATC notified Paul- Sevenson of low moisture percentage	es.						
> ATC received elevations from Wood Engineering.							
> See attached Field Density Sheet and Photos for further	information.						
	FIELD DEBORT						
Reviewed By: GEORGE WIESNER	FIELD REPORT SIGNED: Joe Fr	anks					

	Permi	t No:									F	Project No.:	01030 00015	5				
	CI	ient:	Sevenso	on Enviror	nmental Se	rvices, Inc.					7	echnician:	Joe Franks					
	Pro	ject:	Honeyw	ell Deferre	ed Areas R	emediation						DATE:	October 2, 2	020				
Gene	ral Contra	ctor:	Sevenso	on Enviror	nmental Se	rvices, Inc.		Grading Contractor: Sevenson Environmental Services, Inc.								<u> </u>		
TEST NO.	PROCTOR NO.	LIFT NO.	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE (PCF)	MOISTURE	MAX D	OF ENSITY	PASS	FAIL	** RETEST NO.	ELEVATION BELOW FINISH GRADE (FT.)	DEPTH BELOW PLAN SUBGRADE	LOCATION	S OR ROADWAY			
1	119.6	1	121.7	119.4	2.3	1.9	95.0	99.8	х			,			Area 2 (Elevation- Min	us 5.5')		
2 119.6 1 120.3 117.3 3.0 2.6 95.0 98.1 x															Area 2 (Elevation- Min	, , , , , , , , , , , , , , , , , , ,		
3											,							
4	119.6	2	121.2	119.1	2.1	1.8	95.0	99.6	х						Area 2 (Elevation- Mir	nus 6")		
5	119.6	3	121.0	118.9	2.1	1.8	95.0	99.4	х					P	rea 2 (Elevation- Minu	us 6.5")		
6	119.6	3	120.9	118.9	2.0	1.7	95.0	99.4	х					Area 2 (Elevation- Minus 6.5")				
7	119.6	4	120.7	118.7	2.0	1.7	95.0	99.2	х					Area 2 (Elevation- 7")				
8	119.6	4	121.5	119.4	2.1	1.8	95.0	99.8	х					Area 2 (Elevation- 8')				
9	119.6	5	121.2	118.7	2.5	2.1	95.0	99.2	х						Area 2 (Elevation	9')		
10	119.6	5	119.7	117.7	2.0	1.7	95.0	98.4	х						Area 2(Elevation 9	.5')		
Com Rema	paction Ed Rubber-tir	ed		Vibrate	ory Plate	x x er and a W	Walk	Behind	Steel D)rum	Х	Other:		Sheepst	oot <u>x</u> Brickf	oot		
*	Proctor No			Maximur	m Density (PCF)		Opt. Mo	isture ((%)	St	d. Proctor	Mod. Procto	or (Gauge Make:	Troxler		
BS-7 119.6							9	8.0					(Gauge Model #: _	3440			
(F	Provided by	/)									-			(Gauge Serial # _	26909		
TerraSense, LLC) Method: A: Backscatter B: Direct Transmission B														Stand Moisture 629	ard Counts Density 1789			

Project: Honeywell Deferred Areas Remediation

Date: 10/2/2020

DAILY REPORT / PROJE	CT OBSERVATIONS								
Permit No:	_								
Client: Sevenson Environmental Services, Inc.	-	AM (°f)	PM (°f)						
Project Name: Honeywell Deferred Areas Remediation									
Location: Jersey City, NJ	_ `	Weather (AM): Partly Clou							
Contractor: Sevenson Environmental Services, Inc.	Weather (PM): Partly Cloudy								
Date: November 11, 2020	Key Persons Paul Gallo - Sevenson (
ATC Job No.: 0103000015	Shea- Sevenson Toni- Sevenson								
Spec's & Drawings	Josh - Wood Engineerin	ıg							
Available On-Site: ^ THE FOLLOWING WAS NOTED:									
Depart Base: 6:00 AM Arrived On-Site: 7:30 AM	Departed Site: 2:30 Arrive Base: 4:00								
> ATC representative arrived on-site, as scheduled, to obs	erve the following:								
> ATC arrived on-site and met with Toni- Sevenson to go	<u> </u>								
 Contractor backfilling at Area 1A-C with General Fill, using Backfill was done in 1' lifts and compacted, after each lift 	· ·	behind ro	ller						
and a Wacker Neuson WP1650 steel plate compactor wa > Screenings used for backfilling was delivered to area by	dump truck. After delivery, contra	actor grad	ded the						
common reusable on site fill into excavated areas using bu > The above area was compacted minimum of two times.	ulldozer.								
> The Elevation -2 contractor placed common Barrow fill n	naterial for second lift and continu	ied to bac	kfill.						
> ATC tested compaction, after each lift, using a Troxler ne	uclear density gauge.								
> ATC received elevations from Wood Engineering.									
> See attached Field Density Sheet and Photos for further	information.								
Reviewed By:	FIELD REPORT								
GEORGE WIESNER	SIGNED: Joe Fr	anks							

	Permi	t No:									F	Project No.:	01030 0001	5			
	C	lient:	Sevenso	n Enviror	nmental Se	rvices, Inc.					7	Technician:	Joe Franks				
	Pro	ject:	Honeyw	ell Deferre	ed Areas R	emediation	1					DATE:	November 1	1, 2020			
Gene	eral Contra	ctor:	Sevenso	on Enviror	nmental Se	rvices, Inc.				Grading Contractor: Sevenson Environmental Services, Inc.							
TEST NO.	PROCTOR NO.	LIFT NO.	IDENSITY I I MAY DENS				AX DENSITY PASS			** RETEST NO.	ELEVATION BELOW FINISH GRADE (FT.)	BELOW PLAN	LOCATION GRID COORDINATES OR STATION	S OR ROADWAY			
1		1	135.4	118.1	17.0	14.4	95.0	92.5				- ()			Area 1A-C (-3)		
2		1	137.7	117.5	16.3	13.8	95.0	92.8							Area 1A-C (-3)		
3	3 1 127.9 110.2 17.2 16.1 95.0 86.3													Area 1A-C (-3)			
4	4 1 136.3 120.4 15.9 13.1						95.0	94.2							Area 1A-C (-3)		
5	5 128.7 2 139.8 127.1 12.8 10.0				95.0	98.8	х						Area 1A-C (-2)				
6	128.7 2 137.7 124.3 13.8 10.8 9				95.0	96.6	Х						Area 1A-C (-2)				
	paction Ed Rubber-tir	ed		Vibrate	ory Plate	Х	Walk	Behind	Steel [)rum	Х	Other:			ot <u>x</u> Brickfo	oot	
*	Proctor No).		Maximur	m Density (PCF)		Opt. Mo	isture ((%)	St	d. Proctor	Mod. Proct	orGa	uge Make:	Troxler	
														Ga	uge Model #:	3440	
	5				128.7			9	9.3		_	X		Ga	uge Serial #	26909	
Method: A: Backscatter B: Direct Transmission B					_		-				Standa Moisture 629	ard Counts Density 1789					

Project: Honeywell Deferred Areas Remediation

Date: 11/11/2020

DAILY REPORT / PRO	JECT OBSERVATIONS
Permit No:	
Client: Sevenson Environmental Services, li	
Project Name: Honeywell Deferred Areas Remediat	ion Weather (AM): Partly Cloudy
Location: Jersey City, NJ	Weather (PM): Partly Cloudy
Contractor: Sevenson Environmental Services, In	` '
Date: November 13, 2020 ATC Job No.: 0103000015	Key Persons On-Site: Paul Gallo - Sevenson (Super) Shea- Sevenson
YES NO Spec's & Drawings Available On-Site:	Toni- Sevenson Josh - Wood Engineering
THE FOLLOWING WAS NOTED:	
Depart Base: 6:00 AM Arrived On-Site: 7:30 AM	Departed Site: 2:30 PM Arrive Base: 4:00 PM
> ATC representative arrived on-site, as scheduled, to c	observe the following:
 ATC arrived on-site and met with Toni- Sevenson to g Contractor backfilling at Area 1A-C with General Fill, u Backfill was done in 1' lift and compacted using a Bon and a Wacker Neuson WP1650 steel plate compactor v Reusable Common Barrow was used for backfilling w contractor graded the common reusable on site fill into e ATC verified compaction using a Troxler nuclear dense have a compaction percentage of 95% or greater of the 	using a Komatsu D39-PX bulldozer. nag BMP8500 walk-behind roller vas used along edges. as delivered to area by dump truck. After delivery, excavated areas using bulldozer. sity gauge. All tests were found to
> ATC received elevations from Wood Engineering.	
> See attached Field Density Sheet and Photos for furth	ner information.
Reviewed By: GEORGE WIESNER	FIELD REPORT SIGNED: Joe Franks

	Permi	t No:								i	F	Project No.:	01030 0001	5		
	CI	ient:	Sevenso	on Enviro	nmental Se	ervices, Inc.					1	Technician:	Joe Franks			
	Pro	ject:	Honeyw	ell Deferr	ed Areas F	Remediation	l					DATE:	November 1	3, 2020		
Gene	ral Contra	ctor:	Sevenso	on Enviro	nmental Se	ervices, Inc.				G	rading (Contractor:	Sevenson E	nvironmen	tal Services, Inc.	
TEST NO.	PROCTOR NO. *	LIFT NO.	IDENSITY IDENSITY I I MAX DENSITY I PASSI FAIL I DETESTI I I I							N GRID COORDINATE: STATION	S OR ROADWAY					
1	128.7	1	130.6	126.6	4.7	3.7	95.0	97.7	х			, ,			Area 1A-C (+1)	
2	128.7 1 131.0 126.0 5.0 3.9 95.0 97.0 x											Area 1A-C (+2)				
															, ,	
Com	paction Ed	naiur	nent Use	ed:	Vibratory:	x	Non-Vi	bratorv			Smoo	oth Steel Dru	ım	Sheep	sfoot <u>x</u> Brickf	oot
	Rubber-tir														<u> </u>	
Rema				_											om Wood Engineerir	na.
	•		· g. · · · · ·													-3-
*	Proctor No			Maximur	m Density ((PCF)		Opt. Mo	isture ((%)	St	d. Proctor	Mod. Proct	or	Gauge Make:	Troxler
								•				Gauge Model #:	3440			
BS-5 128.7 9.3						9.3		<u>-</u>				Gauge Serial #	26909			
			. <u> </u>								-					ard Counts
Method: A: Backscatter B: Direct Transmission B								_						Moisture 625	Density 1795	

Project: Honeywell Deferred Areas Remediation

Date: 11/13/2020

	DA	ILY REP	ORT / PROJE	CT OBSERVATIO	NS				
Permit No:				_					
Client: S	Sevenson E	Environmen	ital Services, Inc.			AM (°f)	PM (°f)		
Project Name: ⊦	loneywell I	Deferred Ar	eas Remediation	<u>_</u>	emperature:	56	75		
Location: <u>J</u>	ersey City,	NJ		_	eather (AM):				
Contractor: S	Sevenson E	Environmen	ital Services, Inc.		eather (PM): _ -	Partiy	Cloudy		
Date: <u> </u>	November	16, 2020		Paul Gall		Key Persons On-Site: - Sevenson (Super)			
ATC Job No.: 0	10300001	5		Shea- Se Toni- Sev	venson	on (Super)			
Г	YES	NO	Ī		ood Engineerii				
Spec's & Drawings Available On-Site:	x				ood Engineerii	·9			
THE FOLLOWING WAS NOTE	D:								
Depart Base: _	10:30) AM	_	Departed Site	e: 2:30	PM	_		
Arrived On-Site: _	12:00) PM	-	Arrive Base	4:00	PM	_		
> ATC representative a	rrived on-	site, as so	cheduled, to obs	serve the following:					
> ATC arrived on-site a	nd met w	ith Toni- S	evenson to go	over plans for the da	ay.				
> Sevenson crew were	trying to	eliminate	the water from	the area they would	be backfilling	J.			
> Approx. around 2:30 reschedule us for tomo		from Seve	enson informed	ATC that they would	d not be back	filling tod	ay and will		
Reviewed By:				FIELD REPORT					
GEORG	E WIE	SNER		SIGNED:	Joe Fr	ranks			

Project: Honeywell Deferred Areas Remediation

Date: 11/16/2020

DAILY REPORT / PROJE	CT OBSERVATIONS
Permit No:	
	_
Client: Sevenson Environmental Services, Inc.	
Project Name: Honeywell Deferred Areas Remediation	Temperature: 43 55
	Weather (AM): Partly Cloudy
Location: Jersey City, NJ	Weather (PM): Partly Cloudy
Contractor: Sevenson Environmental Services, Inc.	
Date: November 17, 2020	Key Persons On-Site:
	Paul Gallo - Sevenson (Super)
ATC Job No.: 0103000015	Shea- Sevenson Toni- Sevenson
YES NO	Josh - Wood Engineering
Spec's & Drawings	occin trood Engineering
Available On-Site: X	
THE FOLLOWING WAS NOTED:	
Depart Base: 6:15 AM	Departed Site: 3:30 PM
Arrived On-Site: 7:45 AM	Arrive Base: 5:00 PM
> ATC representative arrived on-site, as scheduled, to obs	serve the following:
711 o Toprocontanto antivoa en elle, de esticadica, le est	sorve the following.
> ATC arrived on-site and met with Toni- Sevenson to go	over plans for the day.
> Contractor backfilling at Area 1A-C with General Fill, usi	
> Backfill was done in 1' lifts and compacted, after each lif	<u> </u>
and a Wacker Neuson WP1650 steel plate compactor was	
> Reusable Common Barrow was used for backfilling and	, ,
contractor graded the common reusable on site fill into ex	cavated areas using buildozer.
> ATC verified compaction, after each lift, using a Troxler	nuclear density gauge. All tests were found to
have a compaction percentage of 95% or greater of the pr	
> See attached Field Density Sheet and Photos for further	rinformation
222 attached 1 lord Donotty Choot and 1 hotor for further	
Reviewed By:	FIELD REPORT
GEORGE WIESNER	SIGNED: Joe Franks

	Permi	t No:									F	Project No.:	01030 00015	j	
	C	lient:	Sevenso			rvices, Inc.					7	Technician:	Joe Franks		
	Pro	ject:	Honeyw	ell Deferre	ed Areas R	Remediation	l					DATE:	November 17	7, 2020	
Gene	eral Contra	ctor:	Sevenso	n Enviror	nmental Se	rvices, Inc.				G	Grading (Contractor:	Sevenson Er	nvironmental Services, Inc.	
TEST NO.	PROCTOR NO.	LIFT NO.	WET DENSITY (PCF)	TY DENSITY MOISTURE MOISTURE MAX DENSITY PASS FAIL RETEST BELOW BELOW LOCATION GRID COOF		LOCATION GRID COORDINATES OR I	ROADWAY								
1	128.7	1	132.7	127.2	5.5	4.3	95.0	98.8	х					Area 1A-C (+1.5)	
2 128.7 1 128.1 123.8 4.3 3.5 95.0 96.2 x									х					Area 1A-C (+1.5)	
3 128.7 2 138.0 122.7 15.3 12.5 95.0 9								95.3	х					Area 1A-C (+2.5)	
4 128.7 2 138.3 122.5 15.8 12.9 95.0								95.2	х					Area 1A-C (+2.5)	
5 119.6 3 123.0 118.7 4.3 3.6						3.6	95.0	99.2	х					Area 1A-C (+3.0)	
6	119.6	3	3 121.4 118.0 3.4 2.9			2.9	95.0	98.7	х					Area 1A-C (+3.0)	
7	128.7	4 133.0 126.8 6.2 4.9 9			95.0	98.5	х					Area 1A-C (+3.5)			
8	128.7	4	130.3	124.6	5.7	4.6	95.0	96.8	Х					Area 1A-C (+3.5)	
						x x	-				='		·	Sheepsfoot x Brickfoot	
*	Proctor No).		Maximur	n Density ((PCF)		Opt. Mo	isture ((%)	St	d. Proctor	Mod. Procto	or Gauge Make:	Troxler
	7 119.6				Ç	9.8			х		Gauge Model #:	3440			
	5				128.7			9	9.3		-	X		Gauge Serial #	26909
	Method:	A: Ba		r	B: Direct	Transmissio	on	В			-			Standard C Moisture 625	ounts Density 1795

Project: Honeywell Deferred Areas Remediation

Date: 11/17/2020

	DAILY REPORT /	PROJECT OBS	ERVATIONS		
Permit No:					
Client:	Sevenson Environmental Ser	vices, Inc.		AM (°f)	PM (°f)
Barrier A Norman	Harris II Dafama I Amara Da		Temperatur	e : 45	59
Project Name:	Honeywell Deferred Areas Re	mediation	Weather (AN	l): Partly	Cloudy
Location:	Jersey City, NJ		rrouno. (/ ur	.,. <u></u>	Cioudy
Contractor	Cayanaan Environmental Con	vices les	Weather (PN	l): Partly	Cloudy
Contractor:	Sevenson Environmental Ser	vices, inc.		-	
Date:	November 20, 2020			sons On-Site	:
ATC Job No.:	0103000015		Paul Gallo - Sevens Shea- Sevenson	on (Super)	
A10 300 No	0103000013		Toni- Sevenson		
	YES NO		Josh - Wood Engine	ering	
Spec's & Drawings Available On-Site:	l v l				
Available Oil-Oite.	<u> </u>		_		
THE FOLLOWING WAS NOT	ΓED:				
Depart Base:	6:15 AM	De	eparted Site: 3:	:30 PM	
Arrived On-Site:			•	:00 PM	-
					-
> ATC representative	arrived on-site, as schedule	ed, to observe the t	following:		
> ATC arrived on site	and mot with Toni Savons	on to go over plane	for the day		
	and met with Toni- Sevens ng at Area 1A-C with Genera		Ţ.	zer	
	1' lifts and compacted, after				oller
	n WP1650 steel plate comp				
	Barrow was used for backf		,		er delivery
contractor graded the	common reusable on site f	ill into excavated a	reas using bulldozer		
> ATC verified compa	action, after each lift, using a	Troxler nuclear de	ensity gauge All tes	ts were foun	d to
	ercentage of 95% or greater			to word rour	<u>u to</u>
·			·		
_					
> See attached Field	Density Sheet and Photos f	or further informati	 on.		
		J. Idiaioi inioinidi			
Reviewed By:		FIEI D I	REPORT		

	Permi	t No:								,	F	Project No.:	01030 00015						
	C	lient:	Sevenso	n Enviror	nmental Se	rvices, Inc.				ı	7	Technician:	Joe Franks						
	Pro	oject:	Honeyw	ell Deferre	ed Areas R	emediation						DATE:	November 2	0, 2020					
Gene	eral Contra	ctor:	Sevenso	n Enviror	nmental Se	rvices, Inc.				G	Grading (Contractor:	Sevenson E	nvironmental Se	rvices, Inc.				
TEST NO.	PROCTOR NO.	LIFT NO.	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE (PCF)	MOISTURE %	MAX D	OF ENSITY	PASS	FAIL	** RETEST NO.	ELEVATION BELOW FINISH GRADE (FT.)	DEPTH BELOW PLAN SUBGRADE	LOCATION GRI	D COORDINATES STATION	OR ROADWAY			
1	128.7	1	126.8	123.1	3.7	3.0	95.0	95.6	х			, ,			Area 1A-C (+4.0)				
2	128.7	2	132.1	125.9	6.2	4.9	95.0	97.8	х						Area 1A-C (+4.5)				
3	3 128.7 3 125.9 122.4 3.5 2.9 95.0 95.1								х					Area 1A-C (+5.5)					
4	128.7 4 125.2 124.1 1.1 0.9 95.0 96.4							96.4	х						Area 1A-C (+6.5)				
5	128.7	4	129.3	127.3	2.0	1.6	95.0	98.9	х						Area 1A-C (+6.5)				
6	128.7	3.7 5 128.4 126.0 2.4 1.9 95.0 97.9 x					х						Area 1A-C (+7.5)						
Com Rem	Rubber-tir					x x					-			Sheepsfoot		oot			
*	Proctor No).		Maximur	m Density (PCF)		Opt. Mo	isture ((%)	St	d. Proctor	Mod. Proct	or Gau	ge Make:	Troxler			
	5				128.7			9	9.3		-	X		Gau	ge Model #:	3440			
											•			Gau	ge Serial #	26909			
	Method:	A: Ba	ackscatte	r	B: Direct	Fransmissio	 on	В	<u> </u>		-				Standa Moisture 622	ord Counts Density 1781			

Project: Honeywell Deferred Areas Remediation

Date: 11/20/2020

	DAILY REPO	RT / PROJEC	T OBSERVATIO	NS		
Permit No:						
Client:	Sevenson Environmenta	I Services Inc			AM (°f)	PM (°f)
	Honeywell Deferred Area		To	emperature:	34	40
-		as itemediation	We	eather (AM):	Partly	Cloudy
	Jersey City, NJ Sevenson Environmenta	d Sarvicas Inc	W	eather (PM):	Partly	Cloudy
	December 8, 2020	ii Gervices, iric.		- Key Person	s On-Site	
ATC Job No.:			Paul Gallo Shea- Se	o - Sevenson		•
ATO JOB NO	YES NO		Toni- Sev		20	
Spec's & Drawings Available On-Site:	v		30311 - 440	Dod Engineerii	<u>ig</u>	
THE FOLLOWING WAS NOT						
Depart Base:	6:30 AM		Departed Site Arrive Base			<u>-</u>
		adulad ta aba		0.30	r IVI	-
·	arrived on-site, as sche	•				
	and met with Toni- Sev ng at Area 1A-C with Ge					
	1' lifts and compacted					oller
	n WP1650 steel plate c					
> Screenings were sto	ockpiled on site and pla	ced in controll	ed lifts on the slope	by front load	der.	
	s compacted minimum		and and at 12 0 c	lovation		
> THE Elevation of the	e compaction started at	elevation 6.5 a	and ended at 12.0 e	elevation.		
<u> </u>	ction, after each lift, us		, , ,		were foun	d to
have a compaction pe	ercentage of 95% or gre	eater of the pro	vided proctor for S	ample BS-5.		
> ATC received eleva	tions from Wood Engin	eering.				
> See attached Field	Density Sheet and Pho	tos for further i	nformation.			
Reviewed By:			FIELD REPORT			
•	GE WIESNER		SIGNED:	Joe Fr	anks	

	Permi	t No:								ı	F	Project No.:	01030 0001	5		
	C	lient:	Sevenso	n Enviror	nmental Se	rvices, Inc.					1	echnician:	Joe Franks			
	Pro	ject:	Honeyw	ell Deferre	ed Areas R	emediation	1			•		DATE:	December 8	, 2020		
Gene	eral Contra	ctor:	Sevenso	n Enviror	nmental Se	rvices, Inc.				G	rading (Contractor:	Sevenson E	nvironment	al Services, Inc.	
TEST NO.	PROCTOR NO.	LIFT NO.	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE (PCF)	MOISTURE %	MAX D	OF ENSITY	PASS	FAIL	** RETEST NO.	ELEVATION BELOW FINISH GRADE (FT.)	DEPTH BELOW PLAN SUBGRADE	LOCATIO	N GRID COORDINATES STATION	OR ROADWAY
1	128.7	1	134.7	127.6	7.1	5.6	95.0	99.1	х						Area 1A-C (-8.5)	
2	128.7	2	132.7	126.5	6.2	4.9	95.0	98.3	х						Area 1A-C (-9.0)	
3	128.7	3	129.4	122.4	7.0	5.7	95.0	95.1	х						Area 1A-C (-10.0)	
4	128.7	4	135.4	128.1	7.3	5.7	95.0	99.5	х						Area 1A-C (-12)	
Com	paction E	quipn	nent Use	d:	Vibratory:	X	Non-Vi	bratory			Smoo	oth Steel Dru	um	Sheep	sfoot x Brickfo	ot
						х										
Rem	arks:			•			1									
*	Proctor No).		Maximur		PCF)				(%)	St	d. Proctor	Mod. Proct	<u>or</u>	Gauge Make:	
	5		· —		128.7		· <u>-</u>	S	9.3		•	X			Gauge Model #:	
			· —				· -				•				Gauge Serial #	
	Method:	Δ· Ra	ackscatte	r	R: Direct	Fransmissio		В			•				Standaı Moisture 576	d Counts Density 1788
	ivi c ti lou.	А. Ва	achocalle	1	D. DIIECL	ı ıalısıllıssiC	71 1		_						370	1700

Project: Honeywell Deferred Areas Remediation

Date: 12/8/2020

	DAILY REPO	RT / PROJEC	T OBSERVATIO	NS		
Permit No:						
Client:	Sevenson Environmenta	I Services Inc			AM (°f)	PM (°f)
	Honeywell Deferred Area		To	emperature:	34	40
-		as itemediation	We	eather (AM):	Partly	Cloudy
	Jersey City, NJ Sevenson Environmenta	d Sarvicas Inc	W	eather (PM):	Partly	Cloudy
	December 8, 2020	ii Gervices, iric.		- Key Person	s On-Site	
ATC Job No.:			Paul Gallo Shea- Se	o - Sevenson		•
ATO JOB NO	YES NO		Toni- Sev		20	
Spec's & Drawings Available On-Site:	v		30311 - 440	Dod Engineerii	<u>ig</u>	
THE FOLLOWING WAS NOT						
Depart Base:	6:30 AM		Departed Site Arrive Base			<u>-</u>
		adulad ta aba		0.30	r IVI	-
·	arrived on-site, as sche	•				
	and met with Toni- Sev ng at Area 1A-C with Ge					
	1' lifts and compacted					oller
	n WP1650 steel plate c					
> Screenings were sto	ockpiled on site and pla	ced in controll	ed lifts on the slope	by front load	der.	
	s compacted minimum		and and at 12 0 c	lovation		
> THE Elevation of the	e compaction started at	elevation 6.5 a	and ended at 12.0 e	elevation.		
<u> </u>	ction, after each lift, us		, , ,		were foun	d to
have a compaction pe	ercentage of 95% or gre	eater of the pro	vided proctor for S	ample BS-5.		
> ATC received eleva	tions from Wood Engin	eering.				
> See attached Field	Density Sheet and Pho	tos for further i	nformation.			
Reviewed By:			FIELD REPORT			
•	GE WIESNER		SIGNED:	Joe Fr	anks	

	Permi	t No:								ı	F	Project No.:	01030 0001	5		
	C	lient:	Sevenso	n Enviror	nmental Se	rvices, Inc.					1	echnician:	Joe Franks			
	Pro	ject:	Honeyw	ell Deferre	ed Areas R	emediation	1			•		DATE:	December 8	, 2020		
Gene	eral Contra	ctor:	Sevenso	n Enviror	nmental Se	rvices, Inc.				G	rading (Contractor:	Sevenson E	nvironment	al Services, Inc.	
TEST NO.	PROCTOR NO.	LIFT NO.	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE (PCF)	MOISTURE %	MAX D	OF ENSITY	PASS	FAIL	** RETEST NO.	ELEVATION BELOW FINISH GRADE (FT.)	DEPTH BELOW PLAN SUBGRADE	LOCATIO	N GRID COORDINATES STATION	OR ROADWAY
1	128.7	1	134.7	127.6	7.1	5.6	95.0	99.1	х						Area 1A-C (-8.5)	
2	128.7	2	132.7	126.5	6.2	4.9	95.0	98.3	х						Area 1A-C (-9.0)	
3	128.7	3	129.4	122.4	7.0	5.7	95.0	95.1	х						Area 1A-C (-10.0)	
4	128.7	4	135.4	128.1	7.3	5.7	95.0	99.5	х						Area 1A-C (-12)	
Com	paction E	quipn	nent Use	d:	Vibratory:	X	Non-Vi	bratory			Smoo	oth Steel Dru	um	Sheep	sfoot x Brickfo	ot
						х										
Rem	arks:			•			1									
*	Proctor No).		Maximur		PCF)				(%)	St	d. Proctor	Mod. Proct	<u>or</u>	Gauge Make:	
	5		· —		128.7		· <u>-</u>	S	9.3		•	X			Gauge Model #:	
			· —				· -				•				Gauge Serial #	
	Method:	Δ· Ra	ackscatte	r	R: Direct	Fransmissio		В			•				Standaı Moisture 576	d Counts Density 1788
	ivi c ti lou.	А. Ва	achocalle	1	D. DIIECL	ı ıalısıllıssiC	71 1		_						370	1700

Project: Honeywell Deferred Areas Remediation

Date: 12/8/2020

DAILY REPORT / PRO	OJECT OBSERVATIONS
Permit No:	
Client: Sevenson Environmental Services,	
Project Name: Honeywell Deferred Areas Remedia	
Location: Jersey City, NJ	Weather (AM): Clear Weather (PM): Cloudy
Contractor: Sevenson Environmental Services,	· /
Date: January 4, 2021	Key Persons On-Site: Paul Gallo - Sevenson (Super)
ATC Job No.: 0103000015	Shea- Sevenson Toni- Sevenson
Spec's & Drawings Available On-Site:	Josh - Wood Engineering
THE FOLLOWING WAS NOTED:	
Depart Base: 6:00 AM Arrived On-Site: 8:30 AM	Departed Site: 2:30 PM Arrive Base: 4:00 PM
> ATC representative arrived on-site, as scheduled, to	observe the following:
 ATC arrived on-site and met with Toni - Sevenson to Contractor backfilling at Area 1 Burrow with Screeni Backfill was done in 1' lifts and compacted with industrial 	ings Structural fill, using a Cat Excavator.
> ATC verified compaction, after each lift, using a Trox have a compaction percentage of 95% or greater of the Engineering.	
> ATC received proctors and elevations from Wood Errequirements in the field.	ngineering. Also direction on compaction
> See attached Field Density Sheet and Photos for fur	ther information.
Reviewed By:	FIELD REPORT
GEORGE WIESNER	signed: Joe Franks

	Permi	t No:									F	Project No.:	01030 00015			
	C	lient:	Sevenso	n Enviro	nmental Se	rvices, Inc.					7	Technician:	Joe Franks			
	Pro	ject:	Honeyw	ell Deferr	ed Areas F	Remediation	1			•		DATE:	January 4, 20)21		
Gene	ral Contra	ctor:	Sevenso	n Enviro	nmental Se	ervices, Inc.				G	rading (Contractor:	Sevenson Er	vironmental	Services, Inc.	
TEST NO.	PROCTOR NO.	LIFT NO.	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE (PCF)	MOISTURE %	MAX D	OF ENSITY	PASS	FAIL	** RETEST NO.	ELEVATION BELOW FINISH GRADE (FT.)	DEPTH BELOW PLAN SUBGRADE	LOCATION	GRID COORDINATES	S OR ROADWAY
1	126.4	1	131.2	123.9	7.8	5.9	95.0	98.0	х			(1,			Area 1 Burrow (-1	2)
2	126.4	2	129.2	120.6	6.1	5.1	95.0	95.2	х						Area 1 Burrow (-1	<i>'</i>
															,	,
Com	paction E										='				oot <u>x</u> Brickf	
	Rubber-tir	ed		Vibrate	ory Plate	X	Walk	Behind	Steel [)rum		Other:				
Rema	arks:	Proc	tors were	provided	by Wood I	Engineering	no Nu	mbers w	ere pr	ovided	<u>. </u>					
*	Proctor No).		Maximui	n Density (PCF)	1	Opt. Mo	isture (·%)	St	d. Proctor	Mod. Procto	or G	auge Make:	Troxler
					126.4	,		•	9.7	/		X			 Gauge Model #:	
											•				Sauge Serial #	
															Standa	ard Counts
	Method:	A: Ba	ackscatte	r	B: Direct	Fransmissio	on	В	-						Moisture 617	Density 1791

Project: Honeywell Deferred Areas Remediation

Date: 1/4/2021

DAILY REPORT / PROJ	ECT OBSERVATIONS
Permit No:	
- Gillit No.	
Client: Sevenson Environmental Services, In-	c. AM (°f) PM (°f)
Project Name: Hangywall Deferred Areas Remediation	Temperature: 36
Project Name: Honeywell Deferred Areas Remediation	Weather (AM): Partly Cloudy
Location: Jersey City, NJ	
Contractor: Sevenson Environmental Services, Inc	Weather (PM): C.
	<u> </u>
Date: December 15, 2020	Key Persons On-Site: Paul Gallo - Sevenson (Super)
ATC Job No. : 0103000015	Shea- Sevenson
YES NO	Toni- Sevenson Josh - Wood Engineering
Spec's & Drawings	Josh - Wood Engineering
Available On-Site:	
THE FOLLOWING WAS NOTED:	
Depart Base: 6:00 AM	Departed Site: 10:00 AM
Arrived On-Site: 8:00 AM	Arrive Base: 12:00 PM
> ATC representative arrived on-site, as scheduled, to ol	bserve the following:
 ATC arrived on-site and met with Toni- Sevenson to go Contractor backfilling at areas 2, 9, 19 with Cover Soil, 	
> Backfill was done in 1' lift and compacted with tracks or	
·	
> ATC verified compaction, using a Troxler nuclear dens	
have a compaction percentage of 90% or greater of the pending Mike Sienna	provided proctor for Cover Soils provided by Wood
> ATC received elevations from Wood Engineering.	
5 5	
> See attached Field Density Sheet and Photos for further	er information.
Reviewed By:	FIELD REPORT
GEORGE WIESNER	SIGNED: Joe Franks

	Permit	t No:								ı	F	Project No.:	01030 0001	5		
	CI	ient:	Sevenso	n Enviror	nmental Se	rvices, Inc.				i	1	echnician:	Joe Franks			
	Pro	ject:	Honeyw	ell Deferre	ed Areas R	temediation	1			•		DATE:	December 1	5, 2020		
Gene	ral Contra	ctor:	Sevenso	n Enviror	nmental Se	rvices, Inc.				G	rading (Contractor:	Sevenson E	nvironmenta	l Services, Inc.	
TEST NO.	PROCTOR NO.	LIFT NO.	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE (PCF)	MOISTURE %	MAX D	OF ENSITY	PASS	FAIL	** RETEST NO.	ELEVATION BELOW FINISH GRADE (FT.)	DEPTH BELOW PLAN SUBGRADE	LOCATION	GRID COORDINATES	OR ROADWAY
1	115.7	1	128.5	114.5	14.0	12.2	90.0	99.0	х						Area 2(-17.5)	
2	115.7	1	124.6	113.4	11.2	9.9	90.0	98.0	х						Area 9 (- 16.0)	
3	115.7	1	126.0	115.1	10.9	9.5	90.0	99.5	х						Area 19 (-19.0)	
Com	paction Ed	quipn	nent Use	d:	Vibratory:	X	Non-Vi	bratory			Smoo	oth Steel Dru	ım	Sheeps	foot <u>x</u> Brickfo	oot
						Х										
Rema	arks:															
	5 (N				5 "	(DOE)		0 1 14		(0/)	0.1					.
	Proctor No			Maximur		PCF)				<u></u> %)		d. Proctor	Mod. Proct		Gauge Make:	
					115.7			3	3.8		•	<u>X</u>			Gauge Model #:	
							. <u>-</u>				, ,			(Gauge Serial #	
	Method:	A: Ba	ackscatte	r	B: Direct	Fransmissio	- <u></u> on	В	_		. ,				Standa Moisture 628	rd Counts Density 1798

Project: Honeywell Deferred Areas Remediation

Date: 12/15/2020

DAILY REPORT / PROJEC	CT OBSERVATIONS
Permit No:	
Client: Sevenson Environmental Services, Inc.	AM (°f) PM (°f) Temperature: 30 30
Project Name: Honeywell Deferred Areas Remediation	Weather (AM): Cloudy
Location: Jersey City, NJ	
Contractor: Sevenson Environmental Services, Inc.	Weather (PM): Cloudy
Date: December 16, 2020	Key Persons On-Site:
ATC Job No.: 0103000015	Paul Gallo - Sevenson (Super) Shea- Sevenson
	Toni- Sevenson
Spec's & Drawings NO	Josh - Wood Engineering
Available On-Site:	
THE FOLLOWING WAS NOTED:	
Depart Base: 6:15 AM	Departed Site: 3:00 PM
Arrived On-Site: 8:00 AM	Arrive Base: 4:45 PM
> ATC representative arrived on-site, as scheduled, to obse	erve the following:
> ATC arrived on-site and met with Ton - Sevenson to go o	ver testing for the day.
> Contractor backfilling at Horizon C.2 and C.6 Areas with 0	Cover Soil, using a Cat Excavator.
Also backfilled material on the utility corridor area with SoBackfill was done in 1' lifts and compacted with industrial	<u> </u>
·	·
> ATC verified compaction, after each lift, using a Troxler n have a compaction percentage of 90% or greater of the pro-	
greater at Utility Corridor area.	
> ATC received proctors and elevations from Wood Engine	ering as well as compaction requirements.
> See attached Field Density Sheet and Photos for further in	information.
Reviewed By:	FIELD REPORT
GEORGE WIESNER	SIGNED: Joe Franks

	Permi	t No:									F	Project No.:	01030 00015	5		
	C	lient:	Sevenso	n Enviror	nmental Se	rvices, Inc.					7	Гесhnician:	Joe Franks			
	Pro	ject:	Honeyw	ell Deferre	ed Areas R	Remediation	l					DATE:	December 1	6, 2020		
Gene	eral Contra	ctor:	Sevenso	on Enviror	nmental Se	rvices, Inc.				G	Grading (Contractor:	Sevenson E	nvironmenta	al Services, Inc.	
TEST NO.	PROCTOR NO.	LIFT NO.	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE (PCF)	MOISTURE	MAX		PASS	FAIL	** RETEST NO.	ELEVATION BELOW FINISH GRADE (FT.)	DEPTH BELOW PLAN SUBGRADE	LOCATION	N GRID COORDINATES STATION	S OR ROADWAY
1	126.4	1	138.3	124.7	13.6	10.9	90.0	98.7	х						Horizon C .2 (-17.2	2)
2	126.4	2	140.3	126.1	14.2	11.3	90.0	99.8	х						Horizon C .2 (-17.5	5)
3	126.4	3	138.4	124.2	14.2	11.4	90.0	98.3	х						Horizon C .6 (-18.5	5)
4	114.8	116.8	111.8	5.0	4.5	95.0	97.4	Х						Utility Corridor (-13	3)	
5	114.8	2	123.5	113.5	10.0	8.8	95.0	98.9	х						Utility Corridor (-13.	.5)
6	6 114.8 3 115.7 111.5 4.2 3.8							97.1	х						Utility Corridor (-14.	.5)
7	7 114.8 4 118.2 114.0 4.2 3.7						95.0	99.3	Х						Utility Corridor (-15	5)
	paction Ed Rubber-tir	ed		Vibrate	ory Plate	x x Engineering	Walk				-				sfoot <u>x</u> Brickfo	
*	Proctor No).		Maximur	n Density ((PCF)		Opt. Mo	isture ((%)	St	d. Proctor	Mod. Proct	or_	Gauge Make:	Troxler
126.4								9.7			_	Х			Gauge Model #:	3440
			. <u> </u>		114.8		. <u>—</u>	8	3.8		-	X			Gauge Serial #	26909
	Method:	A: Ba	ackscatte	r	B: Direct	Transmissio	 on	В	_		-				Standa Moisture 602	ard Counts Density 1793

Project: Honeywell Deferred Areas Remediation

Date: 12/16/2020

	DA	ILY REP	ORT / PROJE	CT OBSERVATIONS	S							
Permit No:				-								
Client:	Sevenson E	Environmen	tal Services, Inc.		Amperature:	M (°f)	PM (°f)					
Project Name:	Honeywell [Deferred Ar	eas Remediation	- Tei	iiperature.	30	30					
Location:	Jersey City,	N.I		Wea	ather (AM):	Clo	oudy					
			tal Services, Inc.	Wea	ather (PM):	Clo	oudy					
Date:	December 1	18 2020		Key Persons On-Site:								
ATC Job No.:		•			- Sevenson (Su							
	VEO	NO		Toni- Sever								
Spec's & Drawings	YES	NO		Josn - Woo	d Engineering							
Available On-Site:	. Y .											
THE FOLLOWING WAS NOTE	ED:											
Depart Base:	6:30		_	Departed Site:	3:00 PM	1	_					
Arrived On-Site:	8:15	AM	<u>-</u>	Arrive Base:	4:45 PM	1	-					
> ATC representative	arrived on-s	site, as sch	neduled, to obse	rve the following:			<u> </u>					
 > ATC arrived on-site > Contractor backfilling > Backfill was done in > ATC verified compact 	g at GDC P	oint 5.47 A	Areas with Cover	Soil, using a Cat Exc	avator. ble passes.	found						
have a compaction pe						Iouna	.0					
> ATC received procto	rs and elev	ations as	well as compact	ion requirements from	Wood Engine	eering.						
> See attached Field [Density She	et and Ph	otos for further i	nformation.								
				EIEI D DEDORT								
Reviewed By: ROBERT	HAWTH	IORNE		FIELD REPORT SIGNED:	Joe Frai	nks						

	Permi	t No:									F	Project No.:	01030 00015			
	CI	ient:	Sevenso	n Enviror	nmental Se	rvices, Inc.					7	Technician:	Joe Franks			
	Pro	ject:	Honeyw	ell Deferr	ed Areas R	temediation	l					DATE:	December 18,	2020		
Gene	ral Contra	ctor:	Sevenso	n Enviror	nmental Se	rvices, Inc.				G	Grading (Contractor:	Sevenson Env	rironmental	Services, Inc.	
TEST NO.	PROCTOR NO.	LIFT NO.	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE (PCF)	MOISTURE		OF ENSITY	PASS	FAIL	** RETEST NO.	ELEVATION BELOW FINISH GRADE (FT.)	DEPTH BELOW PLAN SUBGRADE	LOCATION	GRID COORDINATES	OR ROADWAY
1	126.4	1	117.8	104.8	13.5	11.9	90.0	90.2				- ()			GDC .5.47 (-17.	2)
2	126.4	2	140.9	126.1	14.1	11.1	90.0	98.2							GDC .5.47 (-17.	
	120.1		110.0	12011			00.0	00. <u>L</u>							020 10.17 (17.	<u> </u>
Comi	asstion Es	uinn	ont Hea	۸.	\/ibrator\/:		Non Vi	brotony			Smoo	oth Stool Dri	ım	Shoonefe	oot <u>x</u> Brickfo	not.
	Rubber-tire		ieni ose			X	.'				-					
Rema				_		 Engineering		Demina	Olcci L	, and		Otrici.				
· Cilic		1 1000	OIS WOIG	provided	by Wood I)									
*	Proctor No			Maximur	m Density (PCF)		Opt. Mo	isture (%)	St	d. Proctor	Mod. Proctor	_ G	auge Make:	Troxler
					126.4			9	9.7			X		G	auge Model #:	3440
					114.8			8	3.8			х	. <u></u>	G	auge Serial #	26909
Terr	aSense, L	LC)											. <u></u>		Standa	ard Counts
	Method:	A: Ba	ckscatte	r	B: Direct	Γransmissio	n	В							Moisture 602	Density 1793

Project: Honeywell Deferred Areas Remediation

Date: 12/18/2020

	DAILY REP	ORT / PROJE	CT OBSERVATION	S
Permit No:	:			
			-	
Client:	Sevenson Environmen	tal Services, Inc.		AM (°f) PM (°f) mperature: 30 40
Project Name:	Honeywell Deferred Ar	eas Remediation	_	
Location:	: Jersey City, NJ		_	ather (AM): Cloudy
Contractor	: Sevenson Environmen	tal Services Inc		ather (PM): Partly Cloudy
		tar corriect, me.	-	
Date	December 21, 2020		Paul Gallo	Key Persons On-Site: - Sevenson (Super)
ATC Job No.:	: 0103000015		Shea- Seve Toni- Seve	
	YES NO	1		nd Engineering
Spec's & Drawings			00011 1100	a Enginosinig
Available On-Site:	1 Y 1			
THE FOLLOWING WAS NOT	ED:			
Depart Base:	8:00 AM		Departed Site:	3:00 PM
	9:30 AM	•		4:30 PM
> ATC representative	arrived on-site, as sch	neduled to obse	rve the following:	
- ATO representative	arrived on-site, as sor	icadica, to obse	ive the following.	
> ATC arrived on-site	and met with Toni - So	evenson to revie	ew testimg for the day.	
> Contractor backfillin	g at GDC and Utility T	rack Areas with	Cover Soil and Scree	nings, using a Cat Excavator.
> Backfill material was	s placed in 1' lifts and	compacted with	industrial plate tampe	rs in multiple passes.
> ATC varified compa	ection after each lift us	sing a Traylor nu	uclear density gauge	All tests were found to
	90% or 95% or greate			
		•	•	
				ents from Wood Engineering.
ATC notified Wood En	ngineering of the mois	ture and compa	ction results prior to A	IC leaving the site
today.				
> See attached Field	Density Sheet and Pho	otos for further i	nformation.	
Reviewed By:			FIELD REPORT	
•	T HAWTHORNE		SIGNED:	Joe Franks

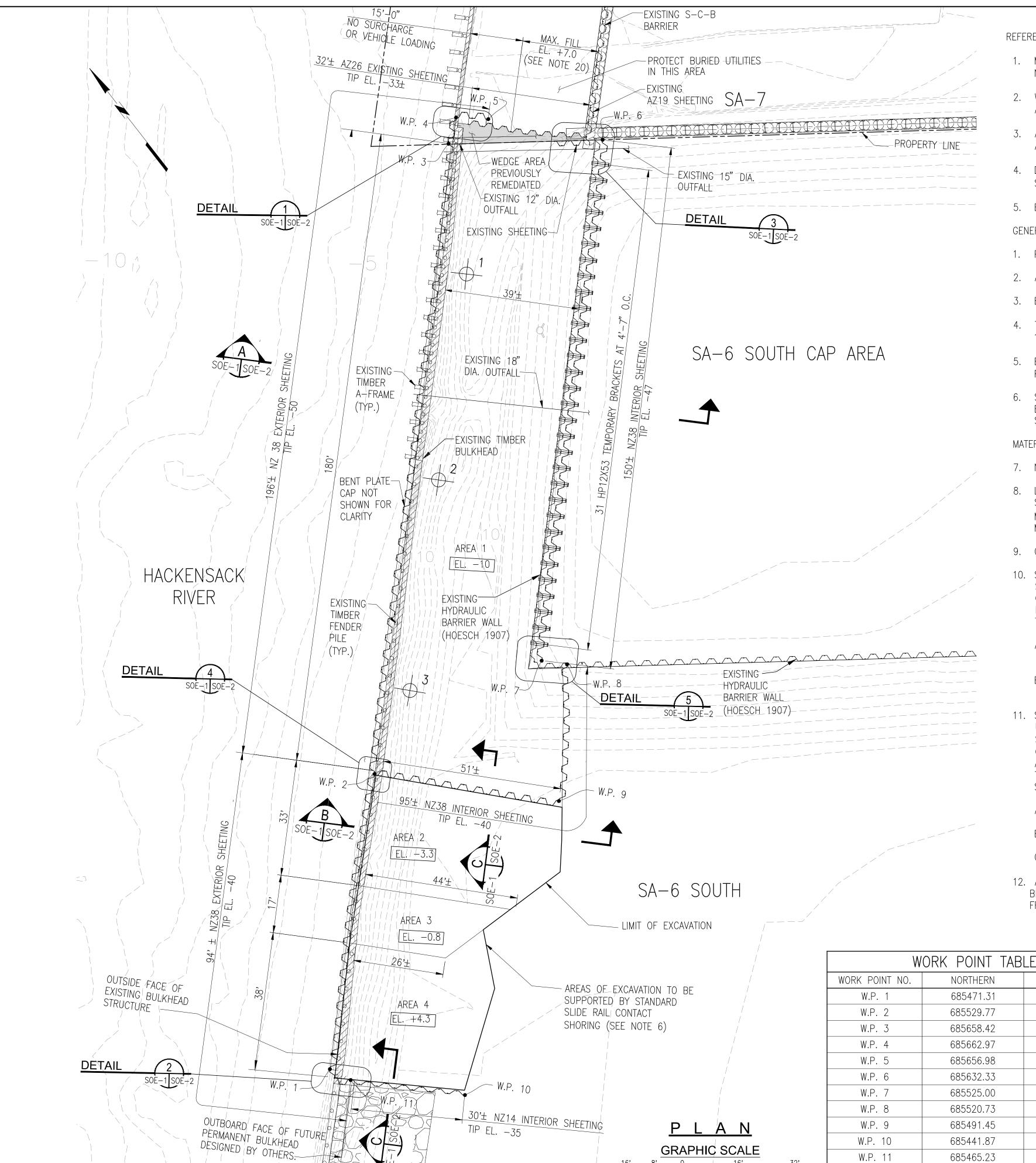
Permit No:										F	Project No.:	01030 00015					
Client: Sevenson Environmental Services, Inc.									Technician: Joe Franks								
Project: Honeywell Deferred Areas Remediation									DATE: December 21, 2020								
General Contractor: Sevenson Environmental Services, Inc.									C	Grading (Contractor:	Sevenson Env	rironmental Services, Inc.				
TEST NO.	PROCTOR NO.	LIFT NO.	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE (PCF)	MOISTURE	MAX DENSITY PAS				PASS	FAIL	** RETEST NO.	ELEVATION BELOW FINISH GRADE (FT.)	DEPTH BELOW PLAN SUBGRADE	LOCATION GRID COORDINATES	OR ROADWAY
1	114.8	1	117.9	114.4	3.5	3.1	95.0	99.7	х		Utility Track Pt. 18 (-1				15.5)		
2	114.8	2	112.2	109.4	2.8	2.6	95.0	95.3	х					Utility Track Pt. 18 (-16)		
3	126.4	1	133.1	117.2	15.9	13.6	90.0	92.7	х		GDL Pt.55.6 (-17))		
4	114.8	3	116.3	112.5	3.8	3.4	95.0	98.0	х					Utility Track Pt. 18 (-	16.5)		
5	114.8	4	118.9	113.9	5.0	4.4	95.0	99.2	х					Utility Track Pt. 18 (-	-17)		
6	114.8	5	114.6	109.9	4.7	4.3	95.0	95.7	х					Utility Track Pt. 18 (-	17.5)		
7	114.8	6	118.8	114.2	4.6	4.0	95.0	99.5	х					Utility Track Pt. 18 (-19)			
8	114.8	7	114.1	109.3	4.8	4.4	95.0	95.2	х					Utility Track Pt. 18 (-19			
Comi	paction Ed	ngiur	nent Use	d:	Vibratory:	x	Non-Vi	bratorv			Smoo	oth Steel Dru	ım	_ Sheepsfootx _ Brickfoo	ot		
	Rubber-tir					х								_ · <u></u>			
Rema	arks:			_		 Engineering	,								<u> </u>		
	•																
*Proctor No. Maximum Density (PCF) Opt. Moisture				%)	St	d. Proctor	Mod. Proctor										
					126.4			9.7				X		Gauge Model #:	3440		
			<u> </u>		114.8		<u> </u>	8	3.8		<u>-</u>	Х		Gauge Serial #	26909		
											_				d Counts		
	Method:	A: Ba	ıckscatte	r	B: Direct	Γransmissio	n	В	<u>-</u>					Moisture 625	Density 1795		

Project: Honeywell Deferred Areas Remediation

Date: 12/21/2020

DAILY REPORT / PROJE	CT OBSERVATIONS
Permit No:	
	_
Client: Sevenson Environmental Services, Inc.	AM (°f) PM (°f) Temperature: 35 40
Project Name: Honeywell Deferred Areas Remediation	• • • • • • • • • • • • • • • • • • •
Location: Jersey City, NJ	Weather (PM): Cloudy
Contractor: Sevenson Environmental Services, Inc.	
Date : December 22, 2020	Key Persons On-Site:
ATC Job No .: <u>0103000015</u>	Paul Gallo - Sevenson (Super) Shea- Sevenson
	Toni- Sevenson
YES NO	Josh - Wood Engineering
Spec's & Drawings Available On-Site:	-
THE FOLLOWING WAS NOTED:	
Depart Base: 6:30 AM	Departed Site: 3:00 PM
Arrived On-Site: 8:00 AM	Arrive Base: 4:30 PM
> ATC representative arrived on-site, as scheduled, to obse	erve the following:
> ATC arrived on-site and met with Toni - Sevenson to revi	ew the testing for the day
> Contractor began backfilling at Herizon C Area with Cove	· · ·
	, ,
> Backfill material was placed in 1' lifts and compacted with	n industrial plate tampers in multiple passes.
> ATC varified compaction after each lift using a Traylor pu	release density gourge. All tests were found to
> ATC verified compaction after each lift, using a Troxler number the required compaction of 90% or greater based on the compaction of 90% or greater based on the compaction of 90%.	- · · · · ·
Those the required compaction of 50% of greater based on t	une provided precior for Gover Golie.
> ATC received proctor values, elevations and direction on	compaction requirements from Wood Engineering.
ATC notified Wood Engineering of the moisture and compa	action results prior to ATC leaving the site
today.	
> See attached Field Density Sheet and Photos for further i	information
- Coo attached Flora Bollotty Check and Florido for further t	mornauon.
Reviewed By:	FIELD REPORT
ROBERT HAWTHORNE	signed: Joe Franks

Permit No:								F	Project No.:	01030 00015						
	CI	lient:	t: Sevenson Environmental Services, Inc.								Technician: Joe Franks					
	Project: Honeywell Deferred Areas Remediation									DATE: December 22, 2020						
Gene	ral Contra	ctor:	Sevenso	n Enviror	nmental Se	rvices, Inc.				G	Grading (Contractor:	Sevenson Env	ironmental Ser	vices, Inc.	
TEST NO.	PROCTOR NO.	LIFT NO.	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE (PCF)	MOISTURE	MAX D	OF ENSITY	PASS	FAIL	** RETEST NO.	ELEVATION BELOW FINISH GRADE (FT.)	DEPTH BELOW PLAN SUBGRADE	LOCATION GRID	COORDINATES (OR ROADWAY
1	126.4	1	136.2	124.6	11.6	9.3	90.0	98.6	х					Heriz	zon C Pt. 9 (-17	<u> </u>
2	114.8	2	125.3	118.1	7.2	6.1	90.0	102.9	х						zon C Pt. 9 (-18	
Comi	naction Fo	uinn	ant llea	d ٠	Vibratory:	· ·	Non-Vi	hratory			Smoo	oth Steel Dri	um	Sheensfoot	y Brickfoo	nt .
	Rubber-tire		ioni oso			x					-					
Rema				_		Engineering										
	•			<u></u>			,				-					
*	Proctor No			Maximur	m Density (PCF)	. <u> </u>	Opt. Mo	isture (%)	St	d. Proctor	Mod. Proctor	_ Gaug	e Make:	Troxler
			<u> </u>		126.4		9.7		X		X		Gaug	e Model #:	3440	
					114.8			8	3.8		<u>.</u> ,	X		Gaug	e Serial #	26909
											. ,					d Counts
	Method:	A: Ba	ockscatte	r	B: Direct	Fransmissio	on	В	_					_	Moisture 617	Density 1791



Project: Honeywell Deferred Areas Remediation

Date: 12/22/2020

APPENDIX I SHEETPILE DOCUMENTATION

REFERENCES

- 1. MRCE JULY 17, 2013 "TEMPORARY SUPPORT OF EXCAVATION" FOR STUDY AREA 6 NORTH.
- 2. WOOD JULY 8, 2019 "BULKHEAD DEFERRED AREA REMEDIATION DRAWINGS" FOR STUDY AREA 6 SOUTH.
- 3. AMEC FEBRUARY 10, 2016 "AS BUILT HYDRAULIC BARRIER DRAWINGS" FOR STUDY AREA 6 SOUTH.
- 4. DURA-BOND STEEL DATED JULY 24 TO OCTOBER 2, 2013 "SHEETPILE LAYOUT FOR SA-6 SOUTH BARRIER WALL" FOR STUDY AREA 6 SOUTH.
- 5. ELEVATIONS ARE REFERENCED TO NGVD 29.

GENERAL

- 1. PLAN DEVELOPED BASED ON REFERENCE 1.
- 2. APPROXIMATE LIMITS OF EXCAVATION DEVELOPED BASED ON REFERENCE 2
- 3. EXISTING GRADE CONTOURS TAKEN FROM REFERENCE 2.
- 4. TIDAL INFORMATION, MEAN HIGH WATER (MHW) AND MEAN LOW WATER (MLW). AND 100 YEAR FLOOD TAKEN FROM REFERENCE 2.
- 5. EXISTING HYDRAULIC BARRIER WALL (HOESCH 1907) ALIGNMENT FROM INFORMATION PROVIDED IN REFERENCES 3 AND 4.
- 6. STANDARD SLIDE RAIL CONTACT SHORING TO BE DESIGNED FOR CONTRACTOR BY ENGINEER LICENSED IN STATE OF NEW JERSEY IN AREAS 2, 3, AND 4. SLIDE RAIL SYSTEM SHALL BE INDEPENDENT OF SHEETING.

MATERIALS

- 7. NORMAL WEIGHT FILL SHALL BE IN ACCORDANCE WITH SPECIFICATION SECTION 02315.
- 8. LIGHTWEIGHT FILL SHALL BE LIGHT WEIGHT COARSE EXPANDED SHALE AGGREGATE SUCH AS SOLITE PRODUCED BY NORTHEAST SOLITE CORPORATION, AND HAVE A MAXIMUM PARTICLE SIZE OF $\frac{3}{4}$ INCH. THE AGGREGATE SHALL BE FREE FROM ORGANIC MATTER, CLAY, COAL, LIMESTONE, SHALE, OR OTHER DELETERIOUS MATERIALS.
- 9. GROUT COLUMN SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 1,000 PSI.
- 10. STEEL SHEETING SHALL BE HOT ROLLED AND BE OF THE TYPES AND SIZES SHOWN ON DRAWINGS AND AS SPECIFIED HEREIN. SHEET PILES MUST BE CAPABLE OF INTERLOCKING WITH OTHER SHEET PILES UNLESS OTHERWISE NOTED IN THE CONTRACT DRAWINGS. STEEL SHEETING SHALL CONFORM WITH THE FOLLOWING REQUIREMENTS:
- A. EXTERIOR SHEETING, INTERLOCKS AND ADDED INTERLOCKS: ASTM A-690, GRADE 50 OR APPROVED EQUAL.
- B. INTERIOR SHEETING AND INTERLOCKS: ASTM A-572, GRADE 50 OR APPROVED EQUAL.
- 11. STEEL SHEET PILING SHALL BE COATED EACH SIDE WITH COAL TAR EPOXY, UNLESS OTHERWISE NOTED ON THE CONTRACT DRAWINGS. COAL TAR EPOXY SHALL BE SHOP APPLIED "BITUMASTIC 300 M" AS MANUFACTURED BY THE CARBOLINE COMPANY OR APPROVED EQUAL. COATING SHALL BE APPLIED IN ACCORDANCE WITH THE MANUFACTURERS' RECOMMENDATIONS TO A MINIMUM DRY FILM THICKNESS OF 16 MILS, APPLIED IN TWO COATS OF 8 MILS EACH. SHEET PILING SHALL BE COATED TO THE FOLLOWING DEPTHS:
 - A. EXTERIOR SHEETING AREA 1: COATED OVER THE TOP 25 FT EACH
 - B. EXTERIOR SHEETING IN AREAS 2,3, AND 4: COATED OVER TOP 20 FT EACH SIDE.
- C. INTERIOR SHEETING SHALL BE UNCOATED.

EASTERN

601328.45

601390.13

601517.07

601523.37

601530.31

601552.38

601447.51

601452.56

601426.82

601354.22

601331.19

685465.23

W.P. 11

12. ALL INTERLOCKS (EXCEPT THOSE BETWEEN WORK POINTS 6 AND 7) SHALL BE SEALED WITH WADIT OR APPROVED EQUAL TO PREVENT WATER SEEPAGE FROM THE RIVER TO THE EXCAVATION DURING CONSTRUCTION ACTIVITIES.

- 13. TEMPORARY BRACKETS AND BENT PLATE CAP SHALL BE ASTM A-572, GRADE 50.
- 14. ALL WELDING SHALL BE PERFORMED IN ACCORDANCE WITH AWS D1.1. USE E-70 ELECTRODES.
- 15. WIRE MESH AND TIES SHALL BE STAINLESS STEEL.
- 16. FILTER FABRIC SHALL BE MIRAFI 140N NON-WOVEN GEOTEXTILE AS MANUFACTURED BY TENCATE GEOSYNTHETICS AMERICAS.

DEWATERING. EXCAVATION. AND BACKFILLING:

- 17. CONTRACTOR TO MAINTAIN THE FOLLOWING DEWATERING CONDITIONS DURING EXCAVATION. RECORD PIEZOMETERS DAILY TO CONFIRM WATER LEVEL PRIOR TO EXCAVATING.
 - A. EXCAVATION AREA 1: DEWATER TO MAINTAIN WATER TABLE MINIMUM OF TWO FEET BELOW EXCAVATION SUBGRADE. DEWATER IN ADVANCE OF EXCAVATION. DO NOT EXCAVATE IN THE WET.
 - B. PRE-EXCAVATION TO THE EAST OF EXISTING HYDRAULIC BARRIER: DEWATER TO EL. O OR LOWER DURING EXCAVATION IN AREA 1.
- A. EXCAVATION AREAS 2 TO 4: DEWATERING SHOULD NOT BE REQUIRED FOR THESE AREAS.
- 18. REMOVE TIMBER AND STEEL REMAINS OF FORMER BULKHEAD DURING EXCAVATION. CUT PILES OFF AT FINAL SUBGRADE. SIZE, TRANSPORT, AND DISPOSE REMAINS OFF SITE.
- 19. ABANDONED OUTFALL PIPES (TO BE CONFIRMED) TO BE REMOVED OR DETACHED PRIOR TO PERMANENT SHEETING INSTALLATION. RECOVER OUTFALL PERMIT PLATES FOR OWNER RECORD.
- 20. DURING THE EXCAVATION AND BACKFILLING OPERATIONS OF THE NORTHERN PORTION OF AREA 1, WITHIN 20 FEET SOUTH OF EXISTING WEDGE WALL, NO SURCHARGE OR VEHICLES ARE ALLOWED WITHIN 15 FEET NORTH OF THE EXISTING NORTH WALL WHILE SUBGRADE IS BELOW EL. -5.0. CONTRACTOR MAY USE A LONG REACH EXCAVATOR TO BACKFILL THIS AREA. COMPACT SOIL ADJACENT TO THE EXISTING WEDGE WITH REMOTE CONTROL COMPACTOR TO PREVENT PERSONNEL OPERATIONS WITHIN 20 FEET OF WALL
- 21. REMOVE EXISTING BERM AND EXCAVATE TO EL. +5.0. THEN, PLACE 6" DGA STONE OVER SEPARATION GEOTEXTILE TO BUILD WORK PLATTFORM AND CONTROL DUST.

SUBMITTALS

22. SUBMIT CALCULATIONS AND EQUIPMENT CATALOGUE FOR CONSTRUCTION EQUIPMENT SURCHARGE ADJACENT TO EXISTING TIMBER BULKHEAD WITHIN LIMITS SHOWN IN EQUIPMENT LIMITS IN DWG. SOE-2.

EXISTING UTILITIES

- 23. PROTECT UTILITY CONDUITS AT THE NORTH END (SA-7 PROPERTY).
- 24. SEAL AND ABANDON EXISTING OBSERVATION WELLS ON SLOPE. RECOVER PERMIT PLATES FOR OWNER RECORD.

LEGEND:

EL. X

ELEVATION OF BOTTOM OF EXCAVATION (FT.)

EXISTING GRADE CONTOUR ELEVATION (FT.)

NEW OPEN STAND PIPE PIEZOMETER. INSTALL BEFORE EXCAVATION BELOW

WORKING POINT W. P.

ELEVATION +3.5

REV. DATE BY DESCRIPTION CHROMIUM REMEDY STUDY AREA 6 SOUTH NEW JERSEY JERSEY CITY

HONEYWELL INTERNATIONAL

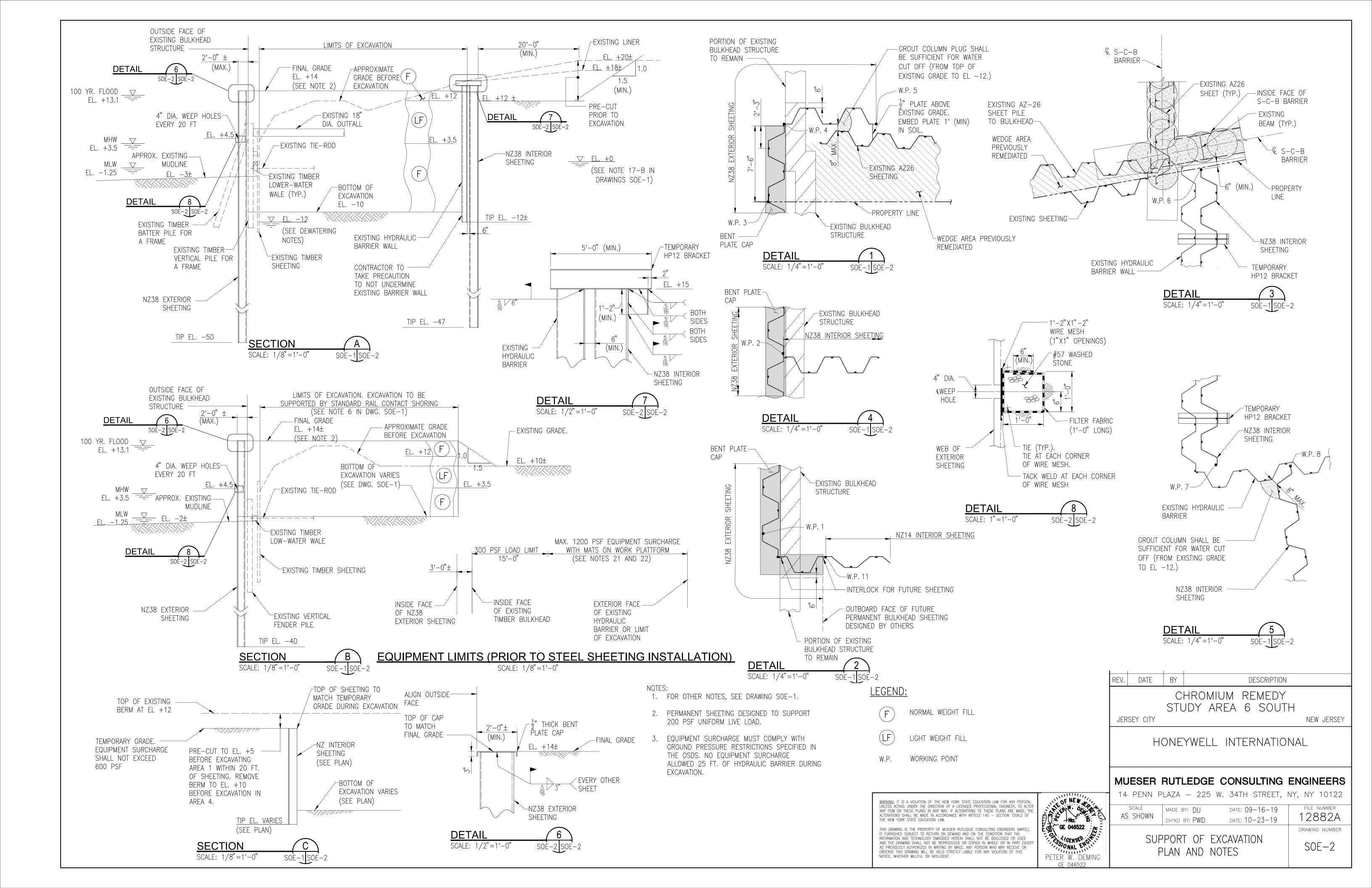
MUESER RUTLEDGE CONSULTING ENGINEERS

14 PENN PLAZA - 225 W. 34TH STREET, NY, NY 10122

FILE NUMBER MADE BY: DU DATE: 09-16-1912882A AS SHOWN CH'KD BY: PWD DATE: 10-23-19

DRAWING NUMBER

SOE-1


SUPPORT OF EXCAVATION

PLAN AND NOTES

No. NEW GE 046522 CENSED C

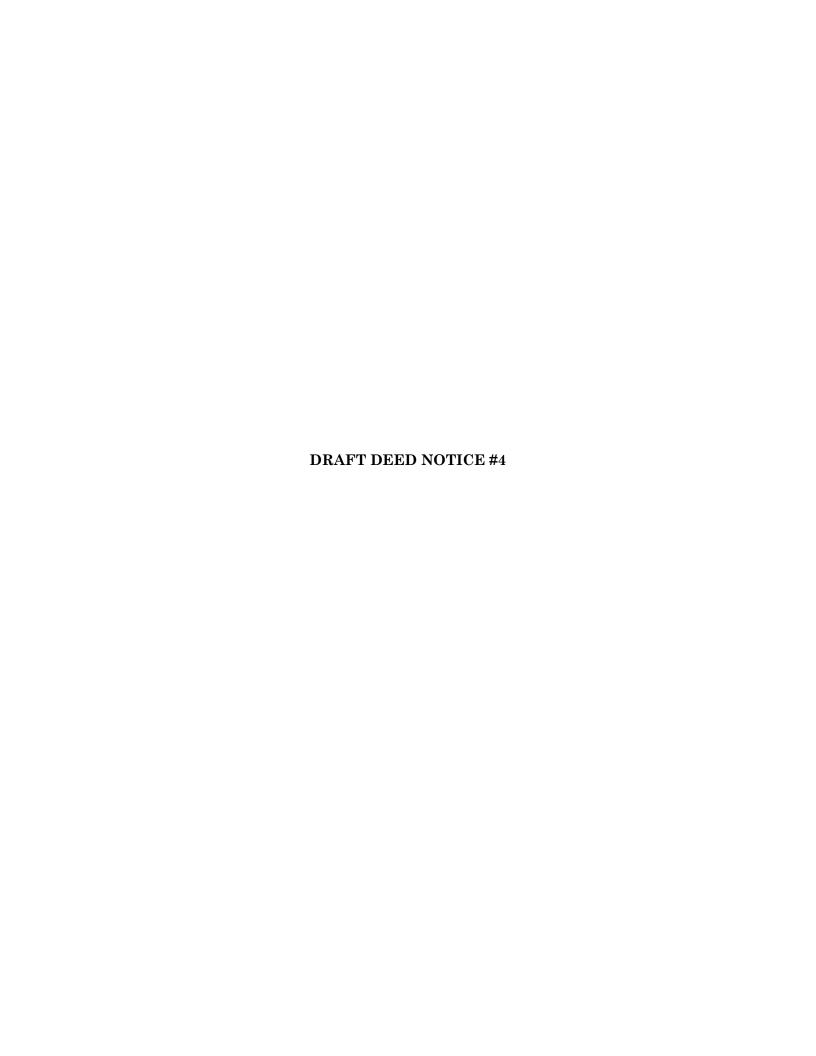
WARNING: IT IS A VIOLATION OF THE NEW YORK STATE EDUCATION LAW FOR ANY PERSON, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER ANY ITEM ON THESE PLANS IN ANY WAY. IF ALTERATIONS TO THESE PLANS ARE MADE, THE ALTERATIONS SHALL BE MADE IN ACCORDANCE WITH ARTICLE 145 — SECTION 7209.2 OF THE NEW YORK STATE EDUCATION LAW. THIS DRAWING IS THE PROPERTY OF MUESER RUTLEDGE CONSULTING ENGINEERS (MRCE), IS FURNISHED SUBJECT TO RETURN ON DEMAND AND ON THE CONDITION THAT THE INFORMATION AND TECHNOLOGY EMBODIED HEREIN SHALL NOT BE DISCLOSED OR USED AND THE DRAWING SHALL NOT BE REPRODUCED OR COPIED IN WHOLE OR IN PART EXCEP AS PREVIOUSLY AUTHORIZED IN WRITING BY MRCE. ANY PERSON WHO MAY RECEIVE OR OBSERVE THIS DRAWING WILL BE HELD STRICTLY LIABLE FOR ANY VIOLATION OF THIS NOTICE, WHETHER WILLFUL OR NEGLIGENT.

PETER W. DEMING GF 046522

APPENDIX J

DEFLECTION MONITORING (CD ONLY)

APPENDIX K


VIBRATION MONITORING (CD ONLY)

APPENDIX L CAP GEOSYNTHETIC QUALITY ASSURANCE REPORT (CD ONLY)

APPENDIX M

EXCAVATION CERTIFICATION E-MAILS (CD ONLY)

	APPENDIX N
DRAFT DEED NOTICES AND 1	REMEDIAL ACTION PERMIT MODIFICATION
	NEWIEDINE MOTION LEWWIT MODII TOMITON

Return Address: Waters, McPherson, McNeill, P.C. P.O. Box 1560 300 Lighting Way Secaucus, New Jersey 07096-1560

DN#4 SA-7 Portions of Block 21901.01 Lots 8 and 9

Instrument Number	

DRAFT DEED NOTICE

IN ACCORDANCE WITH N.J.S.A. 58:10B-13, THIS DOCUMENT IS TO BE RECORDED IN THE SAME MANNER AS ARE DEEDS AND OTHER INTERESTS IN REAL PROPERTY.

Prepared by:	
[Signature]	
Perry Florio Attorney-at-Law of New Jersey	
[Print name below signature]	
Recorded by:	
[Signature, Officer of County Recording Office]	-
[Print name below signature]	
DEED NOTICE	
This Deed Notice is made as of the day of	Street, Jersey City, New Jersey wner"). The Property (also
by metes and bounds in Exhibit A-2 attached.	
1. THE PROPERTY. City of Jersey City is the owner in fee sindesignated as <i>Block 21901.01</i> , <i>Lots 8 and 9</i> ¹ , on the tax map of	

¹ All references to Block 21901.01 Lots 8 and 9 in this Deed Notice shall mean the applicable portions of the Block 21901.01 Lots 8 and 9 as shown in the metes and bounds description, regardless of whether the word "portion(s)" is specifically called out or not.

County; the New Jersey Department of Environmental Protection's ("NJDEP" or "Department")

Program Interest Number ("Preferred ID") for the contaminated site which this property is

associated with is G000002548 and it is referred to by the NJDEP as *Hudson County Chromate Site No. 115* ("Site"); and the property is more particularly described in Exhibit A, which is attached hereto and made a part hereof (the "Property"). The Property is part of the site referred to as Study Area 7 (Site 115) and the subject of an Administrative Consent Order (ACO) between Honeywell International Inc. ("Honeywell") and the Department dated June 17, 1993, and a Court-Ordered Remedy pursuant to the U.S. District Court for the District of New Jersey ("Court") Final Judgment in *Interfaith Community Organization v. Honeywell International Inc.*, Case No. 95-2097, entered on June 30, 2003. Study Area 7 was previously remediated by Honeywell and received a No Further Action/Covenant Not to Sue letter, dated December 23, 2010, which did not include Tract 1. To the extent that there is any conflict or inconsistency between the terms of this Deed Notice and the terms of the Consent Decree, the Consent Decree shall govern.

2. REMEDIATION.

- i. The Department's Bureau of State Case Management (BCM) is the entity within the Department that is responsible for the chromium oversight of the remediation of SA-7. The matter for SA-7 was Hudson County Chromate Site No. 115 PI No. G000002548. The Department has approved this Deed Notice as an institutional control for the Property, which is part of the remediation of the Property.
- ii. N.J.A.C. 7:26C-7 requires the Owner, among other persons, including the responsible party Honeywell to obtain a soil remedial action permit for the soil remedial action at the Property. That permit will contain the monitoring, maintenance and biennial certification requirements that apply to the Property.
- 3. SOIL CONTAMINATION. Honeywell, a corporation of the State of Delaware, licensed to do business in the State of New Jersey whose post office address is 115 Tabor Road, Morris Plains, New Jersey 07950, has remediated SA-7 to address chromium-related soil and shallow groundwater contamination, except for the Property and certain other deed noticed areas where engineering controls were implemented.

For SA-7, the Court-Ordered Remedy 100% Design was approved by the Court on March 14, 2005. Remediation was completed to comply with the court order to remove all materials containing hexavalent chromium in excess of 240 milligrams per kilogram ("mg/kg"). The remedial action achieved compliance with the Department's current most stringent soil cleanup criteria of 20 mg/kg, with the exception of a small portion of the Property at the bulkhead along the Hackensack River where excavation was technically impractical (the Technically Impracticable Area (or "TI Area")). Completion of the excavation remedy at SA-7 was acknowledged by the Court in the Amended Order Modifying the Judgment, January 13, 2012, ECF No. 1116, in *Interfaith Community Organization v. Honeywell International Inc.*, Civ. No. 95-2097. Remedial actions for soils are also documented in a Remedial Action Report for Soils ("RAR") submitted to the New Jersey Department of Environmental Protection during December 2010.

The Property is an approximately 22,457 square foot area on SA-7 between the bulkhead and the western hydraulic barrier installed at SA-7 that includes the western hydraulic barrier of SA-7. The Property is the "Technically Impracticable Area or TI Area" identified in the SA-7 RAR. NJDEP issued a conditional No Further Action letter for SA-7 soils on December 23, 2010, that excludes the TI Area. Soils within the Property do not meet the 20 mg/kg objective in the NJDEP Chromium Policy. Property soils exceeding 20 mg/kg hexavalent chromium are covered by at least 7 feet of clean soils. The Property will not be remediated by Honeywell; instead, the 7-foot thick clean soil cap will remain in place and will be subject to this Deed Notice. The Property also includes two steel sheetpile "wing walls" that project toward the bulkhead from the northern and southern corners of the hydraulic barrier intersections. These wing walls are part of the SA-7 Remedy in that they act to minimize re-contamination of the clean backfill material placed in the TI area from either the north or south. The Riverwalk feature including bulkhead improvements, additional fill soils and hardscape features will be constructed over the top of the Deed Notice Area. The provisions of the Long Term Monitoring Plan ("LTMP"), developed pursuant to the Consent Decree, will apply to the Property.

The soil contamination is described, including the type, concentration and specific location of such contaminants, in Exhibit B, which is attached hereto and made a part hereof. As a result of the remaining soil contamination, there is a statutory requirement for this Deed Notice and engineering controls in accordance with N.J.S.A. 58:10B-13.

- 4. CONSIDERATION. In accordance with the Department's issuance of the No Further Action/Covenant Not to Sue letter for soils at SA-7, and in consideration of the terms and conditions of that approval, and in accordance with the Consent Decree, and other good and valuable considerations, Owner has agreed to subject the Property to certain statutory and regulatory requirements which impose restrictions upon the use of the Property, to restrict certain uses of the Property, and to provide notice to subsequent owners, lessees and operators of the restrictions and the monitoring, maintenance, and biennial certification requirements outlined in this Deed Notice and required by law, as set forth herein.
- 5A. RESTRICTED AREAS. Due to the potential presence of contamination remaining at concentrations that do not allow for unrestricted use, the Owner has agreed, as part of the remedial action for the Property, to restrict the use of certain parts of the Property (the "Restricted Area"); a narrative description of these restrictions is provided in Exhibit C, which is attached hereto and made a part hereof. The Owner has also agreed to maintain a list of these restrictions on site for inspection by governmental officials, to the extent feasible. Owner will develop a binder containing a list of these restrictions which will be maintained either at onsite trailers or within the Groundwater Treatment Plant building, available for review and inspection by governmental enforcement officials if requested.
- 5B. RESTRICTED LAND USES. The following statutory land use restrictions apply to the Restricted Area:
- i. The Brownfield and Contaminated Site Remediation Act, N.J.S.A. 58:10B-12.g(10), prohibits the conversion of a contaminated site, remediated to non-residential soil remediation standards that require the maintenance of engineering or institutional controls, to a childcare

facility, or public, private, or charter school without the Department's prior written approval, unless a presumptive remedy is implemented; and

- ii. The Brownfield and Contaminated Site Remediation Act, N.J.S.A. 58:10B-12.g(12), prohibits the conversion of a landfill, with gas venting systems and or leachate collection systems, to a single-family residence or a childcare facility.
- 5C. ENGINEERING CONTROLS. Due to the potential presence of contaminants that do not allow for unrestricted use, the Owner is also agreeing, as part of the remedial action for the Property, to certain engineering controls on the Property; a narrative description of these engineering controls is provided in Exhibit C, which is attached hereto and made a part hereof. The Owner has also agreed to maintain a list of these restrictions on site for inspection by governmental officials, to the extent feasible. Honeywell shall be responsible for monitoring and maintenance of engineering controls and biennial certification requirements as specified in the LTMP, and Paragraphs 8A and 8B herein.
- 5D. LONG TERM MONITORING PLAN. Honeywell has developed an LTMP which sets forth requirements for monitoring, maintenance, and repairing or replacing the soil chromium remedial measures including engineering controls within the Property, with limitations for the Property as described above, and requirements for notification and reporting pursuant to the Deed Notice, and Soil Remedial Action Permit. A copy of the LTMP is maintained by Honeywell at 115 Mount Tabor Road, Morris Plains, NJ 07950. This Deed Notice is appended to the LTMP.
- 5E. WORKER TRAINING MATERIALS. All maintenance workers engaged in maintenance at the Property shall be trained in maintenance procedures that do not jeopardize the integrity of the Chromium Remedy. Workers shall be trained using materials developed by Honeywell pursuant to the Consent Decree.

6A. CHANGE IN OWNERSHIP AND REZONING.

- i. The Owner and the subsequent owners, lessors, and lessees shall cause all leases, grants, and other written transfers of an interest in the Restricted Area to contain a provision expressly requiring all holders thereof to take the Property subject to the restrictions contained herein and to comply with all, and not to violate any of the conditions of this Deed Notice. Nothing contained in this Paragraph shall be construed as limiting any obligation of any person to provide any notice required by any law, regulation, or order of any governmental authority.
- ii. The Owner and the subsequent owners shall provide written notice to the Department of Environmental Protection on a form provided by the Department and available at www.nj.gov/srp/forms within 30 calendar days after the effective date of any conveyance, grant, gift, or other transfer, in whole or in part, of the Owner's or subsequent owner's interest in the Restricted Area.

- iii. The Owner and the subsequent owners shall provide written notice to the Department, on a form available from the Department at www.nj.gov/srp/forms, within 30 calendar days after the owner's petition for or filing of any document initiating a rezoning of the Property to residential.
- 6B. SUCCESSORS AND ASSIGNS. This Deed Notice shall be binding upon Owner and upon Owner's successors and assigns, and subsequent owners, lessors, lessees and operators while each is an owner, lessor, lessee, or operator of the Property.

7A. ALTERATIONS, IMPROVEMENTS, AND DISTURBANCES.

- i. The Owner and all subsequent owners, lessors, and lessees shall notify any person, including, without limitation, tenants, employees of tenants, and contractors, intending to conduct invasive work or excavate within the Restricted Areas, of the nature and location of contamination in the Restricted Areas, and, of the precautions necessary to minimize potential human exposure to contaminants. Prior to the start of invasive work, Honeywell shall be notified of the activity by calling 855-727-2658.
- ii. Except as provided in Paragraphs 7A(iv) and 7B, below, no person shall make, or allow to be made, any alteration, improvement, or disturbance in, to, or about the Property which disturbs any engineering control at the Property without first obtaining a soil remedial action permit modification pursuant to N.J.A.C. 7:26C-7. Nothing herein shall constitute a waiver of the obligation of any person to comply with all applicable laws and regulations including, without limitation, the applicable rules of the Occupational Safety and Health Administration.
- iii. A soil remedial action permit modification is required for any permanent alteration, improvement, or disturbance and the owner, lessor, lessee or operator shall submit the following within 30 days after the occurrence of the permanent alteration, improvement, or disturbance:
 - (A) A Remedial Action Workplan or Linear Construction Project notification and Final Report Form, whichever is applicable;
 - (B) A Remedial Action Report and Termination of Deed Notice Form; and
 - (C) A revised recorded Deed Notice with revised Exhibits, and Remedial Action Permit Modification or Remedial Action Permit Termination form and Remedial Action Report.
- iv. No owner, lessor, lessee, or operator shall be required to obtain a Remedial Action Permit Modification for any temporary alteration, improvement, or disturbance, provided that the site is restored to the condition described in the Exhibits to this Deed Notice, and the owner, lessee, or operator complies with the following:
 - (A) Restores any disturbance of an engineering control to pre-disturbance conditions, consistent with the requirements of the LTMP, within 60 calendar days after the initiation of the alteration, improvement or disturbance;

- (B) Ensures that all applicable worker health and safety laws and regulations are followed during the alteration, improvement, or disturbance, and during the restoration;
- (C) Ensures that human exposure to contamination in excess of the remediation criteria or standards does not occur; and
- (D) Describes, in the next biennial certification the nature of the temporary alteration, improvement, or disturbance, the dates and duration of the temporary alteration, improvement, or disturbance, the name of key individuals and their affiliations conducting the temporary alteration, improvement, or disturbance, and the notice that the Owner gave to those persons prior to the disturbance.
- 7B. EMERGENCIES. In the event of an emergency which presents, or may present, an unacceptable risk to the public health and safety, or to the environment, or an immediate environmental concern, see N.J.S.A. 58:10C-2, any person may temporarily breach an engineering control provided that that person complies with each of the following:
- i. Immediately notifies the Department of Environmental Protection of the emergency, by calling the DEP Hotline at 1-877-WARNDEP or 1-877-927-6337;
 - ii. Immediately notifies Honeywell of the emergency by calling 855-727-2658;
- iii. If applicable, hires a Licensed Site Remediation Professional (unless the Restricted Areas includes an unregulated heating oil tank) to respond to the emergency;
- iv. Limits both the actual disturbance and the time needed for the disturbance to the minimum reasonably necessary to adequately respond to the emergency;
- v. Implements all measures necessary to limit actual or potential, present or future risk of exposure to humans or the environment to the contamination;
- vi. Notifies the Department of Environmental Protection when the emergency or immediate environmental concern has ended by calling the DEP Hotline at 1-877-WARNDEP or 1-877-927-6337;
- vii. Restores the engineering control to the pre-emergency conditions, consistent with the requirements of the LTMP, as soon as possible; and
- viii. Submits to the Department of Environmental Protection within 60 calendar days after completion of the restoration of the engineering control, a report including: (a) the nature and likely cause of the emergency; (b) the measures that have been taken to mitigate the effects of the emergency on human health and the environment; (c) the measures completed or implemented to restore the engineering control; and (d) any changes to the engineering control or site operation and maintenance plan to prevent reoccurrence of such conditions in the future.

8. TERMINATION OF DEED NOTICE.

- i. This Deed Notice may be terminated only upon recording a Department-approved Termination of Deed Notice, available at N.J.A.C. 7:26C Appendix C, with the office of the Register of Deeds and Mortgages of Hudson County, New Jersey, expressly terminating this Deed Notice.
- ii. Within 30 calendar days after recording a Department-approved Termination of Deed Notice, the owner of the property should apply to the Department for termination of the soil remedial action permit pursuant to N.J.A.C. 7:26C-7.
- 9. ACCESS. The Owner and the subsequent owners, lessors, lessees and operators agree to allow the Department and Honeywell, their agents and representatives access to the Property to inspect and evaluate the continued protectiveness of the remedial action that includes this Deed Notice and to conduct additional remediation to ensure the protection of the public health and safety and of the environment if the subsequent owners, lessors, lessees and operators, during their ownership, tenancy, or operation, and the Owner fail to conduct such remediation pursuant to this Deed Notice as required by law. The Owner and the subsequent owners, lessors, and lessees shall also cause all leases, subleases, grants, and other written transfers of an interest in the Restricted Area to contain a provision expressly requiring that all holders thereof provide such access to the Department and Honeywell.

10. ENFORCEMENT OF VIOLATIONS.

- i. This Deed Notice itself is not intended to create any interest in real estate in favor of the Department of Environmental Protection, nor to create a lien against the Property, but merely is intended to provide notice of certain conditions and restrictions on the Property and to reflect the regulatory and statutory obligations imposed as a conditional remedial action for this site.
- ii. The restrictions provided herein may be enforceable solely by the Department against any person who violates this Deed Notice. To enforce violations of this Deed Notice, the Department may initiate one or more enforcement actions pursuant to N.J.S.A. 58:10-23.11, and N.J.S.A. 58:10C, and require additional remediation and assess damages pursuant to N.J.S.A. 58:10-23.11, and N.J.S.A. 58:10C.
- 11. SEVERABILITY. If any court of competent jurisdiction determines that any provision of this Deed Notice requires modification, such provision shall be deemed to have been modified automatically to conform to such requirements. If a court of competent jurisdiction determines that any provision of this Deed Notice is invalid or unenforceable and the provision is of such a nature that it cannot be modified, the provision shall be deemed deleted from this instrument as though the provision had never been included herein. In either case, the remaining provisions of this Deed Notice shall remain in full force and effect.

12A. EXHIBIT A. Exhibit A includes the following maps of the Property and the vicinity:

- i. Exhibit A-1: Vicinity Map A map that identifies by name the roads, and other important geographical features in the vicinity of the Property (for example, USGS Quad map, Hagstrom County Maps);
- ii. Exhibit A-2: Metes and Bounds Description A tax map of lots and blocks as wells as metes and bounds description of the Property, including reference to tax lot and block numbers for the Property;
- iii. Exhibit A-3: Property Map A scaled map of the Property, scaled at one inch to 200 feet or less, and if more than one map is submitted, the maps shall be presented as overlays, keyed to a base map; and the Property Map shall include diagrams of major surface topographical features such as buildings, roads, and parking lots.
- 12B. EXHIBIT B. Exhibit B includes the following descriptions of the Restricted Area:
 - i. Exhibit B-1 Restricted Area Maps A separate map for each restricted area that includes:
 - (A) As-built diagrams of each engineering control, including caps, fences, slurry walls, (and, if any) ground water monitoring wells, extent of the ground water classification exception area, pumping and treatment systems that may be required as part of a ground water engineering control in addition to the deed notice;
 - (B) As-built diagrams of any buildings, roads, parking lots and other structures that function as engineering controls; and
 - (C) Designation of all soil and all upland sediment sample locations within the restricted area that exceed any soil or sediment standard that are keyed into one of the tables described in the following paragraph.
- ii. Exhibit B-2: Restricted Area Data Table If applicable, a separate table for each restricted area that includes either (A) or (B) through (F):
 - (A) Only for historic fill extending over the entire site or a portion of the site and for which analytical data are limited or do not exist, a narrative that states that historic fill is present at the site, a description of the fill material (*e.g.*, ash, cinders, brick, dredge material), and a statement that such material may include, but is not limited to, contaminants such as PAHs and metals;
 - (B) Sample location designation from Restricted Area map (Exhibit B-1);
 - (C) Sample elevation based upon mean sea level;
 - (D) Name and chemical abstract service registry number of each contaminant with a concentration that exceeds the unrestricted use standard;

- (E) The restricted and unrestricted use standards for each contaminant in the table; and
- (F) The remaining concentration of each contaminant at each sample location at each elevation.
- 12C. EXHIBIT C. Exhibit C includes narrative descriptions of the institutional controls and engineering controls as follows:
- i. Exhibit C-1: Deed Notice as Institutional Control: Exhibit C-1 includes a narrative description of the restriction and obligations of this Deed Notice that are in addition to those described above, as follows:
 - (A) Description and estimated size of the Restricted Area as described above;
 - (B) Description of the restrictions on the Property by operation of this Deed Notice; and
 - (C) The objective of the restrictions.
- ii. Exhibit C-2: Engineering Control: Clean Fill/Crushed Stone Cover. Exhibit C-2 includes a narrative description of the engineering control as follows:
 - (A) Description of the engineering control;
 - (B) The objective of the engineering control; and
 - (C) How the engineering control is intended to function.

ATTEST:	City of Jersey City
Peter J. Baker, Corporation Counsel	By John J. Metro, Acting Business Administrator
STATE OF NEW JERSEY SS.: COUNTY OF HUDSON	
I certify that onthis person acknowledged under oath, to m	, 2021, Peter J. Baker personally came before me, and y satisfaction, that:
(a) this person is the Corporation Coun Corporation named in this document;	sel of the City of Jersey City, the Municipal
	o the signing of this document by the proper officer lity of Jersey City, the Municipal Corporation named
(c) this document was signed and delivand was duly authorized;	ered by the Municipal Corporation as its voluntary act
(d) this person knows the proper seal of document; and	f the Municipal Corporation which was affixed to this
(e) this person signed this proof to attest	st to the truth of these facts.
Signed and sworn before me on	, 2021
	, Notary Public
Print name and title	

13. SIGNATURES. IN WITNESS WHEREOF, Owner has executed this Notice in Lieu of

Deed Notice as of the date first written above.

EXHIBIT A

A-1: Site Vicinity Map A-2: Metes and Bounds Description and Tax Map A-3: Property Map

Portion of Block 21901.01, Lots 8 and 9 Jersey City, Hudson County, New Jersey

REMAINDER OF PAGE INTENTIONALLY LEFT BLANK

Exhibit A-2 Metes and Bounds Description of the Deed Notice Area and Exhibit A-2 Tax Map

Portions of Block 21901.01, Lots 8 and 9 Jersey City, Hudson County, New Jersey

REMAINDER OF PAGE INTENTIONALLY LEFT BLANK

331 Newman Springs Road Suite 203

Red Bank New Jersey 07701 Main: 732 704 5209

DESCRIPTION OF PROPERTY
CITY OF JERSEY CITY
HUDSON COUNTY, NEW JERSEY

DEED NOTICE AREA 4 BLOCK 21901.01, LOTS 8 & 9 PROJECT NO. 10000292AB MARCH 15, 2021 PAGE 1 | 2

All that certain lot, tract or parcel of land situate lying and being in the City of Jersey City, in the County of Hudson and State of New Jersey, and being a portion of Lot 8 and Lot 9, Block 21901.01, designated as Deed Notice Area 4 as shown on an exhibit entitled, "Deed Notice Area 4, SA6 South, For Block 21901.01, Lot 8 & Lot 9, City of Jersey City, Hudson County, New Jersey," prepared by Colliers Engineering & Design, Inc., dated March 15, 2021, and being more particularly bounded and described as follows, to wit:

COMMENCING at the intersection of the westerly sideline of New Jersey State Highway Route 440 (112 foot wide right of way), said sideline being distant 61 feet westward at right angles to the centerline thereof, and the division line between Block 21901.01, Lots 3 and 4 as shown on a map entitled "Final Plat Major Subdivision for Bayfront Redevelopment, LLC, Block 21901, Lots 5 thru 10 (Including Block 6) & Block 24601, Lots 1 thru 12, City of Jersey City, Hudson County, New Jersey", prepared by Maser Consulting P.A., dated August 1, 2016 last revised September 21, 2018, and filed in the Hudson County Clerk's Office on November 21, 2018 as instrument no. 20181121130000200; thence-

Running along said division line the following two (2) courses:

- A. N 49° 06' 51" W, 488.50 feet; thence-
- B. **N 59° 38' 29" W, 1,406.87 feet**, to the intersection of the same with the division line between Lots 3 and 9; thence-
- C. **N 61° 12' 57" W, 51.44 feet**, along the division line between Lots 4 and 9 to a corner common to Block 21901.01, Lots 4, 8 and 9; thence-
- D. **N 59° 55' 15" W, 61.50 feet**, along the division line between Lots 8 and 9, to the True Point of **BEGINNING**, and running; thence-
- 1. **S 45°51'07" W, 563.77 feet,** running through said Lot 8, and partly along the division line between Lots 4 and 8 to the intersection of the same with the division line between Lots 4 and 5; thence-
- 2. **S 45°54'51" W, 4.10 feet**, along said division line between Lots 4 and 5; thence-

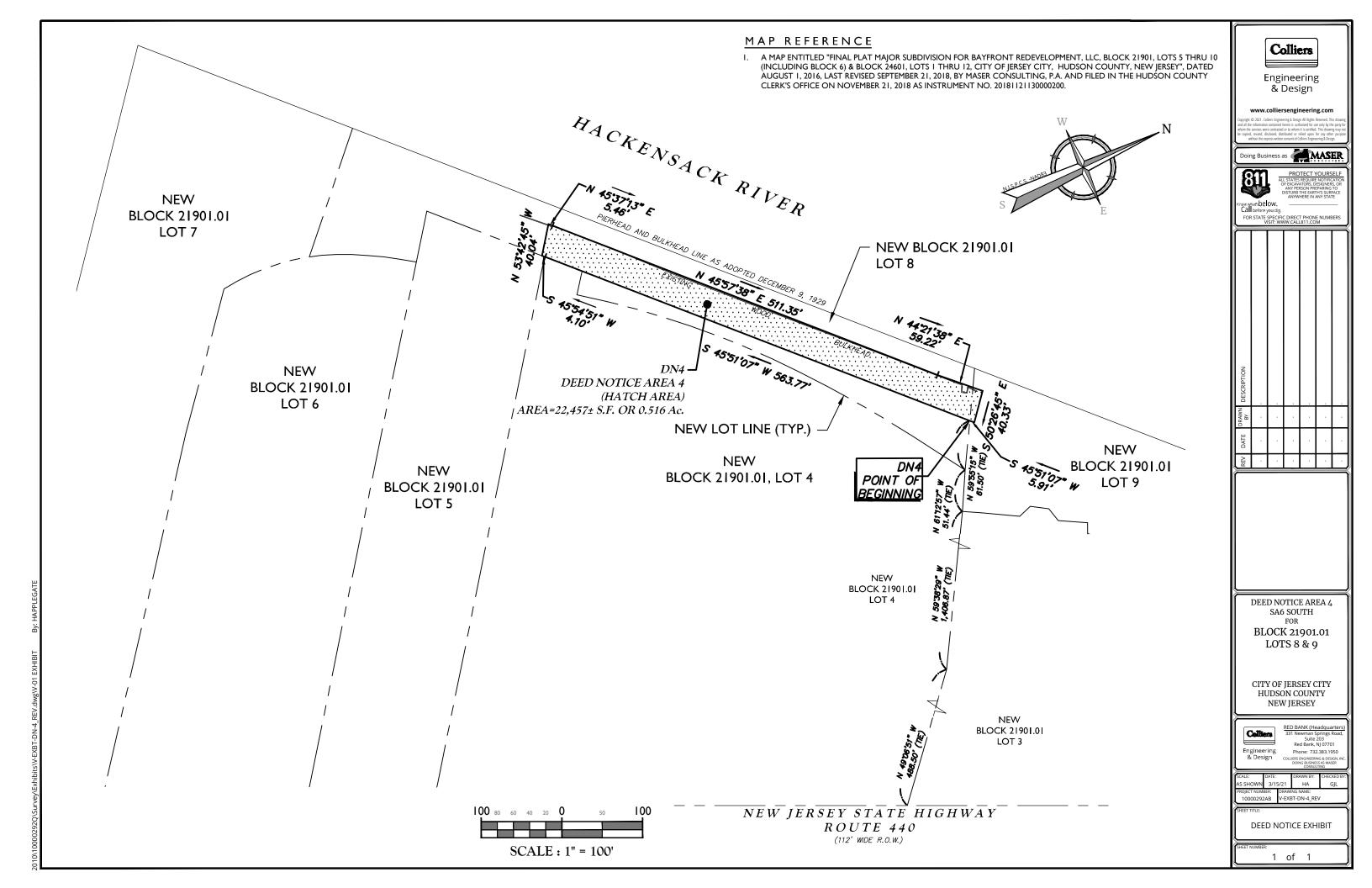
Running through said Lot 8, the following three (3) courses:

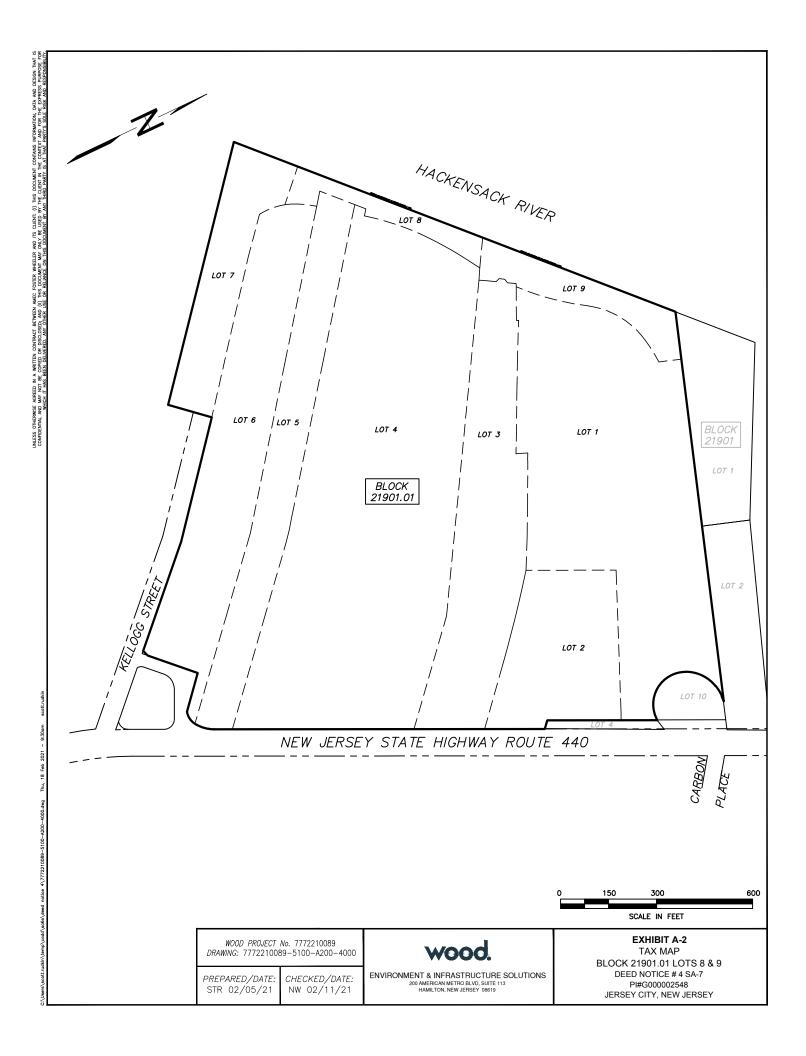
DESCRIPTION OF PROPERTY CITY OF JERSEY CITY HUDSON COUNTY, NEW JERSEY DEED NOTICE AREA 4 BLOCK 21901.01, LOTS 8 & 9 PROJECT NO. 10000292AB MARCH 15, 2021 PAGE 2 | 2

- 3. **N 53° 42' 45" W, 40.04 feet**; thence —
- 4. **N 45° 37' 13" E, 5.46** feet; thence —
- 5. **N 45° 57' 38" E, 511.35 feet**; thence-
- 6. N 44° 21' 38" E, 59.22 feet, through said Lot 8 and beyond, through Lot 9; thence-

Continuing through said Lot 9, the following two (2) courses:

7. **S 50° 26' 45" E**, **40.33** feet; thence-


License Number GS037598


8. **S 45° 51' 07" W**, **5.91 feet**, to the point and place of **BEGINNING**

CONTAINING: 22,457 S.F. of land more or less or 0.516 acres of land more or less.

Glen Lloyd, PLS March 16, 2021
New Jersey Professional Land Surveyor

 $R:\label{logical} R:\label{logical} R:\label{l$

EXHIBIT B

B-1A: Restricted Area Map B-1B: Engineering Controls Map B-1C: As-Built Restoration Plan B-2: Restricted Area Data Table

Portions of Block 21901.01, Lots 8 and 9 Jersey City, Hudson County, New Jersey

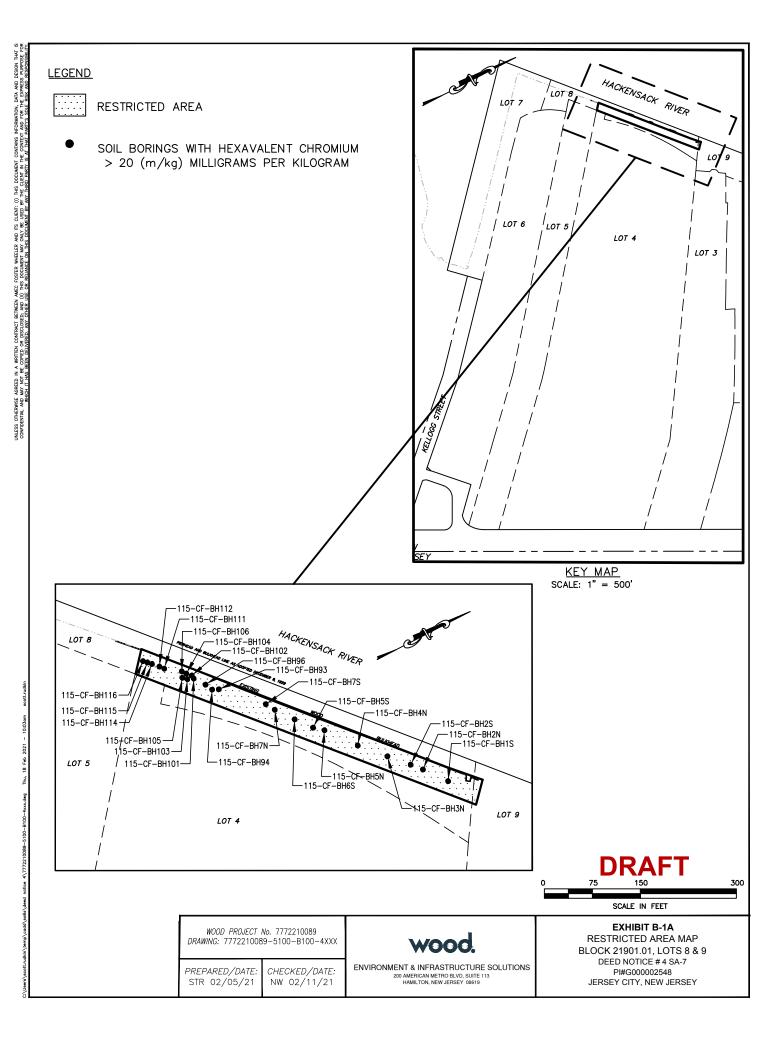

Exhibit B-1 Restricted Area Maps include Exhibit B-1A (Restricted Area and Soil Sample Locations), Exhibit B-1B (Cap System Details), and Exhibit B-1C (As-Built Restoration Plan).

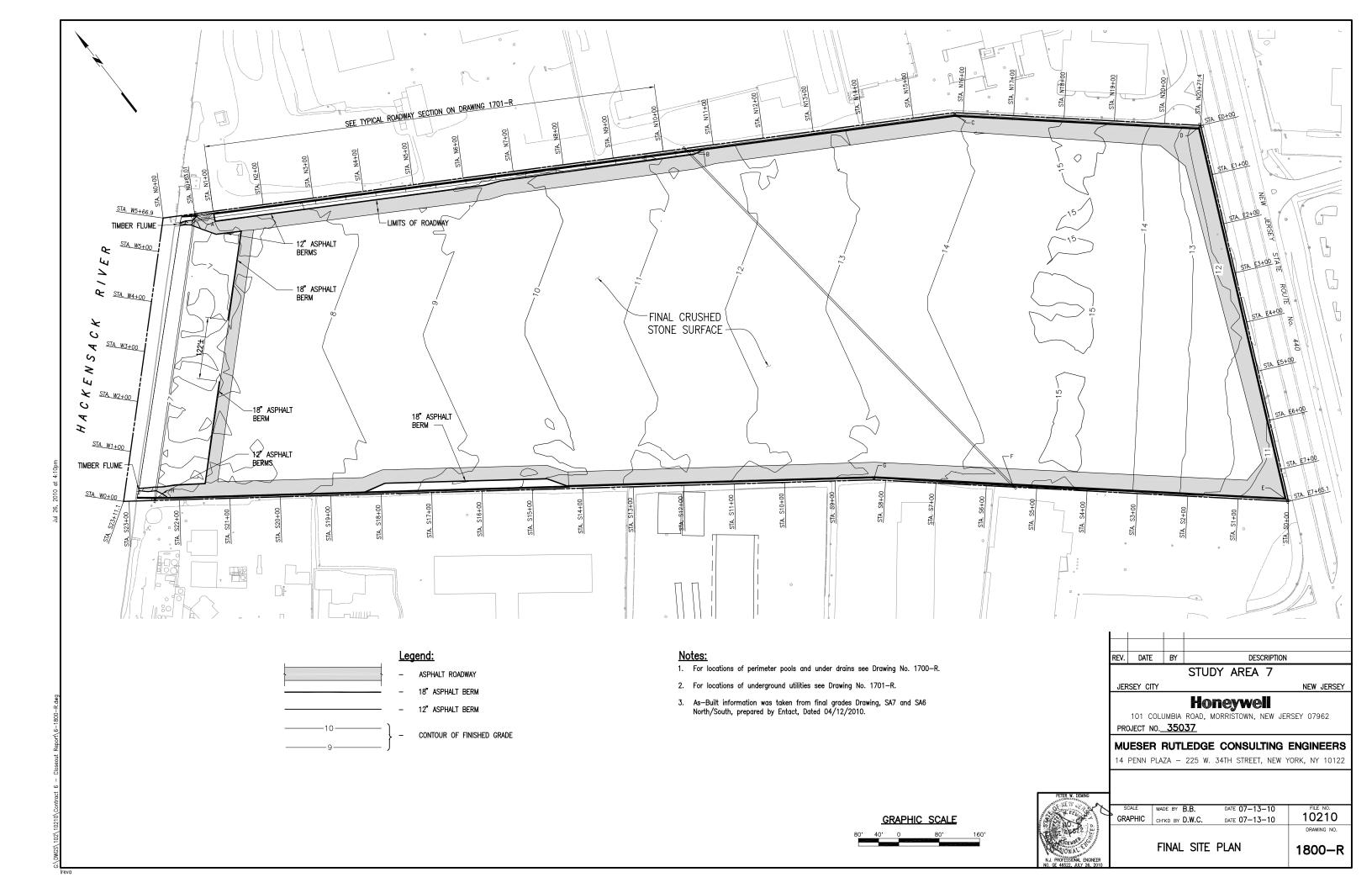
Exhibit B-2 is a Restricted Area Data Table indicating soil sample locations with concentrations of hexavalent chromium remaining above the level established in the New Jersey Department of Environmental Protection (NJDEP) Chromium Policy of 20 milligrams per kilogram (mg/kg).

Restricted Area Map Notes:

Exhibit B-1 indicates the engineering controls for the chromium remedy components. For soils with hexavalent chromium concentrations above 20 mg/kg, the engineering controls include a minimum of 7 to 14 feet of clean soil cover/crushed stone.

REMAINDER OF PAGE INTENTIONALLY LEFT BLANK

CAP SYSTEM DETAIL NTS


WOOD PROJECT No. 7772210089 DRAWING: 7772210089-5100-B200-4000

PREPARED/DATE: CHECKED/DATE: STR 02/05/21 NW 02/11/21

ENVIRONMENT & INFRASTRUCTURE SOLUTIONS 200 AMERICAN METRO BLVD, SUITE 113 HAMILTON, NEW JERSEY 08619

EXHIBIT B-1B CAP SYSTEM DETAILS BLOCK 21901, LOTS 8 & 9 DEED NOTICE # 4 SA-7 PI#G000002548

JERSEY CITY, NEW JERSEY

EXHIBIT B-2 Restricted Area Data Table

Deed Notice #4 SA-7
Portion of Block 21901.01, Lots 8 and 9
Jersey City, New Jersey

Location	Elevation (feet msl)	Contaminant	CASR#	NJDEP Chromium SCC (mg/kg)	Soil Concentration (mg/kg)
115-CF-BH1S	-0.8	Hexavalent Chromium	18540-29-9	20	27.9
115-CF-BH2N	0.058	Hexavalent Chromium	18540-29-9	20	30.6
115-CF-BH2S	-0.311	Hexavalent Chromium	18540-29-9	20	21.2
115-CF-BH3N	0.051	Hexavalent Chromium	18540-29-9	20	36.3
115-CF-BH4N	-0.129	Hexavalent Chromium	18540-29-9	20	22.7 J
115-CF-BH5N	-0.525	Hexavalent Chromium	18540-29-9	20	36.4 J
115-CF-BH5S	-0.154	Hexavalent Chromium	18540-29-9	20	25.3 J
115-CF-BH6S	-1.639	Hexavalent Chromium	18540-29-9	20	46.9
115-CF-BH7N	-2.118	Hexavalent Chromium	18540-29-9	20	31.8
115-CF-BH7S	-1.981	Hexavalent Chromium	18540-29-9	20	20.9
115-CF-BH93	-2.579	Hexavalent Chromium	18540-29-9	20	34.6
115-CF-BH94	-2.556	Hexavalent Chromium	18540-29-9	20	21.7
115-CF-BH96	-3.164	Hexavalent Chromium	18540-29-9	20	28.7
115-CF-BH101	-5.224	Hexavalent Chromium	18540-29-9	20	45.6
115-CF-BH102	-5.657	Hexavalent Chromium	18540-29-9	20	36.8
115-CF-BH103	-5.617	Hexavalent Chromium	18540-29-9	20	42.2
115-CF-BH104	-5.645	Hexavalent Chromium	18540-29-9	20	32.2
115-CF-BH105	-5.563	Hexavalent Chromium	18540-29-9	20	113
115-CF-BH106	-5.597	Hexavalent Chromium	18540-29-9	20	26
115-CF-BH111	-5.291	Hexavalent Chromium	18540-29-9	20	75.1
115-CF-BH112	-5.533	Hexavalent Chromium	18540-29-9	20	105
115-CF-BH113	-5.696	Hexavalent Chromium	18540-29-9	20	68.9
115-CF-BH114	-5.646	Hexavalent Chromium	18540-29-9	20	83.7
115-CF-BH115	-5.718	Hexavalent Chromium	18540-29-9	20	39.9
115-CF-BH116	-5.477	Hexavalent Chromium	18540-29-9	20	61.1
115-CF-BH12E	-7	Hexavalent Chromium	18540-29-9	20	75.9
115-CF-BH12W	-7	Hexavalent Chromium	18540-29-9	20	53.8

Notes:

Results reported in mg/kg.

Data Qualifiers:

J-Data indicates the presence of a compound that meets the identification criteria. The concentration is an approximate value.

Abbreviations:

Feet bgs - Feet below ground surface

mg/kg - milligrams per kilogram

feet msl = feet mean sea level NAVD88 - North American Vertical Datum of 1988

NJDEP Chromium SCC - New Jersey Department of Environmental Protection Chromium Soil Cleanup Criteria, revised April 2010

EXHIBIT C

C-1: Institutional Controls C-2: Engineering Controls

Portions of Block 21901.01, Lot 8 and 9 Jersey City, Hudson County, New Jersey

REMAINDER OF PAGE INTENTIONALLY LEFT BLANK

Exhibit C-1

Deed Notice as Institutional Control

Portions of Block 21901.01, Lots 8 and 9 Jersey City, Hudson County, New Jersey

(A) Description and Estimated Size of the Restricted Area:

The Property is comprised of approximately 22,457 square foot area on SA-7 between the bulkhead and the western hydraulic barrier installed at SA-7 and includes the western hydraulic barrier wall of SA-7. The Property is the "Technically Impracticable Area or TI Area" identified in the SA-7 RAR. NJDEP issued a conditional No Further Action letter for SA-7 soils on December 23, 2010, that excludes the TI Area. Soils do not meet the 20 mg/kg objective in the NJDEP Chromium Policy. The Property soils exceeding 20 mg/kg hexavalent chromium are covered by at least 7 feet of clean soils. The Property will not be remediated by Honeywell; instead, the 7-foot thick clean soil cap will remain in place and will be subject to this Deed Notice. The Property also includes two steel sheetpile "wing walls" that project toward the bulkhead from the northern and southern corners of the hydraulic barrier intersections. These wing walls are part of the SA-7 Remedy in that they act to minimize re-contamination of the clean backfill material placed in the TI area from either the north or south. The Riverwalk feature including bulkhead improvements, additional fill soils and hardscape features will be constructed over top of the Property Deed Notice Area. The provisions of the LTMP, developed pursuant to the Consent Decree, will apply to Tract 1 of the Property.

(B) Description of the Restrictions on the Property:

The Property shall only be used for activities consistent with this Deed Notice, the Consent Decree, and the applicable zoning standards. Intrusive activities (i.e., excavation or digging) that breach the engineering controls (as described in Exhibit C-2) will not be permitted on the Property except in compliance with the terms of the Consent Decree and the applicable portions of the LTMP developed thereunder, and this Deed Notice. See subsections 7A Alterations, Improvements, Disturbances, and 7B Emergencies for additional information. A copy of the LTMP is maintained by Honeywell at 115 Tabor Road, Morris Plains, NJ 07950.

(C) Objective of the Restrictions:

The restrictions will prohibit contact with soils containing hexavalent chromium above the level established in the NJDEP Chromium Policy Criteria of 20 mg/kg.

Exhibit C-2

Engineering Control: Clean Fill

Portions of Block 21901.01, Lots 8 and 9 Jersey City, Hudson County, New Jersey

(A) Description of the Engineering Control:

The Engineering Controls consist include a minimum 7 to 14 feet of clean soil cover (crushed stone) as shown on Exhibit B-1.

(B) Objective of the Engineering Control

The objective of the controls is to prevent contact with soils containing hexavalent chromium above the level established in the NJDEP Chromium Policy of 20 mg/kg.

(C) Intended Function of the Engineering Control

The soil engineering controls are intended to function as a barrier to underlying and adjacent soils containing hexavalent chromium above 20 mg/kg within the Property. Monitoring requirements for the engineering controls are set forth in the applicable portions of the LTMP.

- (D) Description of the operation and maintenance necessary to ensure that:
 - (1) Periodic inspections of each engineering control are performed in order to determine its integrity, operability, and effectiveness;

Honeywell will perform monitoring as set forth in the applicable portions of the LTMP developed pursuant to the Consent Decree.

(2) Each engineering control continues as designed and intended to protect the public health and safety and the environment;

Same as (B)(1) above.

(3) Each alteration, excavation or disturbance of any engineering control is timely and appropriately addressed to maintain the integrity of the engineering controls;

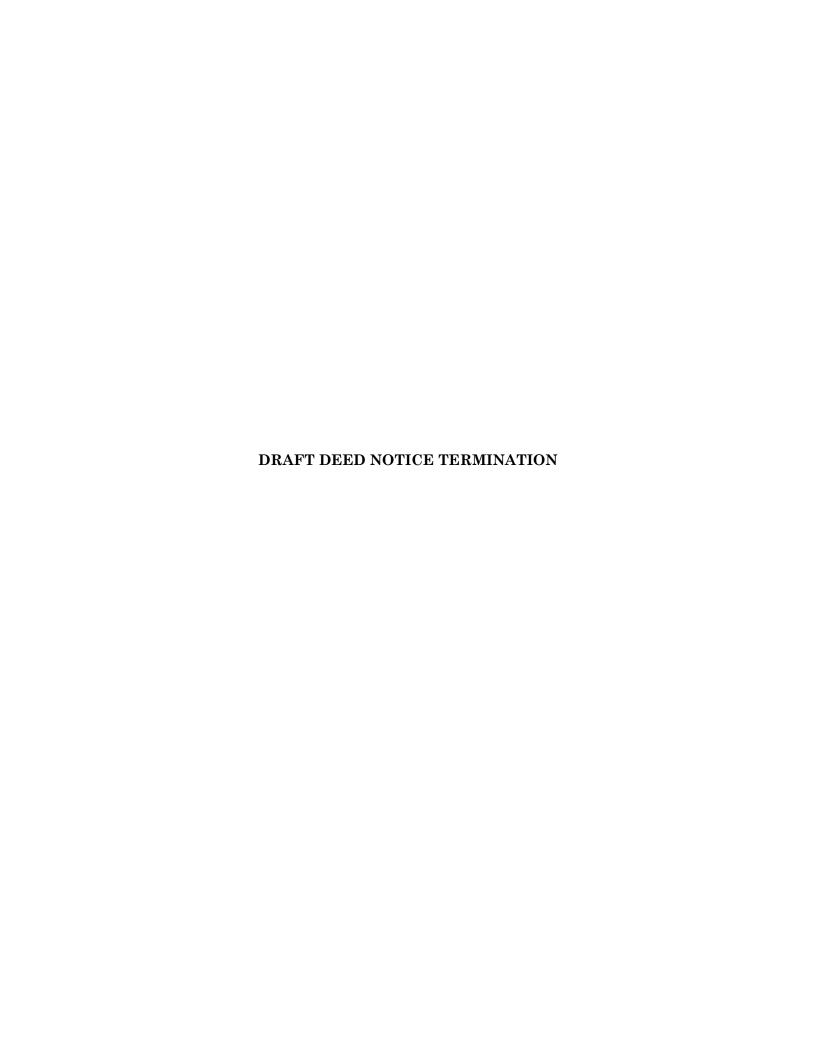
Same as (B)(1) above. Also, see the Consent Decree and subsections 7A Alterations, Improvements, Disturbances, and 7B Emergencies for additional information.

(4) The engineering controls are being inspected and maintained and their integrity remains so that the remedial action continues to be protective of the public health and safety and of the environment;

Same as (B)(1) above.

(5) A record of the self-inspection dates, name of the inspector, results of the inspection and condition(s) of the engineering controls. Sampling, for example, may be necessary if it is not possible to visually evaluate the integrity/performance of the engineering controls; and

Records of the inspections are to be maintained as listed in (5). Other monitoring activities shall be performed as set forth in the applicable portions of the LTMP developed pursuant to the Consent Decree.


(6) Any new standards, regulations, or laws apply to the Property that might necessitate additional sampling in order to evaluate the protectiveness of the remedial action which includes this Deed Notice, and conduct the necessary sampling; and

A review of any new standards, regulations, or laws will be conducted. Should the review indicate that other activities are necessary, those activities will be listed and executed.

- (E) Description of the following items that will be included in the biennial certification:
 - (1) A monitoring report that describes the specific activities, pursuant to (A) and (B), above, conducted in support of the biennial certification of the protectiveness of the remedial action that includes this Deed Notice;
 - (2) The engineering controls continues to operate as designed; and
 - (3) The remedial action that includes the engineering control continues to be protective of the public health and safety and of the environment.

The monitoring report will be included in the biennial certification. Components of the monitoring report will include the following:

- A report of all conditions set forth in sections (A) and (B) above to assure that they have been adhered to, including an evaluation to determine whether or not the engineering controls are continuing to meet the original objective and intended function.
- A report to determine whether or not the engineering controls continue to operate as designed.
 - A report to determine whether or not the engineering controls continue to be protective of the public health and safety and of the environment.

Return Address: Waters, McPherson, McNeill, P.C. P.O. Box 1560 300 Lighting Way Secaucus, New Jersey 07096-1560

DRAFT **DEED NOTICE TERMINATION**

FILED AT THE OFFICE OF THE

	COUNTY
IN DEED BOOK, Pages	
AS TO	
PORTIONS OF NEW BLOCK 21901.01 LOTS 8 AND 9	PORTIONS OF FORMER BLOCK
24601 LOT 1 AND PORTIONS OF FORMER BLOCK 2	
CITY TAX MAP OF THE HUDSON COUNTY	· · · · · · · · · · · · · · · · · · ·
IN ACCORDANCE WITH N.J.S.A. 58:10B-13, THIS DO	OCUMENT IS TO BE RECORDED
IN THE SAME MANNER AS DEEDS AND OTHER IN	TERESTS IN REAL PROPERTY.
Prepared by:	
Recorded by:	
[Signature, Officer of County R	decording Office]
[Print name below signature]	

This Termination of Deed Notice is made as of / month day, year / by City of Jersey City.

1. DEED NOTICE RECORDED IN THE OFFICE OF THE REGISTER OF HUDSON COUNTY, AT BOOK <u>9258</u>, PAGES <u>566-694</u>. By way of a Declaration of Environmental Restriction (DER) or Deed Notice (hereinafter collectively Deed Notice) dated November 30, 2017, Bayfront Redevelopment LLC ("Bayfront") advised of: (a) the existence of soil contamination in concentrations at the real property situated in the City of Jersey City and designated as Block(s) Portions Of Block 21901.01 Lots 8 and 9 (Portions of Former Block 24601 Lot 1 and Portions of Former Block 21901 Lots 8 and 10) ¹, ("the Property") on the Tax Map of City of Jersey City that do not allow for the unrestricted use of the Property; (b) the existence of institutional and/or engineering controls selected as part of the remedial action for the Property; and (c) the continuing obligation of Bayfront (former Owner) and City of Jersey City (current owner), subsequent owners, and others to monitor and maintain those institutional and/or engineering controls. The Deed Notice was part of the remediation of contamination at the Property and was recorded in the Office of the Register of Hudson County on November 30, 2017 in Deed Book 9258, Pages 566-694 by Bayfront, the then owner of the Property. Pursuant to Paragraph 10, the Deed Notice was to remain in effect until such time as the Department

"portion(s)" is specifically called out or not.

¹ All references to Block 21901.01 Lots 8 and 9 in this Deed Notice Termination shall mean those applicable portions of Former Block 24601 Lot 1 and Portions of Former Block 21901 Lots 8 and 10 as shown in the metes and bounds description, regardless of whether the word

approved the termination of the Deed Notice by executing a document expressly terminating the Deed Notice.

Deed Notice.	
Office of the Register of Hudson County	Y. By Deed dated January 15, 2019 and recorded in the on <i>[month day, year]</i> in Book 9373, Pages 596-, insferred ownership of Block(s), Lot(s)
REGISTER OF HUDSON COUNTY A 21901.01, LOTS 8 and 9. By way of let person/corporation etc.] requested approbecause conditions that required the execon Block 21901.01, Lots 8 and 9. The D [month day, year]. Accordingly, the Del Notice. Subject to the provisions of para Notice recorded in the Office of the Region 694 shall be terminated and discharged. and Portions of Former Block 21901 Lot	TICE RECORDED IN THE OFFICE OF THE T BOOK 9258, PAGES 566-694 AS TO BLOCK there dated [month day, year], [name of the Department to terminate the Deed Notice requirement approved the request by way of letter dated partment approved the request by way of letter dated partment hereby executes this Termination of Deed regraph 5 below, the Department directs that the Deed rester of Hudson County in Deed Book 9258, Pages 566-A metes and bounds description of Block 24601 Lot 1 as 8 and 10 and a scaled map showing the boundaries of the defent of Exhibits A and B, respectively.
Department has determined that a change Notice as to Block 21901.01, Lot 8, the I remains on Block 21901.01, Lot 9, in conthe Property. Thus, the approved remedia	OTICE FOR BLOCK 21901.01, LOT 9. Although the e in conditions warrants the termination of the Deed Department also has determined that soil contamination ncentrations that do not allow for the unrestricted use of al action includes a new Deed Notice for Block shall be executed and recorded by City of Jersey City.
Deed Notice shall take effect on the date Deed Notice for Block(s), Lot(s) Hudson, whichever is later, or, if this Ter	NATION OF DEED NOTICE. This Termination of this Termination of Deed Notice or the date the new is recorded in the Office of the Register of rmination of Deed Notice and the new Deed Notice are the Register of Hudson, on the date of such
	HEREOF, City of Jersey and the New Jersey have executed this Termination of Deed Notice, as of
WITNESS:	CITY OF JERSEY CITY
[Signature]	[Signature]

[Print name]

[Print name]

		[Print title]
STATE OF NEW JE COUNTY OF HUDS		SS.:
I certify that on [1] person acknowledged		Peter J. Baker personally came before me, and this y satisfaction, that:
(a) this person is named in this docume	-	unsel of City of Jersey City, the municipal corporation
	_	ess to the signing of this document by the proper officer he City of Jersey City;
(c) this document and was duly authorize	_	delivered by the Municipal Corporation as its voluntary act
(d) this person kn document; and	ows the proper sea	eal of the Municipal Corporation which was affixed to this
(e) this person sig	gned this proof to	attest to the truth of these facts.
[Sign	nature]	
[Print Name and	Title of Attesting V	Witness]
	γ. , 1	, Notary Public
ျှ	Signature]	
[P	rint name]	
WITNESS:	New Jers	sey Department of Environmental Protection
[Signature]		By: [Signature]

[Print	name	and	title
--------	------	-----	-------

[Print name and title]

STATE OF NEW JERSEY SS.: COUNTY OF MERCER

I certify that on [Month day, year], [Insert name of person executing document on behalf of the New Jersey Department Environmental Protection] personally came before me, and this person acknowledged under oath, to my satisfaction, that this person:

- (a) Is [*insert title*] and is authorized to execute this document on behalf of the New Jersey Department of Environmental Protection;
- (b) Signed, sealed and delivered this document as his or her act and deed in his capacity as [title] of the New Jersey Department of Environmental Protection; and
- (c) This document was signed and delivered by the New Jersey Department of Environmental Protection as its voluntary act, duly authorized.

	, Notary Public
[Signature]	
[Print name]	

RECORD AND RETURN TO:

Waters, McPherson, McNeill, P.C. P.O. Box 1560 300 Lighting Way Secaucus, New Jersey 07096-1560

EXHIBIT A

Metes and Bounds Description Former Block 24601 Lot 1 and Portions of Former Block 21901.01 Lots 8 and 10

331 Newman Springs Road Suite 203 Red Bank, NJ 07701 Tel: 732,383.1950 * Fax: 732,383.1984

DESCRIPTION OF PROPERTY CITY OF JERSEY CITY HUDSON COUNTY, NEW JERSEY PROJECT NO. 10000292Q DEED NOTICE AREA 4
BLOCK 24601 LOT 1
& BLOCK 21901 LOTS 8 & 10
APRIL 6, 2016
REVISED: JUNE 28, 2017

All that certain lot, tract or parcel of land situate lying and being in the City of Jersey, in the County of Hudson and State of New Jersey, and being a portion of Lot 1 Block 24601, and a portion of Lot 8 Block 21901, designated as Deed Notice Area 4 as shown on an exhibit entitled, "Deed Notice Area 4, SA6 South, Block 21901, Lot 8, Block 24601, Lot 1, City of Jersey City, Hudson County, New Jersey," prepared by Maser Consulting P.A., dated April 6, 2016, revised June 28, 2017 and being more particularly bounded and described as follows, to wit:

TRACT I:

COMMENCING at the intersection of the division line between Lots 8 and 10, Block 21901, with the northwesterly line of said Lot 8; thence-

- A. S 59°39'05" E, 23.69 feet, along said division line to the True point of BEGINNING, and running; thence-
- 1. N 44° 21' 38" E, 6.65 feet, through a portion of Lot 10, Block 21901; thence-
- 2. S 50° 26' 45" E, 40.33 feet, through said Lot 10 to a point in said division line between Lots 8 and 10, Block 21901; thence-

Running through said Lot 8, Block 21901 the following two (2) courses, as shown on aforementioned exhibit map:

- 3. S 45°51'07" W, 569.68 feet; thence-
- 4. S 45°54'51" W, 4.10 feet, to the division line between Lot 1, Block 24601 and Lot 8, Block 21901; thence-
- 5. N 53° 42' 45" W, 40.04 feet, along said division line; thence –

Running through said Lot 8, Block 21901 the following three (3) courses, as shown on aforementioned exhibit map:

- 6. N 45° 37' 13" E, 5.46 feet; thence -
- 7. N 45° 57' 38" E, 511.35 feet; thence-

DESCRIPTION OF PROPERTY CITY OF JERSEY CITY HUDSON COUNTY, NEW JERSEY PROJECT NO. 10000292Q

DEED NOTICE AREA 4
BLOCK 24601 LOT 1
& BLOCK 21901 LOTS 8 & 10
APRIL 6, 2016
REVISED: JUNE 28, 2017

8. N 44° 21' 38" E, 52.57 feet, to the point and place of BEGINNING.

CONTAINING: 22,457 S.F. of land more or less or 0.516 acres of land more or less.

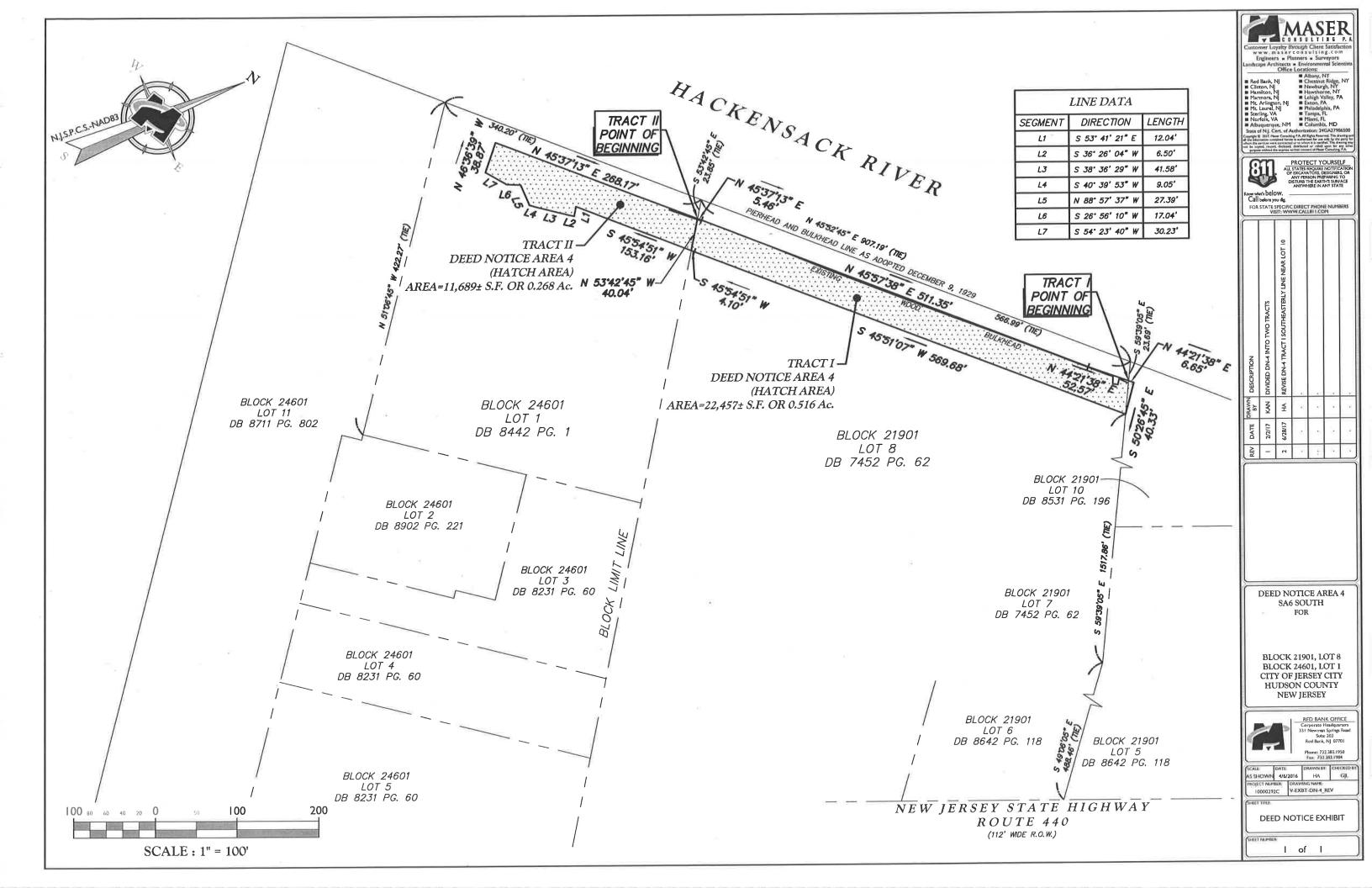
TRACT II:

COMMENCING at the intersection of the division line between Lot 1, Block 24601 and Lot 8, Block 21901, with the northwesterly line of said Lot 8; thence-

- A. S 53° 42' 45" E, 23.85 feet, along said division line to the True point of BEGINNING, and running; thence-
- 1. S 53° 42' 45" E, 40.04 feet, along said division line; thence-

Running through said Lot 1, Block 24601 the following ten (10) courses, as shown on aforementioned exhibit map:

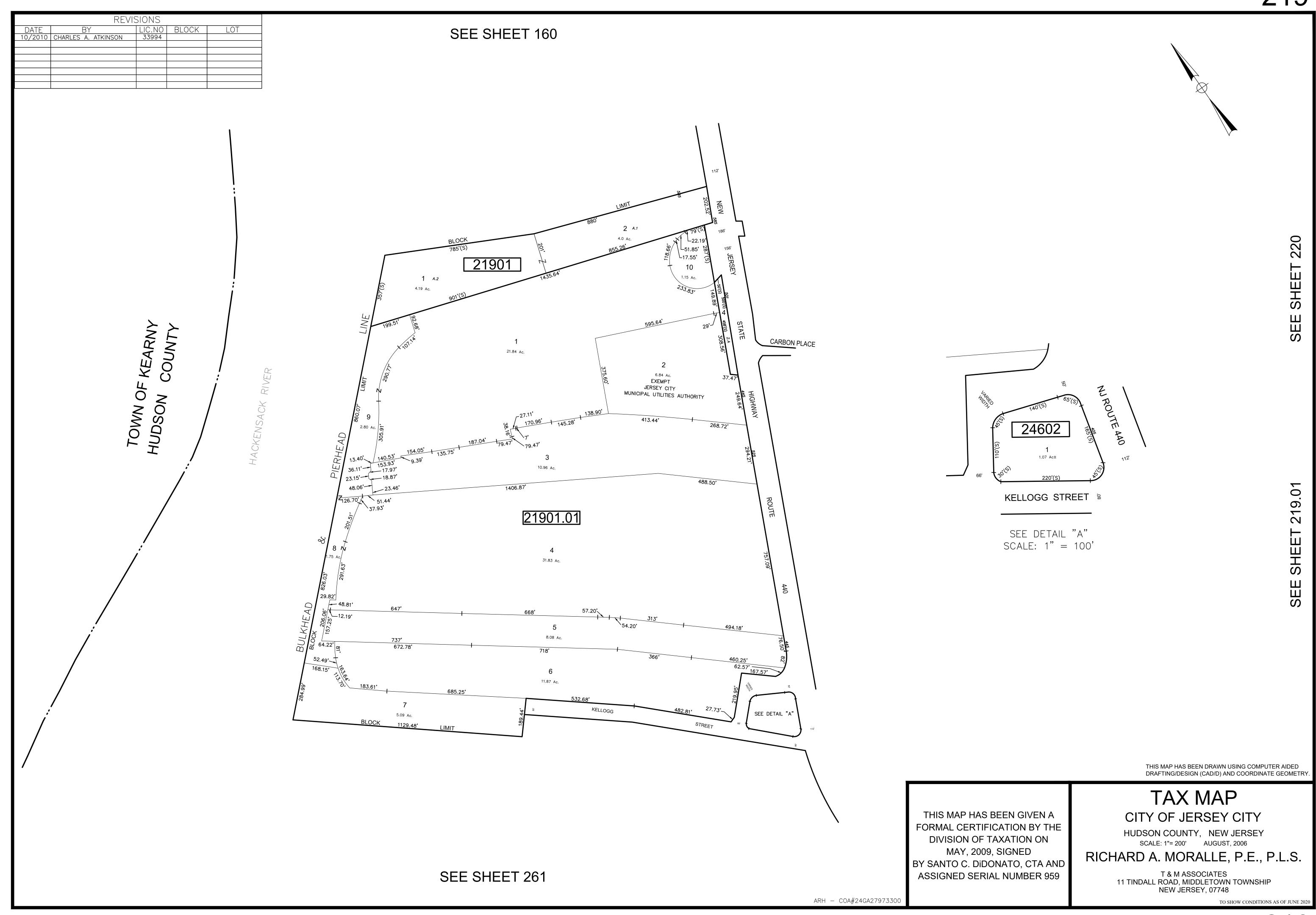
- 2. S 45°54'51" W, 153.16 feet, thence -
- 3. S 53° 41' 21" E, 12.04 feet; thence-
- 4. S 36° 26' 04" W, 6.50 feet, thence –
- 5. S 38° 36' 29" W, 41.58 feet, thence -
- 6. S 40° 39' 53" W, 9.05 feet, thence-
- 7. N 88° 57' 37" W, 27.39 feet, thence -
- 8. S 26° 56' 10" W, 17.04 feet, thence -
- 9. S 54° 23' 40" W, 30.23 feet, thence -
- 10. N 46° 36' 39" W, 38.87 feet, thence –
- 11. N 45° 37' 13" E, 268.17 feet, to the point and place of BEGINNING.


DESCRIPTION OF PROPERTY CITY OF JERSEY CITY HUDSON COUNTY, NEW JERSEY PROJECT NO. 10000292Q DEED NOTICE AREA 4
BLOCK 24601 LOT 1
BLOCK 21901 LOTS 8 & 10
APRIL 6, 2016
REVISED: JUNE 28, 2017

CONTAINING: 11,689 S.F. of land more or less or 0. 0.268 acres of land more or less.

GLEN JALOYD, P.L.S.

NEW JERSEY PROFESSIONAL LAND SURVEYOR


LICENSE NUMBER GS037598

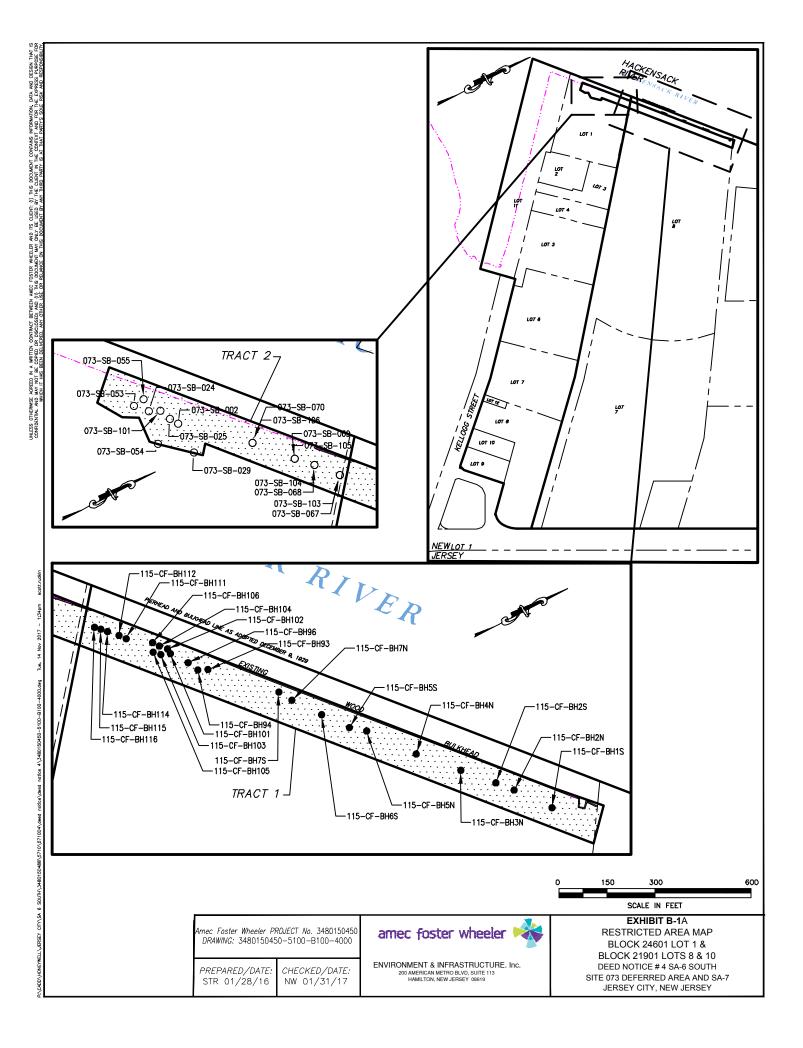


EXHIBIT B

Scaled Tax Map of the Property and Institutional/Engineering Control Boundaries Block 21901.01 Lots 8 and 9

And Former Exhibit B-1A Restricted Area Map

REMEDIAL ACTION PERMIT MODIFICATION APPLICATION – SOIL

New Jersey Department of Environmental ProtectionSite Remediation and Waste Management Program

REMEDIAL ACTION PERMIT MODIFICATION APPLICATION – SOIL

Date Stamp (For Department use only)

		(1 of Department age only)
SECTION A. SITE NAME AND LOCATION		
Site Name: SA-7 Site 115 Deed Notice #4 A-TI		
List All AKAs: Kellogg. St. Properties, etc.; Deed N	otice #4 Tract 1	
Street Address: Kellogg Street		
Municipality: Jersey City	_ (Township, Borough, or City)	
County: Hudson	Zip Code: 07305	
Program Interest (PI) Number(s): G000002548		
Case Tracking Number(s):		
Municipal Block(s) and Lot(s) of the site/property:	Block 21901.01, Lots 8 and 9	
Is this site a Federal case?		☐ Yes
If "Yes", indicate the Federal Case Type:		
☐ RCRA GPRA 2020 ☐ CERCLA/NPL	. USDOD USDO	E
Other (explain):		
SECTION B. SOIL REMEDIAL ACTION PERMIT N	ODIFICATION APPLICATION	
Note: This Soil Remedial Action Permit (RAP) Mo fees have been paid in full, and all previous have been applied for.		
Reason(s) for the Soil RAP Modification Applicat	ion: (check all that apply)	
		etion H)
☐ Change in engineering control (Complete	•	,
☐ Permittee address change (Complete Sec	•	low)
☐ Adding an Additional Person Responsible C, D, E, F, H, L, M, N and Addendum A bel	for Conducting Remediation	•
Other:		
2. The Soil RAP Modification Application fee must be	e enclosed with this application.	
	Effective on or Before June 30, 2019	Effective July 1, 2019
Soil RAP Fee – Modification	\$1,220.00	\$660.00
SECTION C. FEE BILLING CONTACT PERSON		
Business Name: Honeywell		
First Name of Contact: Maria	Last Name of Contact: _	Kaouris
Title: Chromium Remediation Director		
Phone Number: (973) 455-3302	Ext.:	Fax:
Mailing Address: 115 Tabor Road		
	State: New Jersey	Zip Code: 07950
Email Address: Maria.Kaouris@honeywell.com	Jiaie. Hen solvey	
Linail Addiess. Manantasans@nensymon.com		

SECTION D. PERSON RESPONSIBLE FOR CONDUCTING THE REMEDIATION – CO-PERMITTEE				
☐ Addendum for additional Person Responsible for Conducting the Remediation has been completed.				
Affiliation/Name of Organization: Honeywell				
First Name of Contact: Benny Last Name of Contact: Dehghi				
Title: Global Remediation Director				
Phone Number: (310) 512-2296				
Mailing Address: 115 Tabor Road				
Municipality: Morris Plains State: New Jersey Zip Code: 07950				
Email Address: benny.dehghi@honeywell.com				
☑ Check if the Person Responsible for Conducting the Remediation has Primary Responsibility for Permit Compliance				
SECTION E. CURRENT OWNER OF THE SITE – CO-PERMITTEE				
Addendum for additional Owner of the Site has been completed.				
Affiliation/Name of Organization: City of Jersey City				
First Name of Contact: Mary Pat Last Name of Contact: Noonan				
Title: Senior Project Manager, Jersey City Redevelopment Agency				
Phone Number: (201) 761-0819				
Mailing Address: 66 York Street				
Municipality: Jersey City State: New Jersey Zip Code: 07302				
Email Address: marypat@jcnj.org				
☐ Check if the owner has Primary Responsibility for Permit Compliance				
SECTION F. ATTACHED DOCUMENTS				
Attach the following documents: (Check all that apply)				
Note: All electronic copies should be provided in Adobe PDF file format on a compact disc (CD).				
───────────────────────────────────				
Hard and electronic copy of the cover letter/report explaining the reason(s) for the Soil RAP Modification Application.				
☑ Electronic copy of the Filed Deed Notice (must be a separate PDF file) and Deed Notice Termination document with book & page numbers, which should include all associated attachments/exhibits.				
☑ Electronic copy of the completed Remediation Cost Review and RFS/FA Form with a detailed cost estimate, if applicable:				
Only Check One:				
☐ Original Financial Assurance mechanism (<i>hard copy</i>), including any Amendments, attached.				
☐ Date the original Financial Assurance mechanism was submitted to the NJDEP:				
An electronic copy of the Remediation Funding Source (RFS) mechanism, if using an existing RFS mechanism as the Financial Assurance, and an amendment to conform to the Financial Assurance format.				
☐ Electronic copy of the homeowner or condominium association's annual budget that includes funds for the operation, maintenance, and monitoring of the engineering control(s) at the site, if applicable.				

SE	CTION G. DEED NOTICE INFORMATION	
1.	Deed Notice filing date:	
2.	Name of County Office the Deed Notice was filed in:	
3.	Book Number the Deed Notice is filed in: Page Numbers: First: to Last:	
4.	Total Number of Pages filed:	
5.	Instrument/Control/File Number(s):	
6.	Block(s) and Lot(s) of the restricted area: Block 21901.01, Lots 8 and 9	
7.	Is the restricted area the entire site/property?	⊠ No
	If " No ", what percent of the site/property is restricted? 1.6 %	
8.	Is this Deed Notice for Historic Fill material at the site?	⊠ No
	If " Yes ", is the Historic Fill material impacting the ground water at the site? ☐ Yes	☐ No
	If the Historic Fill material <u>is</u> impacting the ground water at the site, has the CEA/WRA Fact Sheet Form been submitted to the NJDEP?	□No
	If the CEA/WRA Fact Sheet Form has not been submitted, attach the Form to this application.	
	If the Historic Fill material <u>is not</u> impacting the ground water at the site, then check one of the boxes below to explain why:	
	☐ Ground water sampled as per the guidance and below GWQS	
	☐ Ground water not sampled because no trigger in SI/RI	
9.	Is this Deed Notice for Polychlorinated Biphenyl (PCB) soil contamination greater than 1 part per million (ppm) remaining at the site?	⊠ No
	If " Yes ", document compliance/approval with the federal Toxic Substances Control Act (TSCA) program in Section K below and attach all supporting documentation.	
10.	Has the new Deed Notice restricted area been accurately mapped on NJ-GeoWeb? ☐ Yes	⊠ No
	If " No ", submit a GIS compatible map of the Deed Notice restricted area by email to srpgis_dn@dep.nj.gov and provide the date the email was sent:	

11. In the following table, list all contaminants still present at the site/property that require the use of a Deed Notice (attach additional pages if needed). For each contaminant indicate the highest concentration at any depth, and the shallowest depth at which a concentration was detected above standards, as measured to include the thickness of the cap. Note that the highest concentration and the shallowest depth can be from two different sampling points. Do not attach tables from reports.						
If Historic Fill is preser	nt, check the app	ropr	riate box below:			
	naracterized histo sampled (<i>provid</i>			e contaminated but below)	not sampled	
Contaminant	Highest Concentration (mg/kg)	n*	Shallowest Depth (feet bgs)	Residential Direct Contact Soil Remediation Standard	Non-Residential Direct Contact Soil Remediation Standard	Impact to Ground Water Pathway Soil Remediation Standard
Hexavalent Chromium	113		7	20	20	N/A
* Check the box if the high	Check the box if the highest concentration was the result of a compliance option.					
SECTION H. ENGINEER	ING CONTROL					
Current Land Use for	the Engineering	Con	trolled Area <i>(che</i>	eck all that apply)		
☐ Industrial			ark or Recreation	nal Use	☐ Child Care Ce	enter
☐ Residential☐ Commercial	L		gricultural pad/Right of Wa	У	☐ Hospital ☒ Vacant	
☐ Government Facil	ity [chool	•	Other:	
If school, childcare, or implemented pursuant If "No". when was	t to N.J.A.C. 7:26	8E-5	.3?			s 🗌 No 🗵 N/A

Area	Engineering Control Description	Thickness	Units	Inspection Frequency
TA-1	Soil	7-14	Feet	Quarterly
17. 1	3511	, , , ,	1 001	Quartony
describe:			•	•
describe.				

SE	CTION I. FINANCIAL ASSURANCE				
1.	Does the remedial action/Deed Notice include an engineering control?				
	If "No", proceed to the next section.				
2.	Are any of the entities identified in Section D or E exempt from establishing Financial Assurance pursuant to N.J.A.C. 7:26C-7.10(c)?				
	If "Yes", check the exemption(s) that applies:				
	Person Responsible for Conducting the for Conducting the Cowner of Remediation — the Site — Co-Permittee Co-Permittee Government entity A person not liable pursuant to the Spill Act that purchased contaminated property before May 7, 2009 A person that conducted remediation at their primary or secondary residence Owner or operator of a child care center Public school or private school Owner or operator of a small business responsible for conducting remediation at the location of the business				
If a	all of the entities identified in Section D or E are exempt, proceed to the next section.				
3.	Is the current owner of the site either a homeowner association or a condominium association pursuant to the New Jersey Common Interest Association Act, N.J.S.A. 46:8A-1 et seq.?				
	If "Yes" and the association is identified in Section E of this RAP Application, an electronic copy of the association's annual budget that includes funds for the operation, maintenance, and monitoring of the engineering control(s) at the site should be attached as indicated in Section F above.				
4.	Identify the estimated cost of the operation, maintenance, and monitoring of the engineering control(s) at the site:				
5.	Are you using an existing RFS mechanism for the site as the Financial Assurance? ☐ Yes ☒ No				
	If " Yes ", have <u>all</u> the following criteria been met?				
	 a. The amount of funds needed to operate, maintain, and monitor the engineering control(s) at the site for 30 years (minimum of \$30,000 for a 30-year time frame); 				
	 The amount of funds in the RFS equals the amount of funds required to be posted for RFS and Financial Assurance; and 				
	c. The RFS is not in the form of a self-guarantee.				
	Identify the full amount of the current RFS\$				
6.	Identify the full amount established as a Financial Assurance: \$\begin{align*} 46,915,000.00 \\ \end{align*}				
	As indicated in Section F above, an electronic copy of the completed Remediation Cost Review and RFS/FA Form should be attached. Also, please be sure to provide one of the following as indicated in Section F above: attach the original Financial Assurance mechanism (<i>hard copy</i>), including any Amendments, to the Soil RAP Application; the date the original Financial Assurance mechanism was submitted to the NJDEP; or an electronic copy of the existing RFS mechanism that is being used as the Financial Assurance and the amendment to conform to the Financial Assurance format.				
7.	What is the Financial Assurance Mechanism? (check all that apply)				
	Remediation Trust Fund Line of Credit Surety Bond				
	☐ Environmental Insurance Policy ☒ Letter of Credit				

	8. Contact information at the financial institution for the Financial Assurance: Financial Institution: MFUG Union Bank				
		Las	st Name of Contact: RE: S315125M		
	e: Trade Service Operations				
	one Number: (800) 858-9120	Ext.:	Fax: <u>(</u> 323) 720-2773		
	illing Address: 1980 Saturn Street, V02-906				
	nicipality: Monterey	State: CA	Zip Code: 91755		
En	nail Address: N/A				
SE	CTION J. VAPOR INTRUSION SUMMARY				
1.	Are there any buildings with an Indetermina as a result of this soil contamination and no	te Vapor Intrusic t ground water c		⊠ No	
	If "Yes", document this issue in Section K	below and attac	h any supporting documentation.		
2.	Is there soil gas contamination above the Sebuildings that require long-term monitoring a not ground water contamination?	as a result of this	soil contamination and	⊠ No	
	If "Yes", document this issue in Section K	below.			
	Attach an electronic copy of the Vapor In site map clearly identifying the building(s)	trusion Long-Ter	m Monitoring Plan and a scaled		
3.	Are any vapor intrusion engineering controls buildings as a result of this soil contamination remain on the site/property and included in	on (<i>and not groui</i>		⊠ No	
	If "Yes", indicate the type of vapor intrusic	on engineering co	ontrol that was implemented: (check all that apply)		
	 ☐ Subsurface Depressurization System ☐ Subsurface Ventilation System ☐ Soil Vapor Extraction System ☐ HVAC Positive Pressure ☐ Other (specify): 				
	Attach an electronic copy of the Operation, Maintenance, and Monitoring (OMM) Plan for the vapor intrusion engineering control(s)/mitigation system(s). The OMM Plan should clearly identify the building(s) and/or structure(s) and vapor intrusion engineering control(s)/mitigation system(s) that are in place (e.g., active or passive), including the address and block and lot of each impacted property.				

SECTION K. OTHER INFORMATION PROVIDED				
List any other pertinent information to support the Soil RAP Modification Application.				
Deed Notice area #4 will be terminated to remove SA-6 South Site 073 after additional excavation activities were conducted in 2020. New Deed Notice #4 for only the SA-7 Site 115 portion of the cap will be filed after approval of the RAR Addendum.				

SECTION L. PERSON RESPONSIBLE FOR CONDUCT	ING THE REMEDIATION IN	NFORMA	TION AND CERTIFICA	NOITA
Full Legal Name of the Person Responsible for Conductin Honeywell International Inc.	g the Remediation:			
Representative First Name: Benny	Representative Las	t Name:	Dehghi	
Title: Global Remediation Director				
Phone Number: (310) 512-2296	Ext.:	Fax:		
Mailing Address: 115 Tabor Road				
City/Town: Morris Plains	State: New Jersey		Zip Code: 07950	
Email Address: benny.dehghi@honeywell.com				
This certification shall be signed by the person responsible in accordance with Administrative Requirements for the Re				
I certify under penalty of law that I have personally examinincluding all attached documents, and that based on my in the information, to the best of my knowledge, I believe that aware that there are significant civil penalties for knowingly am committing a crime of the fourth degree if I make a write aware that if I knowingly direct or authorize the violation of	quiry of those individuals im t the submitted information i y submitting false, inaccurat tten false statement which I	nmediatel is true, ac te or inco do not be	y responsible for obtain scurate and complete. I mplete information and elieve to be true. I am a	am that I
Signature:		Date:		
Name/Title: Benny Dehghi/Globa	Remediation Director			
SECTION M. CURRENT OWNER OF THE SITE INFORM Full Legal Name of the Person Responsible who owns the City of Jersey City		ION		
Representative First Name: Mary Pat	Representative Las	t Name:	Noonan	
Title: Senior Project Manager, Jersey City Redevelopmer	nt Agency			
Phone Number: (201) 761-0819	Ext.:	Fax:	(201) 761-0831	
Mailing Address: 66 York Street				
City/Town: Jersey City	State: New Jersey		Zip Code: 07302	
Email Address: marypat@jcnj.org				
This certification shall be signed by the person who owns administrative Requirements for the Remediation of Conta				1
I certify under penalty of law that I have personally examinincluding all attached documents, and that based on my in the information, to the best of my knowledge, I believe that aware that there are significant civil penalties for knowingly am committing a crime of the fourth degree if I make a write aware that if I knowingly direct or authorize the violation of	quiry of those individuals im t the submitted information i y submitting false, inaccurat tten false statement which I	nmediatel is true, ac te or inco do not be	y responsible for obtain scurate and complete. I mplete information and elieve to be true. I am a	am that I
Signature:		Date:		
Name/Title: Mary Pat Noonan/S	enior Project Manager			

Completed forms should be sent to:

Bureau of Case Assignment & Initial Notice Site Remediation Program NJ Department of Environmental Protection 401-05H PO Box 420 Trenton, NJ 08625-0420

Est: Fax: Fa	SECTION N. LICENSED SITE REMEDIA	TION PROFESSIONAL INFO	DRMATION AND STATEMENT
Phone Numbers:	LSRP ID Number:		
Municipality: State: Zip Code: Email Address: This statement shall be signed by the LSRP who is submitting this notification in accordance with N.J.S.A. 58:10C-14, and N.J.S.A. 58:10B-1.3b(1) and (2). (1) I certify, as a Licensed Site Remediation Professional authorized pursuant to N.J.S.A. 58:10C-1 et seq. to conduct business in New Jersey, that for the remediation described in this submission, and all attachments included in this submission; and/or periodically reviewed and evaluated the work performed by other persons that forms the basis for the information in this submission; and/or completed the work of another site remediation professional, lecnsed or not, after having; (1) reviewed all available documentation on which 1 relied; (2) conducted a site visit and observed the then-current conditions and verified the status of as much of the work as was reasonably observable; and (3) concluded, in the exercise of my independent professional professional professional interest was sufficient information upon which to complete any additional phase of remediation and prepare workplans and reports related thereto. (2) I certify: • That I have read this submission and all attachments to this submission; • That I have read this submission and all attachments to this submission; • That the remediation conducted at the entire site or each area of concern, that is described in this submission and all attachments in this submission and all attachments in this submission, was conducted pursuant to and in compliance with the regulations of the Site Remediation Professional Licensing Board at N.J.A. 53:10C-14.c; • That the remediation described in this submission, and all attachments to this submission, was conducted pursuant to and in compliance with the regulations of the Site Remediation Professional Licensing Board at	First Name:	Last Name:	
Municipality: State: Zip Code: Email Address: This statement shall be signed by the LSRP who is submitting this notification in accordance with N.J.S.A. 58:10C-14, and N.J.S.A. 58:10B-1.3b(1) and (2). (1) I certify, as a Licensed Site Remediation Professional authorized pursuant to N.J.S.A. 58:10C-1 et seq. to conduct business in New Jersey, that for the remediation described in this submission, and all attachments included in this submission; and/or periodically reviewed and evaluated the work performed by other persons that forms the basis for the information in this submission; and/or completed the work of another site remediation professional, lecnsed or not, after having; (1) reviewed all available documentation on which 1 relied; (2) conducted a site visit and observed the then-current conditions and verified the status of as much of the work as was reasonably observable; and (3) concluded, in the exercise of my independent professional professional professional interest was sufficient information upon which to complete any additional phase of remediation and prepare workplans and reports related thereto. (2) I certify: • That I have read this submission and all attachments to this submission; • That I have read this submission and all attachments to this submission; • That the remediation conducted at the entire site or each area of concern, that is described in this submission and all attachments in this submission and all attachments in this submission, was conducted pursuant to and in compliance with the regulations of the Site Remediation Professional Licensing Board at N.J.A. 53:10C-14.c; • That the remediation described in this submission, and all attachments to this submission, was conducted pursuant to and in compliance with the regulations of the Site Remediation Professional Licensing Board at			
Municipality:			
Email Address: This statement shall be signed by the LSRP who is submitting this notification in accordance with N.J.S.A. 58:10C-14, and N.J.S.A. 58:10B-1.36(1) and (2). (1) I certify, as a Licensed Site Remediation Professional authorized pursuant to N.J.S.A. 58:10C-1 et seq, to conduct business in New Jersey, that for the remediation described in this submission, and all attachments included in this submission. I personally: Managed, supervised, or performed the remediation conducted at this site that is described in this submission, and all attachments included in this submission; and/or periodically reviewed and evaluated the work performed by other persons that forms the basis for the information in this submission; and/or completed the work of another site remediation professional, licensed or not, after having; (1) reviewed all available documentation on which 1 relied; (2) conducted a site visit and observed the then-current conditions and verified the status of as much of the work as was reasonably observable; and (3)concluded, in the exercise of my independent professional judgment, that there was sufficient information upon which to complete any additional phase of remediation and prepare workplans and reports related thereto. (2) I certify: • That I have read this submission and all attachments to this submission; • That in performing the professional services as the licensed site remediation professional for the entire site or each area of concern, I adhered to the professional conduct standards and requirements governing licensed site remediation professionals provided in N.J.S.A. 58:10C-16; • That the remediation conducted at the entire site or each area of concern, that is described in this submission and all attachments to this submission, was conducted pursuant to and in compliance with the remediation requirements in N.J.S.A. 58:10C-14.c; • That the remediation conducted at the entire site or each area of concern has been remediated in compliance with the regulations of the Site Remedi			
This statement shall be signed by the LSRP who is submitting this notification in accordance with N.J.S.A. 58:10C-14, and N.J.S.A. 58:10B-1.3b(1) and (2). (1) I certify, as a Licensed Site Remediation Professional authorized pursuant to N.J.S.A. 58:10C-1 et seq, to conduct business in New Jersey, that for the remediation described in this submission, and all attachments included in this submission, and all attachments included in this submission, and of periodically reviewed and evaluated the work performed by other persons that forms the basis for the information in this submission, and completed the work of another site remediation professional, licensed or not, after having: (1) reviewed all available documentation on which I relied; (2) conducted a site visit and observed the then-current conditions and verified the status of as much of the work as was reasonably observable; and (3)concluded, in the exercise of my independent professional judgment, that there was sufficient information upon which to complete any additional phase of remediation and prepare workplans and reports related thereto. (2) I certify: • That I have read this submission and all attachments to this submission: • That in performing the professional services as the licensed site remediation professional for the entire site or each area of concern. I adhered to the professional conduct standards and requirements governing licensed site remediation professionals provided in N.J.S.A. 58:10C-16: • That the remediation conducted at the entire site or each area of concern, that is described in this submission and all attachments to this submission and all attachments to this submission was conducted pursuant to and in compliance with the regulations of the Site Remediation Professional Licensing Board at N.J.A.C. 7:26; and • That the remediation described in this submission and all attachments to this submission, was conducted pursuant to and in compliance with the regulations of the Site Remediation Professional Licensing Board at N.J.A			
business in New Jersey, that for the remediation described in this submission, and all attachments included in this submission. I personally: Managed, supervised, or performed the remediation conducted in this site that is else that is described in this submission, and all attachments included in this submission; and/or periodically reviewed and evaluated the work performed by other persons that forms the basis for the information in this submission; and/or completed the work of another site remediation professional, licensed or not, after having: (1) reviewed all available documentation on which I relied; (2) conducted a site visit and observed the then-current conditions and verified the status of as much of the work as was reasonably observable; and (3)concluded, in the exercise of my independent professional judgment, that there was sufficient information upon which to complete any additional phase of remediation and prepare workplans and reports related thereto. (2) I certify: • That I have read this submission and all attachments to this submission: • That in performing the professional services as the licensed site remediation professionals provided in N.J.S.A. 58:10C-16; • That the remediation conducted to the professional conduct standards and requirements governing licensed site remediation professionals provided in N.J.S.A. 58:10C-16; • That the remediation conducted at the entire site or each area of concern, that is described in this submission and all attachments to this submission, was conducted pursuant to and in compliance with the regulations of the Site Remediation Professional Licensing Board at N.J.A.C. 7:26i; and • That the information contained in this submission and all attachments to this submission is true, accurate, and complete. (3) I certify, when this submission includes a response action outcome, that the entire site or each area of concern has been remediated in compliance with all applicable statutes, rules, and regulations and is protective of public health and safety an	This statement shall be signed by the LSR		cation in accordance with N.J.S.A. 58:10C-14, and
 That I have read this submission and all attachments to this submission; That in performing the professional services as the licensed site remediation professional for the entire site or each area of concern, I adhered to the professional conduct standards and requirements governing licensed site remediation professionals provided in N.J.S.A. 58:10C-16; That the remediation conducted at the entire site or each area of concern, that is described in this submission and all attachments to this submission, was conducted pursuant to and in compliance with the remediation requirements in N.J.S.A. 58:10C-14.c; That the remediation described in this submission, and all attachments to this submission, was conducted pursuant to and in compliance with the regulations of the Site Remediation Professional Licensing Board at N.J.A.C. 7:261; and That the information contained in this submission and all attachments to this submission is true, accurate, and complete. (3) I certify, when this submission includes a response action outcome, that the entire site or each area of concern has been remediated in compliance with all applicable statutes, rules, and regulations and is protective of public health and safety and the environment. (4) I certify that no other person is authorized or able to use any password, encryption method, or electronic signature that the Board or the Department have provided to me. (5) I certify that I understand and acknowledge that: If I knowingly make a false statement, representation, or certification in any document or information I submit to the Department I may be subject to civil and administrative enforcement pursuant to N.J.S.A. 58:10C-17.a.1(a)through (f) by the Board, including but not limited to license suspension, revocation, or denial of renewal; and If I purposely, knowingly, or recklessly make a false statement, representation, or certification in any application, form, record, document or other info	business in New Jersey, that for the resubmission, I personally: Managed, suthis submission, and all attachments in performed by other persons that forms another site remediation professional, relied; (2) conducted a site visit and old as was reasonably observable; and (3 was sufficient information upon which	emediation described in this supervised, or performed the re included in this submission; and the basis for the information licensed or not, after having: baserved the then-current conditional licensed in the exercise of	submission, and all attachments included in this emediation conducted at this site that is described in and/or periodically reviewed and evaluated the work in this submission; and/or completed the work of (1) reviewed all available documentation on which I ditions and verified the status of as much of the work of my independent professional judgment, that there
 (4) I certify that no other person is authorized or able to use any password, encryption method, or electronic signature that the Board or the Department have provided to me. (5) I certify that I understand and acknowledge that: If I knowingly make a false statement, representation, or certification in any document or information I submit to the Department I may be subject to civil and administrative enforcement pursuant to N.J.S.A. 58:10C-17.a.1(a)through (f) by the Board, including but not limited to license suspension, revocation, or denial of renewal; and If I purposely, knowingly, or recklessly make a false statement, representation, or certification in any application, form, record, document or other information submitted to the Department or required to be maintained pursuant to the Site Remediation Reform Act, I shall be guilty, upon conviction, of a crime of the third degree and shall, notwithstanding the provisions of subsection b. of N.J.S.2C:43-3, be subject to a fine of not less than \$5,000 nor more than \$75,000 per day of violation, or by imprisonment, or both. (6) I certify that I have read this certification prior to signing, certifying, and making this submission. 	 That I have read this submission That in performing the profession each area of concern, I adhered a remediation professionals provide That the remediation conducted all attachments to this submission requirements in N.J.S.A. 58:10C- That the remediation described in pursuant to and in compliance with N.J.A.C. 7:26I; and That the information contained in complete. (3) I certify, when this submission includes been remediated in compliance with a 	tal services as the licensed so the professional conduct so the professional conduct so the in N.J.S.A. 58:10C-16; at the entire site or each area on, was conducted pursuant to 14.c; on this submission, and all attact the regulations of the Site of this submission and all attacts a response action outcomes.	ite remediation professional for the entire site or tandards and requirements governing licensed site of concern, that is described in this submission and and in compliance with the remediation achments to this submission, was conducted Remediation Professional Licensing Board at chments to this submission is true, accurate, and that the entire site or each area of concern has
 If I knowingly make a false statement, representation, or certification in any document or information I submit to the Department I may be subject to civil and administrative enforcement pursuant to N.J.S.A. 58:10C-17.a.1(a)through (f) by the Board, including but not limited to license suspension, revocation, or denial of renewal; and If I purposely, knowingly, or recklessly make a false statement, representation, or certification in any application, form, record, document or other information submitted to the Department or required to be maintained pursuant to the Site Remediation Reform Act, I shall be guilty, upon conviction, of a crime of the third degree and shall, notwithstanding the provisions of subsection b. of N.J.S.2C:43-3, be subject to a fine of not less than \$5,000 nor more than \$75,000 per day of violation, or by imprisonment, or both. (6) I certify that I have read this certification prior to signing, certifying, and making this submission. 	(4) I certify that no other person is authori.		vord, encryption method, or electronic signature that
LSRP Signature: Date:	 If I knowingly make a false statem the Department I may be subject 17.a.1(a)through (f) by the Board and If I purposely, knowingly, or reckled form, record, document or other if the Site Remediation Reform Act notwithstanding the provisions of more than \$75,000 per day of violents. 	ment, representation, or certift to civil and administrative en to civil and administrative en to civil and but not limited to limited to the Land of	forcement pursuant to N.J.S.A. 58:10C-icense suspension, revocation, or denial of renewal; t, representation, or certification in any application, Department or required to be maintained pursuant to ction, of a crime of the third degree and shall, 3-3, be subject to a fine of not less than \$5,000 nor r both.
	(6) I certify that I have read this certification	n prior to signing, certifying, a	and making this submission.
	LSRP Signature		Date:
			-

Company Name:

ADDENDUM A

Additional Persons Responsible For Conducting Remediation

Αľ	DDENDUM TO SECTION D. PERSO	N RESPONSIBLE FOR COND	UCTING THE REMEDIATION – CO-PER	MITTEE
Af	ffiliation/Name of Organization:			
			of Contact:	
Tit	itle:			
Ph	hone Number:	Ext.:	Fax:	
Ma	lailing Address:			
Мι	lunicipality:	State:	Zip Code:	
En	mail Address:			
	Check box if the Additional Person Fermary Responsibility for Permit Co		Remediation has	
1.	. Does the remedial action/Deed Noti	ce include an engineering contro	ol? 🗌 Ye	s 🗌 No
	If "No", proceed to the next sect	ion.		
2.	. Are you exempt from establishing F	inancial Assurance pursuant to I	N.J.A.C. 7:26C-7.10(c)? 🗌 Ye	s 🗌 No
	If "Yes", check the exemption(s) that applies:		
	property before May 7, 20 A person that conducted re Owner or operator of a chi Public school or private sc	emediation at their primary or se ld care center hool all business responsible for cond	econdary residence	
3.			toring of the \$	
4.	. Are you using an existing RFS mecl	nanism for the site as the Financ	cial Assurance? Yes	☐ No
	If " Yes ", have <u>all</u> the following c	riteria been met?	Yes	☐ No
		d to operate, maintain, and moni ears (<i>minimum of \$30,000 for a</i>		
	 b. The amount of funds in the F posted for RFA and Financia 	RFS equals the amount of funds al Assurance; and	required to be	
	c. The RFS is not in the form o	•		
			\$	
5.	. Identify the full amount established	as a Financial Assurance:	\$	
	a detailed cost estimate should be a Section F above: attach the original Soil RAP Application; the date the o	attached. Also, please be sure to Financial Assurance mechanism riginal Financial Assurance mec mechanism that is being used as	d Remediation Cost Review and RFS/FA o provide one of the following as indicated in (hard copy), including any Amendments chanism was submitted to the NJDEP; or a sthe Financial Assurance and the amend	d in s, to the an

ADDENDUM A

6.	What is the Financial Assurance Mechanism	n? (check all that apply)	
	☐ Remediation Trust Fund	☐ Line of Credit	☐ Surety Bond
	☐ Environmental Insurance Policy	☐ Letter of Credit	
7.	Contact information at the financial institution	n for the Financial Assura	nce:
	Financial Institution:		
	First Name of Contact:		of Contact:
	Title:		
	Phone Number:	Ext:	Fax:
	Mailing Address:		
	Municipality:	State:	Zip Code:
	Email Address:		
ΔΓ	ODENDLIM TO SECTION L. PERSON RESP	ONSIBLE FOR CONDUC	CTING THE REMEDIATION INFORMATION AND
	CERTIFICATIO	N	
E	ıll Legal Name of the Person Responsible for	Conducting the Demodiat	ion.
1 0	an Legal Name of the Ferson Nesponsible for	Conducting the Nemediat	ion.
Re	epresentative First Name:	Repres	entative Last Name:
Tit	ile:		
			Fax:
Ma	ailing Address:		
	ty/Town:		Zip Code:
En	nail Address:		
			the remediation who is submitting this notification contaminated Sites rule at N.J.A.C. 7:26C-1.5(a).
ind the aw an	e information, to the best of my knowledge, I l vare that there are significant civil penalties fo	ed on my inquiry of those in believe that the submitted or knowingly submitting fals make a written false stater	ndividuals immediately responsible for obtaining information is true, accurate and complete. I am se, inaccurate or incomplete information and that I ment which I do not believe to be true. I am also
Sig	gnature:		Date:
Na	ame/Title:		

ADDENDUM B

Additional Property Owners

ΑC	DDENDUM TO SECTION E. CURRE	ENT OWNER OF THE SITE - CO	-PERMITTEE		
Αf	filiation/Name of Organization:				
		Last Name o	Last Name of Contact:		
Tit	tle:				
Ph	none Number:	Ext.:	Fax:		
Ma	ailing Address:				
			Zip Code:		
En	nail Address:				
	Check if the additional owner has P	rimary Responsibility for Permit Co	ompliance		
1.	Does the remedial action/Deed Not	ice include an engineering control	l?	Yes 🗌 No	
	If "No", proceed to next section				
2.	Are you exempt from establishing F	inancial Assurance pursuant to N	.J.A.C. 7:26C-7.10(c)?	Yes 🗌 No	
	If "Yes", check the exemption the	hat applies, and then proceed to th	ne next section:		
	property before May 7, 20				
	☐ Owner or operator of a ch☐ Public school or private so	chool nall business responsible for condi	•		
3.	Do you represent a homeowner ass	sociation or a condominium assoc	iation pursuant to the eq.?	Yes □ No	
		he association's annual budget tha , and monitoring of the engineering	at includes funds g control(s) at the site should be attac	hed as	
4.	Identify the estimated cost of the opengineering control(s) at the site:				
5.	Are you using an existing RFS med	hanism for the site as the Financia	al Assurance? 🗌 Ye	es 🗌 No	
	If " Yes ", have <u>all</u> the following o	criteria been met?	🗌 Ye	es 🗌 No	
		d to operate, maintain, and monito years (<i>minimum of \$30,000 for a 3</i>			
	 b. The amount of funds in the posted for RFA and Financia 	RFS equals the amount of funds rall Assurance; and	equired to be		
	c. The RFS is not in the form of	of a self-guarantee.			
	Identify the full amount of the c	urrent RFS	\$		
6.	Identify the full amount established	as a Financial Assurance:	\$		
	a detailed cost estimate should be a Section F above: attach the origina Soil RAP Application; the date the original states of the section of	attached. Also, please be sure to I Financial Assurance mechanism original Financial Assurance mech mechanism that is being used as	Remediation Cost Review and RFS/F provide one of the following as indica (hard copy), including any Amendmenanism was submitted to the NJDEP; of the Financial Assurance and the ame	ited in ints, to the or an	

ADDENDUM B

7. W	What is the Financial Assurance Mechanism? (check all that apply)				
	☐ Remediation Trust Fund	☐ Line of Credit	☐ Surety Bond		
	☐ Environmental Insurance Policy	Letter of Credit			
8. C	Contact information at the financial institution for the Financial Assurance:				
Fi	inancial Institution:				
			of Contact:		
Ti	itle:				
			Fax:		
	lailing Address:				
	lunicipality:				
E	mail Address:				
	esentative First Name:		resentative Last Name:		
			Fax:		
	ng Address:				
	Town:		Zip Code:		
	Address:				
	certification shall be signed by the person vnistrative Requirements for the Remediatio		ubmitting this notification in accordance with ule at N.J.A.C. 7:26C-1.5(a).		
includ	formation, to the best of my knowledge, I b	d on my inquiry of those in relieve that the submitted i r knowingly submitting fals	ndividuals immediately responsible for obtaining information is true, accurate and complete. I am se, inaccurate or incomplete information and that I		
aware	e that if I knowingly direct or authorize the v				
aware am co aware	e that if I knowingly direct or authorize the value:	violation of any statute, I ai	m personally liable for the penalties.		